A. 小學數學手抄報資料
數學小故事:
一元錢哪裡去了
三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?
分蘋果
小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。
小咪的爸爸是怎樣做的呢?
小馬虎數雞
春節里,養雞專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問解放軍,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎?
來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「
家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?
B. 小學數學手抄報資料
人們把12345679叫做「缺8數」,這「缺8數」有許多讓人驚訝的特點,比如用9的倍數與它相乘,乘積竟會是由同一個數組成,人們把這叫做「清一色」。比如:
12345679*9=111111111
12345679*18=222222222
12345679*27=333333333
……
有個從未管過自己孩子的統計學家,在一個星期六下午妻子要外出買東西時,勉強答應照看一下4個年幼好動的孩子。當妻子回家時,他交給妻子一張紙條,上寫:
「擦眼淚11次;系鞋帶15次;給每個孩子吹玩具氣球各5次,每個氣球的平均壽命10秒鍾;警告孩子不要橫穿馬路26次;孩子堅持要穿過馬路26次;我還想再過這樣的星期六0次。」 一元錢哪裡去了
三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?
分蘋果
小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。
小咪的爸爸是怎樣做的呢?
小馬虎數雞
春節里,養雞專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問解放軍,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎?
來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「
家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?
C. 小數課外知識的手抄報
小數的由來
同學們,你們都認識小數吧,小數在我們的生活中隨處可見,用處可多了。可是小數是怎樣演變過來的呢?
公元3世紀,也就是1600多年前,我國偉大的數學家劉徽就提出了小數。
最初,人們表示小數只是用文字,直到了13世紀,才有人用低一格,如8.23記做,左邊的表示整數部分,右下方表示小數部分。
古代,還有人記小數是將小數部分的各個數字用圓圈圈起來,例如:1.5記做1⑤,這么一圈,就把整數部分和小數部分分開來了。這種記法後來傳到了中亞和歐洲。
公元1427年,中亞數學家阿爾.卡西又創造了新的小數記法,他是用將整數部分與小數部分分開的方法記小數,如3.14記做3 14。
到了16世紀,歐洲人才注意小數的作用。在歐洲,當時有人這樣記小數,如3.1415記做3⊙1①4④1①5⑤。⊙可以看作整數部分的分界標志,圈裡的數字表示的是數位的順序,這種記法很有趣,但是很麻煩。
直到公元1592年,瑞士的數學家布爾基對小數的表示方法作了較大的改進,他用一個小圓圈將整數部分與小數部分分割開,例如:5。24……數中的小圓圈實際起到了小數點的作用。
又過了一段時間,德國的數學家克拉維斯又用小黑點代替了小圓圈。於是,小數的寫法就成了我們現在的表示方法。
但是,用小數表示,在不同的國家也有不同的方法。現在,小數點的寫法有兩種:一種是用「,」;一種是用小黑點「.」。
在德國、法國等國家常用「,」,寫出的小數如3,42、7,51……,而英國和北歐的一些國家則喝我國一樣,用「.」表示小數點,如1.3、4.5……
了解了「小數的由來及表示方法」這個只是,我們是不是都知道了小數的轉變呢?
D. 數學手抄報課外知識。
可以講名人嘛,以陳景潤為例,你可以去網路里找啊,可以參考以下幾個方面去找啊
1、陳景潤
這曾是一個舉世震驚的奇跡:一位屈居於6平方米小屋的數學家,借一盞昏暗的煤油燈,伏在床板上,用一支筆,耗去了6麻袋的草稿紙,攻克了世界著名數學難題「哥德巴赫猜想」中的「1+2」,創造了距摘取這顆數論皇冠上的明珠「1+1」只是一步之遙的輝煌。創造這個奇跡的正是我國著名數學家陳景潤。陳景潤1933年5月22日生於福建省福州市。他從小是個瘦弱、內向的孩子,卻獨獨愛上了數學。演算數學題佔去了他大部分的時間,枯燥無味的代數方程式使他充滿了幸福感。1953年,陳景潤畢業於廈門大學數學系。由於他對數論中一系列問題的出色研究,受到華羅庚的重視,被調到中國科學院數學研究所工作。上世紀50年代,陳景潤對高斯圓內格點問題、球內格點問題、塔里問題與華林問題的以往結果,作出了重要改進。上世紀60年代後,他又對篩法及其有關重要問題,進行廣泛深入的研究。「哥德巴赫猜想」這一200多年懸而未決的世界級數學難題,曾吸引了各國成千上萬位數學家的注意,而真正能對這一難題提出挑戰的人卻很少。陳景潤在高中時代,就聽老師極富哲理地講:自然科學的皇後是數學,數學的皇冠是數論,「哥德巴赫猜想」則是皇冠上的明珠。這一至關重要的啟迪之言,成了他一生為之嘔心瀝血、始終不渝的奮斗目標。
為證明「哥德巴赫猜想」,摘取這顆世界矚目的數學明珠,陳景潤以驚人的毅力,在數學領域里艱苦卓絕地跋涉。辛勤的汗水換來了豐碩的成果。1973年,陳景潤終於找到了一條簡明的證明「哥德巴赫猜想」的道路,當他的成果發表後,立刻轟動世界。其中「1+2」被命名為「陳氏定理」,同時被譽為篩法的「光輝的頂點」。華羅庚等老一輩數學家對陳景潤的論文給予了高度評價。世界各國的數學家也紛紛發表文章,贊揚陳景潤的研究成果是「當前世界上研究『哥德巴赫猜想』最好的一個成果」。 陳景潤研究「哥德巴赫猜想」和其他數論問題的成就,至今仍然在世界上遙遙領先。世界級的數學大師、美國學者阿·威爾曾這樣稱贊他:「陳景潤的每一項工作,都好像是在喜馬拉雅山山巔上行走。」1978年和1982年,陳景潤兩次受到國際數學家大會作45分鍾報告的最高規格的邀請。 此外,陳景潤還在組合數學與現代經濟管理、尖端技術和人類密切關系等方面進行了深入的研究和探討。他先後在國內外報刊上發表了科學論文70餘篇,並有《數學趣味談》、《組合數學》等著作,曾獲國家自然科學獎一等獎、何梁何利基金獎、華羅庚數學獎等多項獎勵。 陳景潤在國內外都享有很高的聲譽,然而他毫不自滿,他說:「在科學的道路上我只是翻過了一個小山包,真正高峰還沒有攀上去,還要繼續努力。」 1996年3月19日,在患帕金森氏綜合症12年之後,由於突發性肺炎並發症造成病情加重,陳景潤終因呼吸循環衰竭逝世,終年62歲。
2陳景潤與哥德巴赫猜想
陳景潤在福州英華中學讀書時,有幸聆聽了清華大學調來的一名很有學問的數學教師沈元講課。他給同學們講了一道世界數學難題:「大約在200年前,一位名叫哥德巴赫的德國數學家提出了『任何一個大於2的偶數均可表示兩個素數之和』,簡稱1+1。他一生也沒證明出來,便給俄國聖彼得堡的數學家歐拉寫信,請他幫助證明這道難題。歐拉接到信後,就著手計算。他費盡了腦筋,直到離開人世,也沒有證明出來。之後,哥德巴赫帶著一生的遺憾也離開了人世,卻留下了這道數學難題。200多年來,這個哥德巴赫猜想之謎吸引了眾多的數學家,從而使它成為世界數學界一大懸案」。老師講到這里還打了一個有趣的比喻,數學是自然科學皇後,「哥德巴赫猜想」則是皇後王冠上的明珠!這引人入勝的故事給陳景潤留下了深刻的印象,「哥德巴赫猜想」像磁石一般吸引著陳景潤。從此,陳景潤開始了摘取數學皇冠上的明珠的艱辛歷程...... 1953年,陳景潤畢業於廈門大學數學系,曾被留校,當了一名圖書館的資料員,除整理圖書資料外,還擔負著為數學系學生批改作業的工作,盡管時間緊張、工作繁忙,他仍然堅持不懈地鑽研數學科學。陳景潤對數學論有濃厚的興趣,利用一切可以利用的時間系統地閱讀了我國著名數學家華羅庚有關數學的專著。陳景潤為了能直接閱讀外國資料,掌握最新信息,在繼續學習英語的同時,又攻讀了俄語、德語、法語、日語、義大利語和西班牙語。學習這些外語對一個數學家來說已是一個驚人突破,但對陳景潤來說只是萬里長征邁出的第一步。 為了使自己夢想成真,陳景潤不管是酷暑還是嚴冬,在那不足6平方米的斗室里,食不知味,夜不能眠,潛心鑽研,光是計算的草紙就足足裝了幾麻袋。1957年,陳景潤被調到中國科學院研究所工作,做為新的起點,他更加刻苦鑽研。經過10多年的推算,在1965年5月,發表了他的論文《大偶數表示一個素數及一個不超過2個素數的乘積之和》。論文的發表,受到世界數學界和著名數學家的高度重視和稱贊。英國數學家哈伯斯坦和德國數學家黎希特把陳景潤的論文寫進數學書中,稱為「陳氏定理」,可是,這個世界數學領域的精英,在日常生活中卻不知商品分類,有的商品名字都叫不出來,被稱為「痴人」和「怪人」。
3對陳景潤的評價
作家徐遲在《哥德巴赫猜想》中這樣描繪陳景潤的內心世界:「我知道我的病早已嚴重起來。我是病入膏肓了。細菌在吞噬我的肺腑內臟。我的心力已到了衰竭的地步。我的身體確實是支持不了啦!唯獨我的腦細胞是異常的活躍,所以我的工作停不下來。我不能停止。……」對於陳景潤的貢獻,中國的數學家們有過這樣一句表述:陳景潤是在挑戰解析數論領域250年來全世界智力極限的總和。中國改革開放總設計師鄧小平曾經這樣意味深長地告訴人們:「像陳景潤這樣的科學家,中國有一千個就了不得」。
4陳景潤的小故事:
陳景潤出生在貧苦的家庭,母親生下他來就沒有奶汁,靠向鄰居借熬米湯活過來。快上學的年齡,因為當郵局小職員的父親的工資太少,供大哥上學,母親還要背著不滿兩歲的小妹妹下地幹活掙錢。這樣,平日照看3歲小弟弟的擔子就落在小景潤的肩上。白天,他帶領小弟弟坐在小板凳上,數手指頭玩;晚上,哥哥放了學,就求哥哥給他講算數。稍大一點,擠出幫母親下地幹活的空隙,忙著練習寫字和演算。母親見他學習心切,就把他送進了城關小學。別看他長得瘦小,可十分用功,成績很好,因而引起有錢人家子弟的嫉妒,對他拳打腳踢。他打不過那些人,就淌著淚回家要求退學,媽媽撫摸著他的傷處說:「孩子,只怨我們沒本事,家裡窮才受人欺負。你要好好學,爭口氣,長大有出息,那時他們就不敢欺負咱們了!」小景潤擦乾眼淚,又去做功課了。此後,他再也沒流過淚,把身心所受的痛苦,化為學習的動力,成績一直拔尖,終於以全校第一名的成績考入了三元縣立初級中學。 在初中,他受到兩位老師的特殊關註:一位是年近花甲的語文老師,原是位教授,他目睹日本人橫行霸道,國民黨卻節節退讓,感到痛心疾首,只可惜自己年老了,就把希望寄託於下一代身上。他看到陳景潤勤奮刻苦,年少有為,就經常把他叫到身邊,講述中國5000年文明史,激勵他好好讀書,肩負起拯救祖國的重任。老師常常說得滿眼催淚,陳景潤也含淚表示,長大以後,一定報效祖國!另一位是不滿30歲的數學教師,畢業於清華大學數學系,知識非常豐富。陳景潤最感興趣的是數學課,一本課本,只用兩個星期就學完了。老師覺得這個學生不一般,就分外下力氣,多給他講,並進一步激發他的愛國熱情,說:「一個國家,一個民族,要想強大,自然科學不發達是萬萬不行的,而數學又是自然科學的基礎。」從此,陳景潤就更加熱愛數學了。一直到初中畢業,都保持了數學成績全優的記錄。 祖國光復後,陳景潤考入福州英華書院念高中。在這里,他有幸遇見使他終生難忘的沈元老師。沈老師曾任清華大學航空系主任,當時是陳景潤的班主任兼教數學、英語。沈老師學問淵博,循循善誘,同學們都喜歡聽他講課。有一次,沈老師出了一道有趣的古典數學題:「韓信點兵」。大家都悶頭算起來,陳景潤很快小聲回答:「53人」。全班為他算得速度之快驚呆了,沈老師望著這個平素不愛說話、衣衫襤褸的學生問他是怎麼得出來的?陳景潤的臉羞紅了,說不出話,最後是用筆在黑板上寫出了方法。沈老師高興地說:「陳景潤算得很好,只是不敢講,我幫他講吧!」沈老師講完,又介紹了中國古代對數學貢獻,說祖沖之對圓周率的研究成果早於西歐1000年,南宋秦九韶對「聯合一次方程式」的解法,也比瑞士數學家歐拉的解法早500多年。沈老師接著鼓勵說:「我們不能停步,希望你們將來能創造出更大的奇跡,比如有個『哥德巴赫猜想』,是數論中至今未解的難題,人們把它比做皇冠上的明珠,你們要把它摘下來!」課後,沈老師問陳景潤有什麼想法,陳景潤說:「我能行嗎?」沈老師說:「你既然能自己解出『韓信點兵』,將來就能摘取那顆明珠:天下無難事,只怕有心人啊!」那一夜,陳景潤失眠了,他立誓:長大無論成敗如何,都要不惜一切地去努力!
5陳景潤出生在貧苦的家庭,母親生下他來就沒有奶汁,靠向鄰居借熬米湯活過來。快上學的年齡,因為當郵局小職員的父親的工資太少,供大哥上學,母親還要背著不滿兩歲的小妹妹下地幹活掙錢。這樣,平日照看3歲小弟弟的擔子就落在小景潤的肩上。白天,他帶領小弟弟坐在小板凳上,數手指頭玩;晚上,哥哥放了學,就求哥哥給他講算數。稍大一點,擠出幫母親下地幹活的空隙,忙著練習寫字和演算。母親見他學習心切,就把他送進了城關小學。別看他長得瘦小,可十分用功,成績很好,因而引起有錢人家子弟的嫉妒,對他拳打腳踢。他打不過那些人,就淌著淚回家要求退學,媽媽撫摸著他的傷處說:「孩子,只怨我們沒本事,家裡窮才受人欺負。你要好好學,爭口氣,長大有出息,那時他們就不敢欺負咱們了!」小景潤擦乾眼淚,又去做功課了。此後,他再也沒流過淚,把身心所受的痛苦,化為學習的動力,成績一直拔尖,終於以全校第一名的成績考入了三元縣立初級中學。 在初中,他受到兩位老師的特殊關註:一位是年近花甲的語文老師,原是位教授,他目睹日本人橫行霸道,國民黨卻節節退讓,感到痛心疾首,只可惜自己年老了,就把希望寄託於下一代身上。他看到陳景潤勤奮刻苦,年少有為,就經常把他叫到身邊,講述中國5000年文明史,激勵他好好讀書,肩負起拯救祖國的重任。老師常常說得滿眼催淚,陳景潤也含淚表示,長大以後,一定報效祖國!另一位是不滿30歲的數學教師,畢業於清華大學數學系,知識非常豐富。陳景潤最感興趣的是數學課,一本課本,只用兩個星期就學完了。老師覺得這個學生不一般,就分外下力氣,多給他講,並進一步激發他的愛國熱情,說:「一個國家,一個民族,要想強大,自然科學不發達是萬萬不行的,而數學又是自然科學的基礎。」從此,陳景潤就更加熱愛數學了。一直到初中畢業,都保持了數學成績全優的記錄。 祖國光復後,陳景潤考入福州英華書院念高中。在這里,他有幸遇見使他終生難忘的沈元老師。沈老師曾任清華大學航空系主任,當時是陳景潤的班主任兼教數學、英語。沈老師學問淵博,循循善誘,同學們都喜歡聽他講課。有一次,沈老師出了一道有趣的古典數學題:「韓信點兵」。大家都悶頭算起來,陳景潤很快小聲回答:「53人」。全班為他算得速度之快驚呆了,沈老師望著這個平素不愛說話、衣衫襤褸的學生問他是怎麼得出來的?陳景潤的臉羞紅了,說不出話,最後是用筆在黑板上寫出了方法。沈老師高興地說:「陳景潤算得很好,只是不敢講,我幫他講吧!」沈老師講完,又介紹了中國古代對數學貢獻,說祖沖之對圓周率的研究成果早於西歐1000年,南宋秦九韶對「聯合一次方程式」的解法,也比瑞士數學家歐拉的解法早500多年。沈老師接著鼓勵說:「我們不能停步,希望你們將來能創造出更大的奇跡,比如有個『哥德巴赫猜想』,是數論中至今未解的難題,人們把它比做皇冠上的明珠,你們要把它摘下來!」課後,沈老師問陳景潤有什麼想法,陳景潤說:「我能行嗎?」沈老師說:「你既然能自己解出『韓信點兵』,將來就能摘取那顆明珠:天下無難事,只怕有心人啊!」那一夜,陳景潤失眠了,他立誓:長大無論成敗如何,都要不惜一切地去努力
希望對你有幫助,覺得好記得評最佳
E. 數學小知識手抄報內容
阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯專人掌握、改進,並傳屬到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
阿拉伯數字是古代印度人在生產和實踐中逐步創造出來的。
在古代印度,進行城市建設時需要設計和規劃,進行祭祀時需要計算日月星辰的運行,於是,數學計算就產生了。大約在公元前3000年,印度河流域居民的數字就比較先進,而且採用了十進位的計算方法。
到公元前三世紀,印度出現了整套的數字,但在各地區的寫法並不完全一致,其中最有代表性的是婆羅門式:這一組數字在當時是比較常用的。它的特點是從「1」到「9」每個數都有專字。現代數字就是由這一組數字演化而來。在這一組數字中,還沒有出現「0」(零)的符號。「0」這個數字是到了笈多王朝(公元320—550年)時期才出現的。公元四世紀完成的數學著作《太陽手冊》中,已使用「0」的符號,當時只是實心小圓點「·」。後來,小圓點演化成為小圓圈「0」。這樣,一套從「1」到「0」的數字就趨於完善了。這是古代印度人民對世界文化的巨大貢獻。
F. 小學數學手抄報的知識。
師大版小學數學五年級(下冊)知識點
一單元:《分數乘法》
分數乘法(一)
知識點:1、理解分數乘整數的意義。分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計算方法。分母不變,分子和整數相乘的積作分子。能約分的要約成最簡分數。
3、計算時,可以先約分在計算。
分數乘法(二)
知識點:1、結合具體情境,進一步探索並理解分數乘整數的意義,並能正確進行計算。
2、能夠求一個數的幾分之幾是多少。
3、理解打折的含義。例如:九折,是指現價是原價的十分之九。
分數乘法(三)
知識點:1、分數乘分數的計算方法,並能正確進行計算。
分子相乘做分子,分母相乘做分母,能約分的可以先約分。計算結果要求是最簡分數。
2、比較分數相乘的積與每一個乘數的大小。
真分數相乘積小於任何一個乘數;真分數與假分數相乘積大於真分數小於假分數。
二單元:《長方體(一)》
長方體的認識
知識點:1、認識長方體、正方體,了解各部分的名稱。
2、長方體、正方體各自的特點。
頂 點 面 棱
個 數 個 數 形 狀 大小關系 條數 長度關系
8 6 都是長方形,特殊的有兩個相對的面是正方形,其餘四個面是完全一樣的長方形。 相對的面是完全一樣的長方形。 12 可以分為三組,相對的棱平行且相等。
8 6 都是正方形。 每個面都是正方形。 12 長度都相等。
3、知道正方體是特殊的長方體。
4、能計算長方體、正方體的棱長總和。
長方體的棱長總和=(長+寬+高)*4或者是長*4+寬*4+高*4
正方體的棱長總和=棱長*12
靈活運用公式,能求出長方體的長、寬、高或是正方體的棱長。
展開與折疊
知識點:1、認識並了解長方體和正方體的平面展開圖。
2、了解正方體平面展開圖的幾種形式,並以此來判斷。
長方體的表面積
知識點:1、理解表面積的意義。是指六個面的面積之和。
2、長方體和正方體表面積的計算方法。
3、能結合生活中的實際情況,計算圖形的表面積。
露在外面的面
知識點:1、在觀察中,通過不同的觀察策略進行觀察。
如:一種是看每個紙箱露在外面的面,再加到一起;另一種是分別從正面、上面、側面進行不同角度的觀察,看每個角度都能看到多少個面,再加到一起。
2、發現並找出堆放的正方體的個數與露在外面的面的面數的變化規律。
三單元:《分數除法》
倒數
知識點:1、發現倒數的特徵並理解倒數的意義。
如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。倒數是對兩個數來說的,並不是孤立存在的。
2、求倒數的方法。
把這個數的分子和分母調換位置。
3、1的倒數仍是1;0沒有倒數。
0沒有倒數,是因為在分數中,0不能做分母。
分數除法(一)
知識點:1、分數除以整數的意義及計算方法。
分數除以整數,就是求這個數的幾分之幾是多少。
分數除以整數(0除外)等於乘這個數的倒數。
分數除法(二)
知識點:1、一個數除以分數的意義和基本算理。
一個數除以分數的意義與整數除法的意義相同;一個數除以分數等於乘這個數的倒數。
2、掌握一個數除以分數的計算方法。
除以一個數(0除外)等於乘這個數的倒數。
3、比較商與被除數的大小。
除數小於1,商大於被除數;
除數等於1。商等於被除數;
除數大於1,商小於被除數。
分數除法(三)
知識點:1、列方程「求一個數的幾分之幾是多少」。
2、利用等式的性質解方程。
3、理解打折的含義。
如:打8折就是指現價是原價的十分之八。
數學與生活
粉刷牆壁
知識點:1、明確我們在粉刷教室牆壁時必須知道的條件。
2、根據實際情況進行計算相應的面積。
折疊:
知識點:1、體會立體圖形與展開圖形之間的關系,發展空間觀念。
2、能正確判斷平面展開圖所對應的簡單立體圖形。
四單元:《長方體(二)》
體積與容積
知識點:1、體積與容積的概念。
體積:物體所佔空間的大小叫作物體的體積。
容積:容器所能容納入體的體積叫做物體的容積。
體積單位
知識點:1、認識體積、容積單位。
常用的體積單位有:立方厘米、立方分米、立方米。
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的實際意義。
補充知識點:冰箱的容積用「升」作單位;我們飲用的自來水用「立方米」作單位。
長方體的體積
知識點:1、結合具體情境和實踐活動,探索並掌握長方體、正方體體積的計算方法。
長方體的體積=長*寬*高
正方體的體積=棱長*棱長*棱長
長方體(正方體)的體積=底面積*高
2、能利用長方體(正方體)的體積及其他兩個條件求出問題。如:長方體的高=體積/長/寬
補充知識點:長方體的體積=橫截面面積*長
體積單位的換算
知識點:1、體積、容積單位之間的進率。
相鄰兩個體積單位、容積單位之間的進率是1000。
有趣的測量
知識點:1、不規則物體體積的測量方法。
2、不規則物體體積的計算方法。
五單元:《分數混合運算》
分數混合運算(一)
知識點:1、體會分數混合運算的運算順序和整數是一樣的。
分數混合運算(二)
知識點:整數的運算律在分數運算中同樣適用。
分數混合運算(三)
知識點:1、利用方程解決與分數運算有關的實際問題。
2、分數中的估算。
3、利用線段圖來分析題中的數量關系。
4、對最後結果的檢驗。
六單元:《百分數》
百分數的意義
知識點:1、百分數的意義。
百分數表示一個數另一個數的百分之幾。百分數也叫百分比、百分率。
2、能正確讀寫百分數。
3、結合生活中具體的例子理解百分數的意義。
合格率(百分數的應用一)
知識點:1、解決一個數是另一個數的百分之幾的實際問題。
這部分知識同分數除法中求一個數是另一個數的幾分之幾相同。
2、能正確地將小數、分數化成百分數。
小數化成百分數的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把分數化成百分數,可以先把分數化成小數(除不盡時,通常保留三位小數),再寫成百分數;也可以把分子分母同時乘一個數將其化成一百分之幾的數,再寫成百分數。
蛋白質含量(百分數的應用二)
知識點:1、求一個數的百分之幾是多少。方法同求一個數的幾分之幾是多少。
2、百分數化成小數、分數的方法。
百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。百分數化成小數時,要把百分號去掉,同時把小數點向左移動兩位。
這個月我當家(百分數應用三)
知識點:1、用方程解決「已知一個數的百分之幾多少,求這個數」的實際問題。
2、體會百分數與統計的關系。
數學與購物
估計費用
知識點:根據實際的問題,選擇合理的估算策略,進行估算。
購物策略
知識點:根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案。
包裝的學問
知識點:1、探索多個相同長方體疊放後使其表面積最小的最有策略。
2、掌握解決問題的基本方法和過程。
七單元:《統計》
扇形統計圖
知識點:1、認識扇形統計圖,了解扇形統計圖的特點與作用。
2、能讀懂扇形統計圖,並能從中獲得相應的數學信息。
奧運會(統計圖的選擇)
知識點:1、了解條形統計圖、扇形統計圖、折線統計圖的特點。
條形統計圖便於看出數據的多少;扇形統計圖能清楚地看出整體與部分之間的關系;折線統計圖能看出數據的變化趨勢。
2、能夠根據需要選擇最為直觀、有效地統計圖表示數據。
中位數和眾數
知識點:1、中位數和眾數的意義。
將一組數據從小到大(或從大到小)排列,中間的數稱為這組數據的中位數。
一組數據中出現次數最多的數稱為這組數據的眾數。
2、中位數和眾數的求法。
將一組數據按大小的順序排列,如果是奇數個數據,中間的數就為這組數據的中位數,如果是偶數個數據,中間兩個數的平均數為這組數據的中位數。
眾數,就是一組數據中出現次數最多的,有可能是多個眾數。
3、能根據具體的問題,選擇合適的統計兩表示數據的不同特徵。
了解同學
知識點:綜合運用所學的統計知識,發展學生的統計觀念。
數學北師大版五年級下冊知識點羅列匯總表
單元 各單元目錄 對 應 知 識 點
第一單元
分數乘法 分數乘法(一) 1、分數乘整數「幾個幾分之幾是多少」的意義
2、分數乘整數的計算方法
3、解決相應的分數乘整數的實際問題
分數乘法(二) 1、分數乘整數「一個數的幾分之幾是多少」的意義
2、解決相應的分數乘整數的實際問題
分數乘法(三) 1、分數乘分數的意義
2、分數乘分數的計算方法
3、解決相應分數乘分數的實際問題
第二單元
長方體(一) 長方體的認識 1、長方體、正方體各部分名稱
2、長方體和正方體特點
3、解決運用長方體和正方體特點的相應問題
展開與折疊 1、長方體、正方體的展開圖,
2、對長方體、正方體特點的再認識
長方體的表面積 1、長方體、正方體的表面積
2、長方體、正方體表面積的計算方法
3、解決運用長方體和正方體表面積的相應問題
露在外面的面 1.解決有關物體外露面的個數及面積的問題
第三單元
分數除法 倒數 1.倒數的意義
2.求一個數的倒數
分數除法(一) 1、分數除以整數的意義
2、分數除以整數的計算方法
3、解決相應分數除以整數的的實際問題
分數除法(二) 1、整數除以分數的意義
2、一個數除以分數的計算方法
3、解決相應一個數除以分數的的實際問題
分數除法(三) 1、解簡單的分數方程:ax=b
2、用方程解決簡單的有關分數的實際問題
數學
與生活 分刷牆壁 1、綜合應用圖形的面積、計算解決生活中的問題
折疊 1、立體圖和平面展開圖之間的關系
2、判斷平面展開圖所對應的簡單立體圖形
第四單元
長方體(二) 體積和容積 1、體積的含義
2、容積的含義
體積單位 1、體積單位:立方米、立方分米、立方厘米
2、容積單位:升、毫升
1、長方體、正方體的計算方法
長方體的體積 2、解決長方體正方體的體積的實際問題
體積單位的換算 1、體積、容積單位之間的進率
2、體積、容積單位之間換算。
有趣的測量 1、不規則物體體積的測量方法
第五單元
分數混合運算 分數混合運算(一) 1、分數混合運算順序
2、「求一個數是另一個數的幾分之幾」的混合實際運用
分數混合運算(二) 1、分數混合運算律
2、「求一個數比另一個數多(少)幾分之幾」的混合實際運用
分數混合運算(三) 1、解稍復雜的分數方程:ax±b=c,ax±bx=c,
2、利用方程解決與分數運算有關的實際問題
百分數 百分數的認識 1、百分數的意義
2、正確讀寫百分數
合格率 1、小數、分數化成百分數
2、合格率、成活率、出勤率等的意義
3、求「一個數是另一個數的百分之幾」的實際運用
蛋白質含量 1、百分數化成小數、分數
2、求「一個數的百分之幾是多少」的實際運用
這月我當家 1、百分數與統計的聯系
2、「已知一個數的百分之幾是多少,求這個數」的實際運用
3、用方程解決有關百分數的簡單實際問題
數學
與購物 估計費用 1、選擇合理的估算策略
購物策略 1、根據實際需要,比較常見的幾種優惠策略
包裝的學問 1、多個相同長方體疊放後使其表面積最小的最優策略
這些是知識點,你抄上吧。花邊可以畫的好看、簡單一點