1. 小學4到6年級如何學習數與代數
小學生在完成了1到3年級數與代數的基礎學習之後,就進入了4到6年級段的數學學習。這個階段,學生將繼續學習整數分數和百分數,以及它的相關加減乘除運算。同時進一步抽象出了對數字的感覺,在六年級下學期已經能夠初步學習了負數和方程的一些知識。那麼具體的數與代數有哪些呢?
同時為了解決一些含有未知數的應用題,這一階段還學習了用字母表示數,同時使用方程來解決等量關系的應用題。
我們可以找一道題來概括這一階段所學習的一個知識。一個人正常心跳100萬次,大約多長時間,他的單位換算成年大體有多少年?您能從其中發現哪些知識被使用嗎?
2. 關於代數方面的知識
這種題目的特點就是當x變化時,含x的項跟著變化,你把含x的項看做一個整體,比如此題
令ax^3+bx=z
就好解了
y=z+3 z=-10
x=-3時,y=-z+3=13
3. 關於方程的知識點
代數式:用運算符號(加減乘除)連接起來的字母或者數字。
方程:含有未知數的等式叫方程。
列方程:把兩個或幾個相等的代數式用等號連起來。
列方程關鍵問題:用兩個以上的不同代數式表示同一個數。
等式性質:等式兩邊同時加上或減去一個數,等式不變;等式兩邊同時乘以或除以一個數(除0),等式不變。
移項:把數或式子改變符號後從方程等號的一邊移到另一邊;
移項規則:先移加減,後變乘除;先去大括弧,再去中括弧,最後去小括弧。
加去括弧規則:在只有加減運算的算式里,如果括弧前面是「+」號,則添、去括弧,括弧裡面的運算符號都不變;如果括弧前面是「-」號,添、去括弧,括弧裡面的運算符號都要改變;括弧裡面的數前沒有「+」或「-」的,都按有「+」處理。
移項關鍵問題:運用等式的性質,移項規則,加、去括弧規則。
乘法分配率:a(b+c)=ab+ac
解方程步驟:①去分母;②去括弧;③移項;④合並同類項;⑤求解;
方程組:幾個二元一次方程組成的一組方程。
解方程組的步驟:①消元;②按一元一次方程步驟。
消元的方法:①加減消元;②代入消元。
4. 小學的代數到底指什麼
數學有兩種,一種是代數,一種是幾何。代數就跟小學上的數學差不多,做一些運算題目。而幾何就是根據圖形,出證明題。
5. 小學數學簡易方程知識點
一、簡易方程
1.方程:含有未知數的等式叫做方程。
注意:(1)方程是等式,又含有未知數,兩者缺一不可。
(2)方 程 和 算 術 式 不 同 。 算 術 式 是 一 個 式 子 ,它 由 運 算 符 號 和 已 知 數 組 成 ,它 表 示 未 知 數。方程是一個等式,在方程里的未知數可以參加運算,並且只有當未知數為特定的數值時, 方程才成立。
2.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
二、解方程
1.解方程:求方程的解的過程叫做解方程。
2.解方程的步驟:
(1)去分母;
(2)去括弧;
(3)移項;
(4)合並同類項;
(5)系數化為「1」;
(6)檢驗根。
三、列方程解應用題
1.列方程解應用題的意義
用方程式去解答應用題,求得應用題的未知量的方法,可以更清楚題意,從而解決問題。
2.列方程解答應用題的步驟
(1)弄清題意,確定未知數並用 x表示;
(2)找出題中的數量之間的相等關系;
(3)列方程,解方程;
(4)檢查或驗算,寫出答案。
3.列方程解應用題的方法
(1)綜合法:先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它
們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已 知到未知。
(2)分析法:先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量) 和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
6. 小學 數與代數的知識點 要做手抄報
知識點一:整數
1、整數的范圍
整數包括自然數和負整數,或者說整數由正整數、零、負整數組成。
(1)自然數
自然數的意義:我們在數物體的時候,用來表示物體的個數0,1,2,3,4,5,…..叫做自然數。自然數的個數是無限的,沒有最大的自然數。
自然數的基本單位:任何非「0」的自然數都是若干個「1」組成,所以「1」是自然數的基本單位。1也是最小的一位數。
「0」的含義:「0」表示一個物體也沒有,在計數中起佔位作用,表示該數位上沒有計數單位。「0」還可以表示起點、分界點等。「0」是最小的自然數。
自然數的兩種意義:如果一個自然數用來表示物體的個數就叫基數;如果一個自然數用來表示物體排列的次序就叫序數。
(2)正數
正數的定義 以前學過的8、16、200……..這樣的數叫做正數。
正數的寫法和讀法 正數前面也可以加「+」號,例如:+8讀作:正八。「+」號一般可以省略不寫。
(2)負數
負數的定義 像-1、-5、-132……這樣的數叫做負數。「一」叫負號。
負數的寫法和讀法 負數前面加「一」號,例如:-15讀作:負十五。數字越大的負數反而越小。
「0」既不是正數,也不是負數。
(4)整數與自然數的聯系及區別
自然數全是整數,整數不全是自然數,還包括負整數。
2、整數的讀法和寫法
數的分級 按照我國的計數習慣,整數從個位起,每四個數位是一級。個位、十位、百位、千位是個級,表示多少個一;萬位、十萬位、百萬位、千萬位是萬級,表示多少個萬位;億位、十億位、百億位、千億位是億級,表示多少個億。
計數單位 整數、小數都是按照十進制寫出的數,其中一(個)、十、百…….是整數的計數單位。計數單位是按一定順序排列的。
數位 各個計數單位所佔的位置叫數位。如9357中的「5」在右起第二位,即「5」所在的數位是十位。
位數 指一個數是由幾個數字組成,是含有數位個數,如1234佔有四個數位,就是四位數。
十進制計數法 十進制是指滿十進一,十個一進為十,十個十進位百,十個百進為千……每相鄰兩個計數單位間的進率都是「十」,這樣的計數法叫做十進制計數法。
(2)整數的讀法和寫法
整數的讀法 讀整數時,從高位到低位,一級一級地讀,讀億級、萬級時,按照個級的讀法去讀,只要在後面加上「億」字、「萬」字就可以了,每一級末尾的「0」都不讀出來,其他數位有一個「0」或連續幾個「0」都只讀一個零。
整數的寫法 寫整數時,從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、整數大小的比較
比較兩個整數的大小,整數數位多的數比較大;整數數位相同的,要從高位依次看相同數位上的數字,相同數位上數字大的數比較大。
知識點二 小數
1、小數的意義
把整數「1」平均分成10份,100份,1000份……這樣的1份或幾份是十分之幾,百分之幾,千分之幾…….可以用小數來表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾…….
1、小數的讀法和寫法
小數部分的最高計數單位「十分之一」和整數部分的最低計數單位「一」之間的進率也是十。
(2)小數的讀法和寫法
讀小數時,整數部分按整數的讀法讀,整數部分是0的讀作「零」,小數點讀作「點」,小數部分可以順次讀出每個數位上的數字。
寫小數時,整數部分按整數的寫法寫,整數部分是零的要寫「0」,小數點點在個位的右下角,然後依次寫出小數部分每個數位上的數字。
3、小數大小的比較
比較兩個小數的大小,先看它們的整數部分,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就在;十分位上的數也相同的,百分位上的數大的那個數就大……
4、數的改寫與求近似數
(1)數的改寫與省略這個數某一位後面的尾數寫成近似數的方法
為了讀寫方便,常把較大的數簡寫成用「萬」或「億」作單位的數。如:2365500=236.55萬(改寫用「萬」作單位的數)。有時還可以根據需要,省略這個數某一的尾數,寫成近似數。如:2365500≈237萬(省略萬位後面的尾數),有時還要求保留一位小數的近似數。如:7.62983≈7.6(保留一位小數)。
取近似數時,常用「四捨五入法」或「進一法」、「去尾法」把一個數某一位後面的尾數省略。
(2) 較大數的「改寫」與「求近似數」的異同
相同點 都是改變原數的計數單位。根據要求用「億」或「萬」作單位。
不同點 「改寫」只改變數的單位,不改變數的大小,用「=」表示。「求近似數」是用四捨五入法或「進一法」、「去尾法」,既改變了數的單位,又改變數的大小,用「≈」表示。
5、小數的分類與性質
(1)小數的分類
按小數的整數部分是否為0,小數分為純小數和帶小數。
純小數 整數部分是0的小數叫做純小數。
帶小數 整數部不是0的小數叫做帶小數。(純小數都小於1,帶小數都大於或等於1。)
按小數部分的倍數是否有限,小數可以分為有限小數和無限小數。
有限小數 小數部分的位數有限的小數,叫做有限小數。
無限小數 小數部分的位數無限的小數,叫做無限小數。
無限小數又可以分為無限不循環小數和無限循環小數兩類。
循環小數 一個無限小數,從小數部分的某一位起,一個數定或幾個數字依次不斷地重復出現,這樣的小數叫做無限循環小數。
循環節 一個循環小數的小數部分依次不斷地重復出現的數字,叫做這個循環小數的循環節。
循環小數的簡便寫法 寫循環小數時,為了簡便,一般只寫出它的第一個循環節,並在循環節的首位和末尾數字上各點一個小圓點。
(2)小數的性質
小數的末尾添上「0」或者去掉「0」,小數的大小不變,(注意:是在「小數的末尾」而不是「小數點的後面」。)
(3)小數點位置的移動引起小數的大小變化
小數點向右移動一位、二位、三位、…….小數就擴大到原來的10倍、100倍、1000倍……小數點向左移動一位、兩位、三位……小數就縮小到原來的 、 、 ……
(4)常見的質量單位、人民幣單位、時間單位及各單位間的坦率
(5)平年、閏年的判斷方法
公歷年份是4的倍數的一般是閏年,公歷年份是整百數的,必須是400的倍數才是閏年。
知識點三 分數
1、分數的意義 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2、分數單位 把單位「1」平均分成若干份,表示其中一份的分數,叫做分數單位。
3、分數的分類
(1)真分數 分子比分母小的分數叫做真分數。
(2)假分數 分子比分母大或者與分母相等的分數叫做假分數。
4、分數的基本性質 分數的分子一分母同時乘或除以一個相同的數(0除外),分數的大小不變,這叫做分數的基本性質。
5、分數與除法的關系 (1)分數的分子相當於除法的被除數,分數的分母相當於除法的除數,分數線相當於除法的除號。(2)在除法中,除數不能為0,在分數中分母也不能為0,除數、分母為0沒有意義。
6、約分 把一個分數化成同它相等,且分子、分母都比較小的分數的過程,叫做約分。
7、最簡分數 分子、分母是互質數的分數叫做最簡分數。
8、通分 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
9、分數大小的比較 分母相同的兩個分數,分子大的分數比較大;分子相同的兩個分數,分母小的分數比較大。
10、分數化小數 根據分數與除法的關系,把分數轉化為除法算式,然後計算,就可以得到小數。
分數化小數有兩種情況:一般是分子除以分母能除盡,得到有限小數,如 =0.4;一種是分子除以分母除不盡,得到無限小數,如 =0.142857……
11、小數化為分數 原來有幾位小數,就在1的的後面寫上幾個0
母,把原來的小數點去掉作分子,化成分數後,能約分的要約分。
12、分數的基本性質與小數基本性質的關系
分數的基本性質與小數的基本性質是一致的。小數的末尾添上「0」
或者去掉「0」,就相當於把相應的分數的分子、分母同時擴大(或縮小)到原來的10倍(或 )、100倍(或 )、1000倍(或 )……
7. 小學數與代數的概念,急!!!
一、整數和小數
1.最小的自然數是0,最小的一位數是1。
2.小數的意義:把整體「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
3.小數點左邊是整數部分,依次是個位、十位、百位、千位……;小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:
有限小數 純循環小數
小數 無限循環小數
無限小數 混循環小數
無限不循環小數(如: π=3.1415926……)
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上「0」或者去掉「0」,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數就擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數就縮小10倍、100倍、1000倍……
二、數的整除
1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。
4.根據一個數能否被2整除,非0的自然數可分成「偶數和奇數」兩類;能被2整除的數叫做偶數,不能被2整除的數叫做奇數。(最小的奇數是1,最小的偶數是2。)
5.根據一個數含有的約數個數的多少,非0的自然數可分為「1、質數、合數」三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數只有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
(最小的質數是2,最小的合數是4。)
1—20以內的質數有:2、3、5、7、11、13、17、19
1—20以內的合數有:4、6、8、9、10、12、14、15、16、18
6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各個數位上的數的和能被3整除,這個數就能被3整除。
7.質因數:如果一個自然數的因數是質數,這個因數就叫做這個自然數的質因數。
8.分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
9.公約數、公倍數:
幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
10.一般關系的兩個數的最大公約數、最小公倍數可以用短除法來求;
互質關系的兩個數最大公約數是1,最小公倍數是兩數的乘積;
倍數關系的兩個數的最大公約數是較小數,最小公倍數是較大數。
11.互質數:公約數只有1的兩個數叫做互質數。
12.兩數之積等於這兩個數的最小公倍數和最大公約數的乘積。
三、四則運算
1.一個加數= 和 - 另一個加數 被減數= 差 + 減數 減數= 被減數 - 差
一個因數= 積 ÷ 另一個因數 被除數= 商 × 除數 除數= 被除數 ÷ 商
2.在四則運算中,加、減法叫做一級運算;乘、除法叫做二級運算。如果算式中含有兩級運算,要先做二級運算,後做一級運算,即先做乘除法,後做加減法。加法和減法互為逆運算;乘法和除法互為逆運算。
3.運算定律:
(1)加法交換律:a+b=b+a 兩個數相加,交換加數的位置,它們的和不變。
乘法交換律:a×b=b×a 兩個數相加,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
乘法結合律:(a×b)×c=a×(b×c) 三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)×c=a×c+b×c 兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
除法的性質:a÷b÷c=a÷(b×c) 一個數連續除以兩個數,等於這個數除以兩個除數的乘積。
四、常見的數量關系式
1、速度×時間=路程 (路程÷時間=速度 、 路程÷速度=時間)
2、工作效率×工作時間=工作總量 (工作總量÷工作效率=工作時間 、工作總量÷工作時間=工作效率 )
3、單價×數量=總價 (總價÷數量=單價 、 總價÷單價=數量)
4、單產量×數量=總產量 (總產量÷單產量=數量 、 總產量÷數量=單產量)
五、方程
1. 方程:含有未知數的等式叫做方程。
2. 方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
3. 解方程:求方程解的過程叫做解方程。
六、分數和百分數
1. 分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2. 分數單位:把單位「1」平均分成若干份,表示其中一份的數,叫做分數單位。
3. 分數和除法的聯系:分數的分子相當於除法中的被除數,分母相當於除法中的除數。
分數和小數的聯系:小數實際上就是分母是10、100、1000……的分數。
分數和比的聯系:分數的分子相當於比的前項,分數的分母相當於比的後項。
4. 分數的分類:分數可以分為真分數和假分數兩類。
5. 真分數:分子小於分母的分數叫做真分數。真分數小於1。
假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。
(大於1的假分數可以改寫成帶分數;等於1的假分數可以改寫成整數。)
6.最簡分數:分子與分母互質的分數叫做最簡分數。
7.分數的基本性質:分數的分子和分母同時乘以或除以相同的數(零除外),分數的大小不變。
8.這樣的分數可以化成有限小數:首先這個分數要是最簡分數,其次如果這個最簡分數的分母只含有2、5這兩種質因數,這樣的分數就能化成有限小數。
9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用「%」來表示。
七、量的計量
1.長度單位有:千米、米、分米、厘米、毫米,每相鄰兩個單位之間的進率都是「十」。
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,每相鄰兩個單位之間的進率都是「百」。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),每相鄰兩個單位之間的進率都是「千」。
質量單位有:噸、千克、克,每相鄰兩個單位之間的進率都是「千」。
時間單位有:世紀、年、月、日、時、分、秒,它們之間的進率各有不同。
2.一年中的大月有:1、3、5、7、8、10、12月,共七個,每月31天。
小月有:4、6、9、11月,共四個,每月30天。
平年全年有365天;閏年全年有366天。(平年的二月有28天,閏年的二月有29天。)
3.一年有四 個季度,每個季度3個月。
4.平年、閏年:公歷年份是4的倍數的一般是閏年,公歷年份是整百數的,必須是400的倍數才是閏年。通常每四年中有三個平年一個閏年,簡稱「四年一閏」。
5.名數:把計量得到的數和單位名稱合起來叫做名數。
單名數:只帶有一個單位名稱的叫做單名數。
復名數:帶有兩個或兩個以上單位名稱的叫做復名數。
6.名數的改寫:把高級單位的名數化成低級單位的名數要乘進率;
把低級單位的名數聚成高級單位的名數要除以進率。
八、幾何初步知識
1.線段、射線、直線的聯系與區別:聯系是三者都是直的,區別是線段有兩個端點,可以量出長度;射線只有一個端點,可以無限延長;直線沒有端點,兩端都可以無限延長。射線和直線是無限長的,不能量出長度。
2.角:從一點引出兩條射線所組成的圖形叫做角。
3.角的大小:角的大小看兩條邊叉開的大小,叉開的越大,角越大。(角的大小與邊的長短無關。)
4.計量角的大小的單位:度,用符號「°」表示。
5.小於90°的角叫做銳角;大於90°而小於180°的角叫做鈍角;角的兩邊在一條直線上的角叫做平角,平角=180°。
6.垂線:兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫做垂足。
7.平行線:在同一平面內不相交的兩條直線叫做平行線。也可以說這兩條直線互相平行。
(平行線之間的距離處處相等。即平行線間的所有垂直線段的長度都相等。)
8. 三角形:由三條線段圍成的圖形叫做三角形。
9. 三角形的分類:(1)按角分:銳角三角形、鈍角三角形、直角三角形。
(2)按邊分:一般三角形、等腰三角形、等邊三角形。(等邊三角形是特殊的等腰三角形。)
10.三角形的三個內角和是180°。
11.四邊形:由四條線段圍成的圖形。
12.圓是一種曲線圖形。圓上任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。
13.圓的半徑、直徑都有無數條。在同一個圓里,直徑的長度是半徑的2倍,半徑的長度是直徑的二分之一。
14.軸對稱圖形:如果一個圖形沿著一條直線對折,直線兩惻的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
15.學過的圖形中的軸對稱圖形有:圓、等腰三角形、等邊三角形、長方形、正方形、等腰梯形
16.周長:圍成一個圖形的所有邊長的總和就是這個圖形的周長。
面積:物體的表面或圍成的平面圖形的大小,叫做它們的面積。
17。表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
體積:物體所佔空間的大小叫做物體的體積。
18.長方體、正方體都有12條棱,6個面,8個頂點。(正方體是特殊的長方體。)
19.圓柱的三個特點:(1)由三個面圍成(2)兩個底面是完全相同的圓(3)側面是曲面
20.圓柱的高:圓柱兩個底面之間的距離叫做圓柱的高。圓柱的高有無數條,這些高都平行且相等。
21.把圓柱的側面展開,得到一個長方形,這個長方形的長等於圓柱的底面的周長,寬等於圓柱的高。
22.圓周率π是一個無限不循環小數。π=3.141592653……
23.把圓等份成若干份,拼成的圖形接近於長方形。這個長方形的長相當於圓周長的一半,寬就是圓的半徑。
24.圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
25.圓錐的體積是和它等底等高的圓柱的體積的,等底等高的圓柱的體積是圓錐體積的3倍。
26. 體積和底面積相等的圓柱和圓錐,圓柱的高是圓錐的 ,圓錐的高是圓柱的3倍。
九、比和比例
1. 比的意義:兩個數相除又叫做兩個數的比。
比例的意義:表示兩個比相等的式子叫做比例。
2. 求比值:比的前項除以比的後項所得的商叫做比值。
3. 比的基本性質:比的前項和後項都乘上或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩個外項的積等於兩個內項的積。
4.應用比的基本性質可以化簡比;
應用比例的基本性質可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。
5.用字母表示比與除法和分數的關系是: a:b=a÷b= (b≠0)
6.比例尺:我們把圖上距離和實際距離的比,叫做這幅圖的比例尺。
圖上距離:實際距離=比例尺 或 ( =比例尺)
實際距離=圖上距離÷比例尺 圖上距離=實際距離×比例尺
7.求比值的方法:根據比值的意義,用前項除以後項,最後的結果是一個數,可以是整數、小數或分數。
化簡比的方法:根據比的基本性質,把比的前項和後項都乘或除以相同的數(零除外),最後的結果只能是一個最簡整數比。
8.正比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。用式子表示是: =k(一 定),用圖表示正比例關系是一條直線。
9.反比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們之間的關系叫做反比例關系。用式子表示是:
x×y=k(一定),用圖表示反比例關系是一條曲線。
十、簡單的統計
1.常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
2.條形統計圖特點:(1)用一個單位長度表示一定的數量。(2)用直條的長短來表示數量的多少。 作用:從圖中能清楚地看出各數量的多少,便於相互比較。
折線統計圖的特點:(1)用一個單位長度表示一定的數量。(2)用折線的起伏來表示數量的增減變化。 作用:從圖中能清楚地看出數量的增減變化情況,也能看出數量的多少。
十一、公式的整理
平面圖形:
1.長方形: 周長=(長+寬)×2 即 : C長方形=(a+b)×2
面積=長×寬 即: S長方形=a×b
2.正方形: 周長=邊長×4 即: C正方形=4a
面積=邊長×邊長 即: S正方形=a×a
3.平行四邊形的面積=底×高 即: S平行四邊形 =ah
4.三角形的面積=底×高÷2 即:S三角形=ah÷2= ah
5.梯形的面積=(上底+下底)×高÷2 即: S梯形 =(a+b)×h÷2
6.圓的周長=直徑×3.14 即: C圓 =πd 或: 圓的周長=半徑×2×3.14 即:C圓 =2πr
圓的面積=半徑的平方×圓周率 即: S圓 =πr2
立體圖形:
1.長方體
表面積=(長×寬+長×高+寬×高)×2 即:S表=(ab+ah+bh)×2
體積=長×寬×高 即: V =abh
2.正方體
表面積=棱長×棱長×6 即:S表=a×a×6
體積=棱長×棱長×棱長 即: V =a3
3.圓柱
側面積=底面周長×高 即:s側=ch
表面積=側面積+兩個底面積 即:s表=s側+s底×2
體積=底面積×高 即:v圓柱=s底h
4.圓錐的體積=圓柱的體積÷3 即: V圓錐=sh÷3= sh
8. 關於代數的初步知識
代數初步知識
一、用字母表示數
1 用字母表示數的意義和作用
* 用字母表示數,可以把數量關系簡明的表達出來,同時也可以表示運算的結果。
2用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式
(1)常見的數量關系
路程用s表示,速度v用表示,時間用t表示,三者之間的關系:
s=vt v=s/t t=s/v
總價用a表示,單價用b表示,數量用c表示,三者之間的關系:
a=bc b=a/c c=a/b
(2)運算定律和性質
加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba 乘法結合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc 減法的性質:a-(b+c) =a-b-c
除法的性質:a÷b÷c=a÷(b×c)
(3)用字母表示幾何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。 c=2(a+b) s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示。 c=4a s=a?
平行四邊形的底a用表示,高用h表示,面積用s表示。 s=ah
三角形的底用a表示,高用h表示,面積用s表示。 s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。
s=(a+b)h/2
圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。
c=∏d=2∏r s=∏ r?
扇形的半徑用r表示,n表示圓心角的度數,面積用s表示。
s=∏ nr?/360
長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。
v=sh s=2(ab+ah+bh) v=abh
正方體的棱長用a表示,底面周長c用表示,底面積用s表示, 體積用v表示.
s=6a? v=a?
圓柱的高用h表示,底面周長用c表示,底面積用s表示, 體積用v表示.
s側=ch s表=s側+2s底 v=sh
圓錐的高用h表示,底面積用s表示, 體積用v表示. v=sh/3
3 用字母表示數的寫法
數字和字母、字母和字母相乘時,乘號可以記作「.」,或者省略不寫,數字要寫在字母的前面。 當「1」與任何字母相乘時,「1」省略不寫。
在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。
用含有字母的式子表示問題的答案時,除數一般寫成分母,如果式子中有加號或者減號,要先用括弧把含字母的式子括起來,再在括弧後面寫上單位的名稱。
4將數值代入式子求值
* 把具體的數代入式子求值時,要注意書寫格式:先寫出字母等於幾,然後寫出原式,再把數代入式子求值。字母表示的是數,後面不寫單位名稱。
* 同一個式子,式子中所含字母取不同的數值,那麼所求出的式子的值也不相同。
二、簡易方程
(一)方程和方程的解
1方程:含有未知數的等式叫做方程。 注意方程是等式,又含有未知數,兩者缺一不可。
方程和算術式不同。算術式是一個式子,它由運算符號和已知數組成,它表示未知數。方程是一個等式,在方程里的未知數可以參加運算,並且只有當未知數為特定的數值時 ,方程才成立 。
2 方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
三、解方程: 解方程,求方程的解的過程叫做解方程。
四、列方程解應用題
1 列方程解應用題的意義
* 用方程式去解答應用題求得應用題的未知量的方法。
2 列方程解答應用題的步驟
* 弄清題意,確定未知數並用x表示;
* 找出題中的數量之間的相等關系;
* 列方程,解方程;
* 檢查或驗算,寫出答案。
3列方程解應用題的方法
* 綜合法:先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。
* 分析法:先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
4小學范圍內常用方程解的應用題
a一般應用題;
b和倍、差倍問題;
c幾何形體的周長、面積、體積計算;
d 分數、百分數應用題;
e 比和比例應用題。
五 比和比例
1比的意義和性質
(1) 比的意義
兩個數相除又叫做兩個數的比。「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
同除法比較,比的前項相當於被除數,後項相當於除數,比值相當於商。比值通常用分數表示,也可以用小數表示,有時也可能是整數比的後項不能是零。
根據分數與除法的關系,可知比的前項相當於分子,後項相當於分母,比值相當於分數值。
(2)比的性質
比的前項和後項同時乘上或者除以相同的數(0除外),比值不變,這叫做比的基本性質。
(3) 求比值和化簡比
求比值的方法:用比的前項除以後項,它的結果是一個數值可以是整數,也可以是小數或分數。
根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、後項是互質的數。
(4)比例尺
圖上距離:實際距離=比例尺
圖上距離÷比例尺=實際距離
實際距離×比例尺=圖上距離。
線段比例尺:在圖上附有一條注有數目的線段,用來表示和地面上相對應的實際距離。
(5)按比例分配
在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分佔總量的幾分之幾,然後求出總數的幾分之幾是多少。
2 比例的意義和性質
(1) 比例的意義
表示兩個比相等的式子叫做比例。組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。
(2)比例的性質:在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。
(3)解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。
3 正比例和反比例
(1) 成正比例的量
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。
用字母表示y/x=k(一定)
(2)成反比例的量
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系
9. 小學里代數知識有哪些
小學的數與代數知識包括以下方面的內容:
1、數的認識:整數、小數、分數 、百分數
2、數的運算:加、減、乘、除法,混合運算、運算定律和性質
3、常見的量:長度單位、面積單位、體積單位、容積單位、質量單位、時間單位、人民幣單位
單位之間的換算
4、式與方程:用字母表示數、簡易方程
5、比和比例:比的認識、比例的認識
6、探索規律