導航:首頁 > 小學全識 > 小學至高中幾何公式大全

小學至高中幾何公式大全

發布時間:2021-01-27 13:35:01

A. 高中立體幾何的定理 公式

公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有的點都在這個平面內。
公理2:如果兩個平面有一個公共點,那麼它們有且只有一條通過這個點的公共直線。
公理3: 過不在同一條直線上的三個點,有且只有一個平面。
推論1: 經過一條直線和這條直線外一點,有且只有一個平面。
推論2:經過兩條相交直線,有且只有一個平面。
推論3:經過兩條平行直線,有且只有一個平面。
公理4 :平行於同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行並且方向相同,那麼這兩個角相等。

空間兩直線的位置關系:空間兩條直線只有三種位置關系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面: 平行、 相交
(2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為 ( 0°,90° ) esp.空間向量法
兩異面直線間距離: 公垂線段(有且只有一條) esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;(2)沒有公共點—— 平行或異面

直線和平面的位置關系: 直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
esp.空間向量法(找平面的法向量)
規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角
由此得直線和平面所成角的取值范圍為 [0°,90°]
最小角定理: 斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角
三垂線定理及逆定理: 如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那麼它也與這條斜線垂直
esp.直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面 內的任意一條直線都垂直,我們就說直線a和平面 互相垂直.直線a叫做平面 的垂線,平面 叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直於這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。

③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那麼我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。

兩個平面的位置關系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關系:
兩個平面平行-----沒有公共點; 兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。
b、相交
二面角
(1) 半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2) 二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為 [0°,180°]
(3) 二面角的棱:這一條直線叫做二面角的棱。
(4) 二面角的面:這兩個半平面叫做二面角的面。
(5) 二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6) 直二面角:平面角是直角的二面角叫做直二面角。
esp. 兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為 ⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。
Attention:
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)

多面體
稜柱
稜柱的定義:有兩個面互相平行,其餘各面都是四邊形,並且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做稜柱。
稜柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行於底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

棱錐
棱錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
(1) 側棱交於一點。側面都是三角形
(2) 平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的棱錐的高與遠棱錐高的比的平方

正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3) 多個特殊的直角三角形
esp: a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
Attention:
1、 注意建立空間直角坐標系
2、 空間向量也可在無坐標系的情況下應用

多面體歐拉公式:V(角)+F(面)-E(棱)=2
正多面體只有五種:正四、六、八、十二、二十面體。


attention:
1、 球與球面積的區別
2、 經度(面面角)與緯度(線面角)
3、 球的表面積及體積公式
4、 球內兩平行平面間距離的多解性

B. 初中至小學所用到的幾何圖形的所有計算公式

三角形面積:底乘高除以2,正方形~:邊長的平方,梯~形:上底加下底的和乘高除以2,平行四邊行~:底乘高除以,圓~:半徑的平方乘3點14,(請採納

C. 小學各種幾何圖形的面積周長公式及運算律、分述的基本性質、比例的基本性質

平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)

四邊形 d,D-對角線長
α-對角線夾角 S=dD/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 S=ah
=absinα
菱形 a-邊長
α-夾角
D-長對角線長
d-短對角線長 S=Dd/2
=a2sinα
梯形 a和b-上、下底長
h-高
m-中位線長 S=(a+b)h/2
=mh
圓 r-半徑
d-直徑 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圓環 R-外圓半徑
r-內圓半徑
D-外圓直徑
d-內圓直徑 S=π(R2-r2)
=π(D2-d2)/4
橢圓 D-長軸
d-短軸 S=πDd/4
立方圖形
名稱 符號 面積S和體積V
正方體 a-邊長 S=6a2
V=a3
長方體 a-長
b-寬
c-高 S=2(ab+ac+bc)
V=abc
稜柱 S-底面積
h-高 V=Sh
棱錐 S-底面積
h-高 V=Sh/3
稜台 S1和S2-上、下底面積
h-高 V=h[S1+S2+(S1S1)1/2]/3
擬柱體 S1-上底面積
S2-下底面積
S0-中截面積
h-高 V=h(S1+S2+4S0)/6
圓柱 r-底半徑
h-高
C—底面周長
S底—底面積
S側—側面積
S表—表面積 C=2πr
S底=πr2
S側=Ch
S表=Ch+2S底
V=S底h
=πr2h

空心圓柱 R-外圓半徑
r-內圓半徑
h-高 V=πh(R2-r2)
直圓錐 r-底半徑
h-高 V=πr2h/3
圓台 r-上底半徑
R-下底半徑
h-高 V=πh(R2+Rr+r2)/3
球 r-半徑
d-直徑 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半徑
h-高 V=πh[3(r12+r22)+h2]/6
圓環體 R-環體半徑
D-環體直徑
r-環體截面半徑
d-環體截面直徑 V=2π2Rr2
=π2Dd2/4
桶狀體 D-桶腹直徑
d-桶底直徑
h-桶高 V=πh(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母線是拋物線形)

D. 小學到初中所有的幾何公式

長×寬=長方形面積
邊長×邊長=正方形面積
底邊×高×0.5=三角形面積
(上底+下底)×高×0.5=梯形面積
pai×半徑平方=圓面積
三分之一(底面積×高)=圓錐體積
底面積×高=圓柱體積

E. 高中幾何公式 定理有哪些

立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是{00.900}
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?

平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1) .
(2)若a=( ),b=( )則a b=( ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
以向量 = 、 = 為鄰邊作平行四邊形ABCD,則兩條對角線的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
+0= +(- )=0.
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 >0時, 與 的方向相同;當 <0時, 與 的方向相反;當 =0時, =0.
(3)若 =( ),則 · =( ).
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數量積的性質:
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。

F. 小學所有幾何圖形的公式

小學所有幾何圖形的公式
正方形 a—邊長 C=4aS=a2 長方形 a和-邊長 C=2(a+b)S=ab 三角形 a,b,c-三邊長h-a邊上的高s-周長的一半A,B,C-內角其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四邊形 d,D-對角線長α-對角線夾角 S=dD/2·sinα 平行四邊形 a,b-邊長h-a邊的高α-兩邊夾角 S=ah =absinα 菱形 a-邊長α-夾角D-長對角線長d-短對角線長 S=Dd/2 =a2sinα 梯形 a和b-上、下底長h-高m-中位線長 S=(a+b)h/2 =mh 圓 r-半徑d-直徑 C=πd=2πrS=πr2 =πd2/4 扇形 r—扇形半徑a—圓心角度數 C=2r+2πr×(a/360)S=πr2×(a/360) 弓形 l-弧長b-弦長h-矢高r-半徑α-圓心角的度數 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圓環 R-外圓半徑r-內圓半徑D-外圓直徑d-內圓直徑 S=π(R2-r2) =π(D2-d2)/4

G. 高中立體幾何主要用到的初中公式

公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有點都在這個平面內。 (1)判定直線在平面內的依據
(2)判定點在平面內的方法

公理2:如果兩個平面有一個公共點,那它還有其它公共點,這些公共點的集合是一條直線 。 (1)判定兩個平面相交的依據
(2)判定若干個點在兩個相交平面的交線上

公理3:經過不在一條直線上的三點,有且只有一個平面。 (1)確定一個平面的依據
(2)判定若干個點共面的依據

推論1:經過一條直線和這條直線外一點,有且僅有一個平面。 (1)判定若干條直線共面的依據
(2)判斷若干個平面重合的依據

(3)判斷幾何圖形是平面圖形的依據

推論2:經過兩條相交直線,有且僅有一個平面。
推論3:經過兩條平行線,有且僅有一個平面。

立體幾何 直線與平面

--------------------------------------------------------------------------------
空 間 二 直 線 平行直線 公理4:平行於同一直線的兩條直線互相平行
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,並且方向相同,那麼這兩個角相等。

異面直線

空 間 直 線 和 平 面 位 置 關 系
(1)直線在平面內——有無數個公共點
(2)直線和平面相交——有且只有一個公共點

(3)直線和平面平行——沒有公共點

直 線 和 平 面 平 行
判定定理
性質定理

直 線 與 平 面 垂 直
判 定 定 理
性 質 定 理

立體幾何 直線與平面

--------------------------------------------------------------------------------
直線與平面所成的角 (1)平面的斜線和它在平面上的射影所成的銳角,叫做這條斜線與平面所成的角
(2)一條直線垂直於平面,定義這直線與平面所成的角是直角
(3)一條直線和平面平行,或在平面內,定義它和平面所成的角是00的角
三垂線定理 在平面內的一條直線,如果和這個平面的一條斜線的射影垂直,那麼它和這條斜線垂直
三垂線逆定理 在平面內的一條直線,如果和這個平面的一條斜線垂直,那麼它和這條斜線的射影垂直
空間兩個平面 兩個平面平行 判定
性質
(1)如果一個平面內有兩條相交直線平行於另一個平面,那麼這兩個平面平行
(2)垂直於同一直線的兩個平面平行
(1)兩個平面平行,其中一個平面內的直線必平行於另一個平面
(2)如果兩個平行平面同時和第三個平面相交,那麼它們的交線平行

(3)一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面

相交的兩平面 二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫二面角的線,這兩個半平面叫二面角的面
二面角的平面角:以二面角的棱上任一點為端點,在兩個面內分另作垂直棱的兩條射線,這兩條射線所成的角叫二面角的平面角

平面角是直角的二面角叫做直二面角

兩平面垂直 判定
性質
如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直 (1)若二平面垂直,那麼在一個平面內垂直於它們的交線的直線垂直於另一個平面
(2)如果兩個平面垂直,那麼經過第一個平面內一點垂直於第二個平面的直線,在第一個平面內

H. 幾何公式大全!

您好~~這個不比用網路知道問,你可以去網路文庫下載,有好多類似的幾何公式大回全,給幾個鏈接,去下答吧,大多不用花積分
http://wenku..com/view/6c0db30d6c85ec3a87c2c539.html
http://wenku..com/view/35bdb8d126fff705cc170a9a.html

閱讀全文

與小學至高中幾何公式大全相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99