『壹』 小學五六年級奧數題30道帶答案!!
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.
偶數與整數的積是偶數.
性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.
『貳』 六年級奧數題以及答案
六年級奧數卷子 一、計算(5×5=25分) 1、4 9 16 25 (36) (49) (64) 2、1 3 6 10 (15) (21) (28) 3、2 6 18 54 (162) (486) (1458) 4、654321×123456-654321×123455=654321 5、11111×11111=123454321 二、填空題。(3×25=75分) 1、小於400的自然數中不含數字8的數有(339)個。 2、有9枚銅錢,其中一枚是假的,真假只是質量不同,用無砝碼的天平,至少稱(8)次,就肯定能夠將假銅錢找出來。 3、在公路上每隔100千米有一個倉庫,共5個倉庫。1號倉庫存貨10噸,2號倉庫存貨20噸,5號倉庫存貨40噸,其餘兩個倉庫是空的,現在想把所有的貨物集中放在一個倉庫里,若每噸貨物運輸1千米要1元運費,那麼至少要花費(10000)元運費才行。 1號100千米2號100千米3號100千米4號100千米5號 10噸 20噸 40噸 4、六年級共有學生207人,選出男生的2/11 和7名女生參加數學競賽,剩下的男女生人數相同,六年級有女生(97)人。 5、小蘭和小麗玩猜數游戲,小蘭在直條上寫了一個四位小數,讓小麗猜。小麗問:「是6031嗎?」小蘭說:「猜對了一個數字,且位置正確。」小麗又問:「是5672嗎?」小蘭說:「猜對了兩個數字,且位置都不正確。」小麗再問:「是4796嗎?」小蘭說:「猜對了四個數字,但位置都不正確。」你能根據以上信息,推斷出小蘭寫的四位數嗎?6974 6、如果20隻兔子可以換2隻羊,8隻羊可以換2頭豬,8頭豬可以換2頭牛,那麼用4頭牛可以換多少只兔子?640 7、藍藍今年8歲,爸爸今年38歲,藍藍多少歲時,爸爸的年齡正好是藍藍的4倍? 10 8、為民冷飲店每3個空汽水瓶可以換1瓶汽水,藍藍在暑假裡買了99瓶汽水,喝完後又用空瓶換汽水,那麼她最多能喝到多少瓶汽水? 147 9、在一道除法算式里,被除數、除數、商、余數四個數的和為75,已知商是8,余數是2,被除數是多少,除數是多少? 58 7 10、有兩根同樣長的鐵絲,第一根減去30厘米,第二根減去18厘米,第二根餘下的是第一根所餘下長度的2倍,第二根鐵絲還剩多少厘米?24 11、有1,2,3,4,5,6,7,8,9的牌,甲、乙、丙各三張,甲說:「我的三張牌的積是48」,乙說:「我的三張牌之和是15」,丙說:「我的三張牌的積是63」,甲、乙、丙各拿什麼牌? 238 564 179 12 、用24厘米長的鐵絲可以圍成幾種不同的長方形(長與寬整厘米數且接頭處不計),面積分別是多少?再比較一下,你能發現什麼? 6 13、 張師傅習慣每工作5天休息2天。最近接到了生產330個零件的任務,他每天生產30個,那麼完成這批任務至少需要多少天?15 14、星期天,小輝乘計程車去看望8千米外的外婆。乘車時,他看了計程車上的車費牌價:5千米以內8元;5千米以上每千米2元。小輝到外婆家時,應付車費多少元? 14 15、 一個小數,如果把它的小數部分擴大4倍,就得到5.4;如果把它的小數部分擴大9倍,就得到8.4,那麼這個小數是多少?3、6 16、甲、乙二人的平均身高是1.66米,乙、丙二人的平均身高是1.7米,甲、丙二人的平均身高是1.65米,那麼甲乙丙三人的平均身高是多少? 1。67 17、 甲、乙、丙三個數之和為270,甲數是乙數的3倍,乙數是丙數的2倍,問甲、乙、丙三個數各是多少? 180 60 30 18、 有A、B兩個煤場,A煤場是B煤場存煤的3倍,若從A煤場運出180噸到B煤場,則兩煤場存煤相等,原來A、B兩煤場各存煤多少噸? 540 180 19、5個隊員排成一列做操,其中1個新來的隊員不能站在排首,有多少種不同的排法? 96 20、六(1)班有50人,會游泳的有25人,會體操的有28人,都不會的有5人,既會游泳又會體操的有多少人?8 21、青年號輪船在一條河裡順水而行120千米要用6小時,逆流而行280千米要用20小時。這只輪船在靜水中航行340千米要用多少小時? 20 22、將分母為15的所有最簡假分數由小到大依次排列,問第99個假分數的分子是多少? 214 23、用96朵紅花和72朵白花紮成花束,如果每個花束里紅花的朵數相同,白花的朵數也相同,每個花束里至少有多少朵花? 84
『叄』 小學五年級升六年級奧數題試卷及答案
⒈把復圓錐的半徑擴大2倍,制高擴大3倍,它的體積擴大(12)倍。
⒉把一塊棱長6分米的木料加工成最大的圓柱體,這個圓柱的體積是(169.56)立方分米。
⒊一個圓柱和一個圓錐的高和體積相等,已知圓柱的底面積是13.5平方厘米,圓錐的底面積是(40.5)平方厘米。
⒋一個圓柱的體積和圓錐的體積相等,已知圓柱的高是圓錐高的5分之2,圓柱的底面積是圓錐底面積的(2)分之(15)。
⒌一個側面展開是邊長為15.7厘米的正方形的圓柱體,它的體積是(308.1125)立方厘米。
⒍一個圓錐體底面直徑是8厘米,高是直徑的8分之3,這個圓錐的體積是(50.24)立方厘米。
⒎一個圓柱形油桶的底面半徑是3分米,高10分米,內裝汽油佔全桶的4分之3,這只油桶裝汽油(211.95)升。
⒏一個底面半徑4厘米,高5厘米的圓柱體,如果沿底面直徑把它平均切成兩半,它的表面積增加(40)平方厘米。
⒐一個圓的周長增加20%,這個圓的面積增加(40)%
『肆』 六年級五道奧數題及答案
一、甲、乙兩個碼頭相距144千米,汽船從乙碼頭逆水行駛8小時到達甲碼頭,又知汽船在靜水中每小時行21千米,那麼汽船順流開回乙碼頭需要幾小時?
二、一艘客輪從甲港駛向乙港,全程要行165千米。已知客輪的靜水速度是每小時30千米,水速是每小時3千米。現在正好是順流而行,行程需要幾小時?
三、甲船逆水航行300千米,需要15小時,返回原地需要10小時;乙船逆水航行同樣的一段水路需要20小時,返回原地需要多少小時?
解答:一、甲、乙兩個碼頭相距144千米,汽船從乙碼頭逆水行駛8小時到達甲碼頭,又知汽船在靜水中每小時行21千米,那麼汽船順流開回乙碼頭需要幾小時?
解:速度差:144/8=18km/h
水流速:21-18=3km/h
順水速度:21+3=24km/h
汽船順流開回乙碼頭需要的時間:
144/24=6小時。
二、一艘客輪從甲港駛向乙港,全程要行165千米。已知客輪的靜水速度是每小時30千米,水速是每小時3千米。現在正好是順流而行,行程需要幾小時?
解:行駛需要的時間:
165/(30+3)=5小時
三、甲船逆水航行300千米,需要15小時,返回原地需要10小時;乙船逆水航行同樣的一段水路需要20小時,返回原地需要多少小時?
解:甲順水速度(速度和):300/10=30km/h
甲逆水速度(速度差):300/15=20km/h
水的流速:(30-20)/2=5km/h
乙逆水速度(速度差): 300/20=15km/h
乙順水速度(速度和):15+5*2=25km/h
乙船返回原地需要的時間:
300/25=12 小時 。
森林裡有一隻小白兔,一邊吃青草,一邊東張西望,在距離小白兔15米的地方,有一支大灰狼,突然竄出來要吃掉小白兔,小白兔急忙向距離自己23米遠的兔穴逃走,大灰狼的步子大,它跑4步的路程,小白兔要跑9步,但兔子的腳步快,他跑3步的時間大灰狼只能跑兩步,請你計算一下,小白兔能否逃出大灰狼的魔掌?
解答:分三步走:第一步統一兔步和狼步
狼 4步 兔 9步
狼 2步時間 兔 3步時間
狼 4步時間 兔 6步時間
第二步設時間看追及過程
設兔跑6步為1分鍾,兔步一步為1米
則狼追上兔子需要:
15/(9-6)=5分鍾
5*6*1=30米大於23米,所以能逃出
第三步:些答語,兔子能逃出大灰狼的魔掌
1. 四輛汽車A、B、C、D在同一條公路上行駛。上午8:00,A從後面追上C,兩小時後A與D迎面相遇,在過兩小時,A與B迎面相遇。又過了一小時,B與C迎面相遇,再過一小時,B從後面追上D。則在_____點_______分的時候,C與D迎面相遇。
2. 另個頑皮孩子你這自動扶梯行駛的方向行走,從扶梯的一端到達另一端,男孩走了100秒,女孩走了300秒。已知在電梯靜止時,男孩每秒走3級台階,女孩每秒走2級台階。則該自動扶梯共有_______級台階
解答:其實很好理解。
⑴設速度分別為abcd。我們可以把8點理解為4輛車同時出發的時間。
8點的時候A.C相遇,換句話說也就是8點的時候,A.C在同一位置同時出發同向而行。4小時後A遇到B,那麼A.B之間最初的距離就是4a+4b;又過了1小時B.C相遇,那麼B.C之間最初的距離就是5b+5c。前邊說過了,開始A.C在相同位置,所以4a+4b=5b+5c,整理後得4a=5c+b。
2b=2a+2d這個式子有錯。前邊說過了,A.B最初的距離是4a+4b;又因為A出發2小時後遇到D,所以A.D最初的距離是2a+2d。所以B.D最初的距離是4a+4b-(2a+2d)=2a+4b-2d。又出發後6小時,B追上D,所以6(b-d)=2a+4b-2d,整理得,2a=2b-4d。
⑵設自動扶梯每秒鍾上升a個台階。
由於是逆向的,所以,對男孩來說,每秒走的台階數是3-a,需要100秒走完,於是總的台階數為100(3-a);對女孩同理,每秒走的台階數是2-a,需要300秒走完,於是總的台階數為300(2-a)。
令兩式相等,即300-100a=600-300a
一、填空題
1.有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
2.某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度.
3.現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米.如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長.
4.一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?
5.小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表.小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒.已知兩電線桿之間的距離是100米.你能幫助小英和小敏算出火車的全長和時速嗎?
6.一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒.求這列火車的速度與車身長各是多少米.
7.兩人沿著鐵路線邊的小道,從兩地出發,以相同的速度相對而行.一列火車開來,全列車從甲身邊開過用了10秒.3分後,乙遇到火車,全列火車從乙身邊開過只用了9秒.火車離開乙多少時間後兩人相遇?
8. 兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
9.某人步行的速度為每秒鍾2米.一列火車從後面開來,越過他用了10秒鍾.已知火車的長為90米,求列車的速度.
10.甲、乙二人沿鐵路相向而行,速度相同,一列火車從甲身邊開過用了8秒鍾,離甲後5分鍾又遇乙,從乙身邊開過,只用了7秒鍾,問從乙與火車相遇開始再過幾分鍾甲乙二人相遇?
二、解答題
11.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
12.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
13.一人以每分鍾120米的速度沿鐵路邊跑步.一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度.
14.一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
———————————————答 案——————————————————————
一、填空題
120米
102米
17x米
20x米
尾
尾
頭
頭
1. 這題是「兩列車」的追及問題.在這里,「追及」就是第一列車的車頭追及第二列車的車尾,「離開」就是第一列車的車尾離開第二列車的車頭.畫線段圖如下:
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 畫段圖如下:
頭
90米
尾
10x
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
3. (1)車頭相齊,同時同方向行進,畫線段圖如下:
則快車長:18×12-10×12=96(米)
(2)車尾相齊,同時同方向行進,畫線段圖如下:
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
則慢車長:18×9-10×9=72(米)
4. (1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)
5. (1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
6. 設火車車身長x米,車身長y米.根據題意,得
①②
解得
7. 設火車車身長x米,甲、乙兩人每秒各走y米,火車每秒行z米.根據題意,列方程組,得
①②
①-②,得:
火車離開乙後兩人相遇時間為:
(秒) (分).
8. 解:從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+60)¸(15+20)=8(秒).
9. 這樣想:列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
答:列車的速度是每秒種11米.
10. 要求過幾分鍾甲、乙二人相遇,就必須求出甲、乙二人這時的距離與他們速度的關系,而與此相關聯的是火車的運動,只有通過火車的運動才能求出甲、乙二人的距離.火車的運行時間是已知的,因此必須求出其速度,至少應求出它和甲、乙二人的速度的比例關系.由於本問題較難,故分步詳解如下:
①求出火車速度 與甲、乙二人速度 的關系,設火車車長為l,則:
(i)火車開過甲身邊用8秒鍾,這個過程為追及問題:
故 ; (1)
(i i)火車開過乙身邊用7秒鍾,這個過程為相遇問題:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火車頭遇到甲處與火車遇到乙處之間的距離是:
.
③求火車頭遇到乙時甲、乙二人之間的距離.
火車頭遇甲後,又經過(8+5×60)秒後,火車頭才遇乙,所以,火車頭遇到乙時,甲、乙二人之間的距離為:
④求甲、乙二人過幾分鍾相遇?
(秒) (分鍾)
答:再過 分鍾甲乙二人相遇.
二、解答題
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列車的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:從車頭進入隧道到車尾離開隧道共需80秒.
平均數問題
1. 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?
2. 甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?
3. 已知八個連續奇數的和是144,求這八個連續奇數。
4. 甲種糖每千克8.8元,乙種糖每千克7.2元,用甲種糖5千克和多少乙種糖混合,才能使每千克糖的價錢為8.2元?
5. 食堂買來5隻羊,每次取出兩只合稱一次重量,得到十種不同的重量(千克):47、50、51、52、53、54、55、57、58、59.問這五隻羊各重多少千克?
等差數列
1、下面是按規律排列的一串數,問其中的第1995項是多少?
解答:2、5、8、11、14、……。 從規律看出:這是一個等差數列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984
2、在從1開始的自然數中,第100個不能被3除盡的數是多少?
解答:我們發現:1、2、3、4、5、6、7、……中,從1開始每三個數一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數,共有50×3=150,那麼第100個不能被3除盡的數就是150-1=149.
3、把1988表示成28個連續偶數的和,那麼其中最大的那個偶數是多少?
解答:28個偶數成14組,對稱的2個數是一組,即最小數和最大數是一組,每組和為: 1988÷14=142,最小數與最大數相差28-1=27個公差,即相差2×27=54, 這樣轉化為和差問題,最大數為(142+54)÷2=98。
4、在大於1000的整數中,找出所有被34除後商與余數相等的數,那麼這些數的和是多少?
解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數的和為35×(29+30+31+32+33)=5425
5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,並算出這若干張卡片上各數的和除以17的余數,再把這個余數寫在另一張黃色的卡片上放回盒內,經過若干次這樣的操作後,盒內還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數分別是19和97,求那張黃色卡片上所寫的數。
解答:因為每次若干個數,進行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設有2個數20和30,它們的和除以17得到黃卡片數為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數16,也就是說不管幾個數相加,總和除以17的余數不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數的和除以17的余數為0,而19+97=116,116÷17=6……14, 所以黃卡片的數是17-14=3。
6、下面的各算式是按規律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那麼其中第多少個算式的結果是1992?
解答:先找出規律: 每個式子由2個數相加,第一個數是1、2、3、4的循環,第二個數是從1開始的連續奇數。 因為1992是偶數,2個加數中第二個一定是奇數,所以第一個必為奇數,所以是1或3, 如果是1:那麼第二個數為1992-1=1991,1991是第(1991+1)÷2=996項,而數字1始終是奇數項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。
7、如圖,數表中的上、下兩行都是等差數列,那麼同一列中兩個數的差(大數減小數)最小是多少?
解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。
8、有19個算式:
那麼第19個等式左、右兩邊的結果是多少?
解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數? 各式用數分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數相加? 各式左邊用數分別為3、4、5、……、第19個應該是3+1×18=21個, 所以第19個式子結果是397+398+399+……+417=8547。
9、已知兩列數: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數中相同的項數共有多少對?
解答:易知第一個這樣的數為5,注意在第一個數列中,公差為3,第二個數列中公差為4,也就是說,第二對數減5即是3的倍數又是4的倍數,這樣所求轉換為求以5為首項,公差為12的等差數的項數,5、17、29、……, 由於第一個數列最大為2+(200-1)×3=599; 第二數列最大為5+(200-1)×4=801。新數列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
10、如圖,有一個邊長為1米的下三角形,在每條邊上從頂點開始,每隔2厘米取一個點,然後以這些點為端點,作平行線將大正三角形分割成許多邊長為2厘米的小正三角形。求⑴邊長為2厘米的小正三角形的個數,⑵所作平行線段的總長度。
解答:⑴ 從上數到下,共有100÷2=50行, 第一行1個,第二行3個,第三行5個,……,最後一行99個, 所以共有(1+99)×50÷2=2500個; ⑵所作平行線段有3個方向,而且相同, 水平方向共作了49條, 第一條2厘米,第二條4厘米,第三條6厘米,……, 最後一條98厘米, 所以共長(2+98)×49÷2×3=7350厘米。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續派相同人數的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那麼,這月由總廠派到分廠工作的工人共多少人?
解答:11月份有30天。 由題意可知,總廠人數每天在減少,最後為240人,且每天人數構成等差數列,由等差數列的性質可知,第一天和最後一天人數的總和相當於8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明讀一本英語書,第一次讀時,第一天讀35頁,以後每天都比前一天多讀5頁,結果最後一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以後每天都比前一天多讀5頁,結果最後一天只需讀40頁就可以讀完,問這本書有多少頁?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調整如下: 第一方案:40、45、50、55、……35+35(第一天放到最後惶熘腥ィ?/P>第二方案:40、45、50、55、……(最後一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。
13、7個小隊共種樹100棵,各小隊種的查數都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?
解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫
『伍』 六年級奧數題和答案(50題)
1. 有 28位小朋友排成一行 .從左邊開始數第 10位是愛華,從右邊開始數他是第幾位?
2. 紐約時間是香港時間減 13小時 .你與一位在紐約的朋友約定,紐約時間 4月 1日晚上 8時與他通電話,那麼在香港你應幾月幾日幾時給他打電話?
3. 名工人 5小時加工零件 90件,要在 10小時完成 540個零件的加工,需要工人多少人?
4. 大於 100的整數中,被 13除後商與余數相同的數有多少個?
5. 四個房間,每個房間里不少於 2人,任何三個房間里的人數不少 8人,這四個房間至少有多少人?
6. 在 1998的約數(或因數)中有兩位數,其中最大的是哪個數?
7. 英文測驗,小明前三次平均分是 88分,要想平均分達到 90分,他第四次最少要得幾分?
8. 一個月最多有 5個星期日,在一年的 12個月中,有 5個星期日的月份最多有幾個月?
9. 將 0, 1, 2, 3, 4, 5, 6, 7, 8, 9這十個數字中,選出六個填在下面方框中,使算式成立,一個方框填一個數字,各個方框數字不相同 .
□ +□□ =□□□
問算式中的三位數最大是什麼數?
10. 有一個號碼是六位數,前四位是 2857,後兩位記不清,即
2857□□
但是我記得,它能被 11和 13整除,請你算出後兩位數 .
11. 某學校有學生 518人,如果男生增加 4%,女生減少 3人,總人數就增加 8人,那麼原來男生比女生多幾人?
12. 陳敏要購物三次,為了使每次都不產生 10元以下的找贖, 5元、 2元、 1元的硬幣最少總共要帶幾個?
(硬幣只有 5元、 2元、 1元三種 .)
13. 右圖是三個半圓構成的圖形,其中小圓直徑為 8,中圓直徑為 12,
14.幼兒園的老師把一些畫片分給 A, B, C三個班,每人都能分到 6張 .如果只分給 B班,每人能得 15張,如果只分給 C班,每人能得 14張,問只分給 A班,每人能得幾張?
15. 兩人做一種游戲:輪流報數,報出的數只能是 1, 2, 3, 4, 5, 6, 7, 8.把兩人報出的數連加起來,誰報數後,加起來的數是 123,誰就獲勝,讓你先報,就一定會贏,那麼你第一個數報幾?
16.一本小說的頁碼,在印刷時必須用1989個鉛字,在這一本書的頁碼中數字1出現多少次?
17.把23個數:3,33,333,…,33…3(23個3)相加,則所得的和的末四位數是多少?
18.將1、1、2、2、3、3、4、4這八個數字排成一個八位數,使得兩個1之間有一個數字,兩個2之間有二個數字,兩個3之間有三個數字,兩個4之間有四個數字,那麼這樣的八位數中最小的是?
19.從 1, 2, 3,…,2004, 2005這些自然數中,最多可以取幾個數,才能使其中每兩個數的差不等於4?
20.有一個電話號碼是六位數,其中左邊三個數字相同,右邊三個數字是三個連續的自然數,六個數字之和恰好等於末尾的兩位數,這個電話號碼是多少?
21.若a為自然數,證明10│(a2005-a1949).
22.給出12個彼此不同的兩位數,證明:由它們中一定可以選出兩個數,它們的差是兩個相同數字組成的兩位數.
23.求被3除餘2,被5除餘3,被7除餘5的最小三位數.
24.設2n+1是質數,證明:12,22,…,n2被2n+1除所得的余數各不相同.
25.試證不小於5的質數的平方與1的差必能被24整除.
26. 有甲乙兩種糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,現要得到濃度是82.5%的糖水100克,問每種應取多少克?
27. 一個容器里裝有10升純酒精,倒出1升後,用水加滿,再倒出1升,用水加滿,再倒出1升,用水加滿,這時容器內的酒精溶液的濃度是?
28. 有若干千克4%的鹽水,蒸發了一些水分後變成了10%的鹽水,在加300克4%的鹽水,混合後變成6.4%的鹽水,問最初的鹽水是多少千克?
29.已知鹽水若干克,第一次加入一定量的水後,鹽水濃度變為3%,第二次加入同樣多的水後,鹽水濃度變為2%。求第三次加入同樣多的水後鹽水的濃度。
30.有A、B、C三種鹽水,按A與B的數量之比為2:1混合,得到濃度為13%的鹽水;按A與B的數量之比為1:2混合,得到濃度為14%的鹽水;按A、B、C的數量之比為1:1:3混合,得到濃度為10.2%的鹽水,問鹽水C的濃度是多少?
[ 答案 ]
1. 從右邊開始數,他是第 19位 .
2. 4 月2 日上午9 時.
3.9名工人 .
4.有 5個 .
13× 7+7=98< 100,商數從 8開始 .但余數小於 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5個數 .
5.至少有 11人 .
人數最多的房間至少有 3人,其餘三個房間至少有 8人,總共至少有 11人 .
6.最大的兩位約數是 74.
1998= 2× 3× 3× 3× 37
7.第四次最少要得 96分 .
88+( 90- 88)× 4=96(分)
8.最多有 5個月有 5個星期日 .
1月 1日是星期日,全年就有 53個星期日 .每月至少有 4個星期日, 53-4× 12=5,多出 5個星期日,在 5個月中 .
9.105.
和的前兩位是 1和 0,兩位數的十位是 9.因此加數的個位最大是 7和 8.
10.後兩位數是 14.
285700÷( 11× 13) =1997餘 129
余數 129再加 14就能被 143整除 .
11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .
12.最少 5元、 2元、 1元的硬幣共 11個 .
購物 3次,必須備有 3個 5元、 3個 2元、 3個 1元 .為了應付 3次都是 4元,至少還要 2個硬幣,例如 2元和 1元各一個,因此,總數 11個是不能少的 .准備 5元 3個, 2元 5個, 1元 3個,或者 5元 3個, 2元 4個, 1元 4個就能三次支付 1元至 9元任何錢數 .
14.A班每人能得 35張 .
設三班總人數是 1,則 B班人數是 6/15, C班人數是 6/14,因此 A班人數是:
15.第一個數報 6.
對方至少要報數 1,至多報數 8,不論對方報什麼數,你總是可以做到兩人所報數之和為 9.
123÷ 9= 13…… 6.
你第一次報數 6.以後,對方報數後,你再報數,使一輪中兩人報的數和為 9,你就能在 13輪後達到 123.
16.4
17.甲26又2/3天,乙40天
18.21
19.14又1/3
20.10
21.甲、乙兩地相距540千米,原來火車的速度為每小時90千米。
22.750
23.384
24.600
25.一班48人,二班42人
26.15
27.82
28.312
29.最少5個,最多7個
30.784
『陸』 小學六年級奧數題及答案(30道)。
給你一個網址http://www.aoshu.com/z2011/lnjaszsd/
『柒』 小學五年級升六年級奧數題試卷及答案
1.一批貨物,第一天運了200噸,第二天運了總數的2/5,這時剩下的是運走的2/3,這批貨物有多少噸?
剩下的是運走的2/3
那運走的是總量的3/5
200噸占總量的3/5-2/5=1/5
總量=1000噸
2.(3/4+1/5)+(4/5+1/6)+(5/6+1/7
)+(7/8+1/9)+(8/9+1/10)
=3/4+(1/5+4/5)+(1/6+5/6)+(1/7+7/8)+(1/9+8/9)+1/10
=4+3/4+1/10=97/20
3.(1
/1×2)+(1
/2×3)+(1
/3×4)+...
...+(1
/99×100)
=1/1-1/2+1/2-1/3+...+1/99-1/100=1-1/100=99/100
『捌』 六年級奧數題及答案
、王,張,劉三位小朋友共有郵票150張,現在他們交換郵票:王給劉12枚,劉給張18枚,張給王枚.這樣,三人的郵票張數相等,請問,王原有郵票()張,劉原有郵票()張,張原有郵票()張.
9,有3個箱子,如果兩箱兩箱的去稱它們的重量,分別是166千克,172千克和170千克.問其中最重的箱子重()千克.
10,某人到快餐店打暑期工,一個月(30天計)報酬為800元和發給帽,鞋和工作服一套.她由於另有原因,只工作了20天,得到500元,(勞保用品不用交回),請算算勞保用品應值()元.
11,一副撲克牌(除去大,小鬼王),有4種花色,每種花色都有13張牌.現在把撲克牌洗勻,那麼至少要從中抽出()張牌,才能保證有4張牌是同一花色.
12,學校買來101個乒乓球,67個乒乓球拍和33個乒乓網.如果把這三種物品平均分給每個班,這三種物品剩下的數量相同.學校應有()個班.
13,小東做了一個長方體模型,表面積是160平方厘米,這個長方體恰好能分割成兩個完全一樣的正方體.那麼,
(1)其中一個正方體的體積是()。
(2)原來這個長方體的體積是()。
14、有一場球比賽,售出50元,80元,100元的門票共800張,收入56000元.其中80元的門票和100元的門票售出的張數正好相同.請回答:售出50元門票()張;售出80元門票()張;售出100元門票()張。
15、小芳和小英在春節臨時集市賣工藝品,小芳的工藝品比小英多100個可是全部賣出後的收入都是750元,如果小芳的工藝品按小英的價格出售,則可增加收款0.2倍,小芳的工藝品每個賣()元