❶ 五年級數學手抄報內容
.數學家的故事,如高抄斯創高斯法
2.數學趣題幾個,如李白喝酒的趣題
3.數學新知識,可以是沒學過的。如果你是小學生就寫負數的概念,如果你是初中生就寫集合的概念,等等等等。
4.數學謎題或奧林匹克競賽題,如0+0=0,謎底是一無所有
5.數學幾何中美麗的圖案示例,如勾三股四弦五(三角形)
6.數學真理,名言
還有很多,具體資料網路一搜就有了
p.s.數學手抄報很簡單。用心做就能拿特等獎
❷ 求五年級上冊數學手抄報內容!!!!!!!!!
寫一些關於五年級數學書的概念,公式,以及一些總結性的話。繪圖的話,就可以畫一些關於數學的,並且標題旁邊可以用藝術字寫math,凸顯主題。
❸ 五年級數學手抄報內容和圖片:
畫幾個幅字和一個方形在裡面寫新年時的事
❹ 關於五年級上冊數學的手抄報。(請發幾張圖片)
❺ 求五年級上數學手抄報資料
求五年級上數學手抄報資料
查看全部9個回答
我來答
我來答 查看全部9個回答
ziyi86821846
LV.4 推薦於 2018-02-24
數學是無窮的科學。——赫爾曼外爾
數學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來,但證明卻隱藏的極深。數學是科學之王。——高斯
在數學的領域中,提出問題的藝術比解答問題的藝術更為重要。——康扥爾
只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示獨立發展的終止或衰亡。——希爾伯特
在數學的天地里,重要的不是我們知道什麼,而是我們怎麼知道什麼。——畢達哥拉斯
一門科學,只有當它成功地運用數學時,才能達到真正完善的地步。——馬克思
一個國家的科學水平可以用它消耗的數學來度量。——拉奧
數學的本質在於它的自由.——康扥爾(Cantor)
在數學的領域中,提出問題的藝術比解答問題的藝術更為重要.——康扥爾(Cantor)
沒有任何問題可以向無窮那樣深深的觸動人的情感,很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明.——希爾伯特(Hilbert)
只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示著獨立發展的終止或衰亡.——希爾伯特
加減乘除(+、-、×(·)、÷(∶))等數學符號是我們每一個人最熟悉的符號,因為不光在數學學習中離不開它們,幾乎每天的日常的生活也離不開它們.別看它們這么簡單,直到17世紀中葉才全部形成.
法國數學家許凱在1484年寫成的《算術三篇》中,使用了一些編寫符號,如用D表示加法,用M表示減法.這兩個符號最早出現在德國數學家維德曼寫的《商業速演算法》中,他用「+」表示超過,用「—」表示不足.到1514年,荷蘭的赫克首次用「+」表示加法,用「—」表示減法.1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「—」表示加減,這兩個符號逐漸被公認為真正的算術符號,廣泛採用.
以符號「×」代表乘是英國數學家奧特雷德首創的.他於1631年出版的《數學之鑰》中引入這種記法.據說是由加法符號+變動而來,因為乘法運算是從相同數的連加運算發展而來的.後來,萊布尼茲認為「×」容易與「X」相混淆,建議用「·」表示乘號,這樣,「·」也得到了承認.
除法符號「÷」是英國的瓦里斯最初使用的,後來在英國得到了推廣.除的本意是分,符號「÷」的中間的橫線把上、下兩部分分開,形象地表示了「分」.至此,四則運算符號齊備了,當時還遠未達到被各國普遍採用的程度.
1、點錯的小數點
學習數學不僅解題思路要正確,具體解題過程也不能出錯,差之毫釐,往往失之千里. 美國芝加哥一個靠養老金生活的老太太,在醫院施行一次小手術後回家.兩星期後,她接到醫院寄來的一張帳單,款數是63440美元.她看到偌大的數字,不禁大驚失色,駭得心臟病猝發,倒地身亡.後來,有人向醫院一核對,原來是電腦把小數點的位置放錯了,實際上只需要付63.44美元.
點錯一個小數點,竟要了一條人命.正如牛頓所說:"在數學中,最微小的誤差也不能忽略.
2、蒲豐試驗
一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說:「請大家把這些小針往這張白紙上隨便仍吧!」客人們按他說的做了。
蒲豐的統計結果是:大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說:「這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。」這就是著名的「蒲豐試驗」。
3、數學魔術家
1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。
工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。
這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為「數學魔術家」。
❻ 五年級數學上冊手抄報圖片簡單點
直接寫一些花紋,然後再寫一些,數學上冊的一些內容
❼ 五年級的數學手抄報內容
1、算術老師道:「這里有梨10隻,吃去了6隻,還剩多少?」一個貪食的學生專答道:「我看把剩下的也屬一起吃掉吧。」
2、仔仔興高采烈地從學校里回來,問媽媽:「爸爸呢?」媽媽看到仔仔興奮的樣子,奇怪地問:「爸爸在家,你找爸爸做什麼?」「我向爸爸要5角錢。」 「為什麼?」媽媽問道。「在考數學以前,爸爸對我說『如果考了100分,就給我1元錢,考80分給8角。』今天,我數學考了45分。「仔仔回答說。媽媽吃驚地問:「什麼!數學才考45分?」仔仔得意地說:「是呀,數學上要4舍5入,因此,爸爸必須付5角錢。」
3、一位衣著時尚的女郎走進郵局匯款處,把匯款單填好後交給了營業員。營業員一看,把單退回說:「數字要大寫。」女郎頭一歪說:「大寫?格子這么小,叫我怎麼寫得大?」
4、「爸爸,4路車來了!」「傻瓜,那不是4路,是31路!」「老師說,3+1=4!」小男孩理直氣壯地說。
❽ 小學五年級數學手抄報內容
某店來了三位顧客,急於要買餅趕火車,限定時間不能超過16分鍾。幾個廚師都說無能為力,因為要烙熟一個餅的兩面各需要五分鍾,一口鍋一次可放兩個餅,那麼烙熟三個餅就得2O分鍾。這時來了廚師老李,他說動足腦筋只要15分鍾就行了。你知道該怎麼來烙嗎?
數學的起源:數學是一門最古老的學科,它的起源可以上溯到一萬多年以前。但是,公元1000年以前的資料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。
遠在1 萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。
這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的呢)……等等各個分支,而且還在不斷發展下去。
阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
阿拉伯數字是古代印度人在生產和實踐中逐步創造出來的。
在古代印度,進行城市建設時需要設計和規劃,進行祭祀時需要計算日月星辰的運行,於是,數學計算就產生了。大約在公元前3000年,印度河流域居民的數字就比較先進,而且採用了十進位的計算方法。
到公元前三世紀,印度出現了整套的數字,但在各地區的寫法並不完全一致,其中最有代表性的是婆羅門式:這一組數字在當時是比較常用的。它的特點是從「1」到「9」每個數都有專字。現代數字就是由這一組數字演化而來。在這一組數字中,還沒有出現「0」(零)的符號。「0」這個數字是到了笈多王朝(公元320—550年)時期才出現的。公元四世紀完成的數學著作《太陽手冊》中,已使用「0」的符號,當時只是實心小圓點「·」。後來,小圓點演化成為小圓圈「0」。這樣,一套從「1」到「0」的數字就趨於完善了。這是古代印度人民對世界文化的巨大貢獻。
華羅庚(1910年11月12日-1985年6月12日),是中國在世界上最有影響的數學家之一,他的研究成果被國際數學界命名為「華氏定理」、「布勞威爾-加當-華定理」、「華-王方法」、「華氏運算元」、「華氏不變式」等。 (很著名的人物啊)
然後呢 找一些 數學題就可以啦
什麼笑話啊 等等
❾ 5年級數學手抄報內容資料
高斯(1777~1855)生於,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」質數分布定理、及算術幾何平均。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究,這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹同餘的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」。
1802年,他又准確預測了小行星二號--智神星的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數,並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 ,涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210