Ⅰ 有關圓的知識點總結
1、圓是定點的距離等於定長的點的集合
到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
2、定理 不在同一直線上的三點確定一個圓。
3、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
4、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
5、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
6、定理 一條弧所對的圓周角等於它所對的圓心角的一半
推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
7、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
8、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
9、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
切線的性質定理 圓的切線垂直於經過切點的半徑
推論1 經過圓心且垂直於切線的直線必經過切點
推論2 經過切點且垂直於切線的直線必經過圓心
10、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
圓的外切四邊形的兩組對邊的和相等
11、①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
12、定理 相交兩圓的連心線垂直平分兩圓的公共弦
13、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
14、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
144弧長計算公式:L=nπR/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
Ⅱ 圓的所有知識點
圓是指在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線,標准方程是(x-a)²+(y-b)²=r²,其中點(a,b)是圓心,r是半徑。 圓是一種幾何圖形,也是一種軸對稱、中心對稱圖形。同時,圓又是「正無限多邊形」,當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。由於「無限」是一個概念,所以世界上沒有真正的圓,只有一種概念性的圖形。
徑
1.連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r(radius)
2.通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d(diameter)。直徑所在的直線是圓的對稱軸。
圓的直徑 d=2r
弦
1.連接圓上任意兩點的線段叫做弦(chord).在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。
弧
1.圓上任意兩點間的部分叫做圓弧,簡稱弧(arc)以「⌒」表示。
2.大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大於180度的弧,劣弧是所對圓心角小於180度的弧。
3.在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。
角
1.頂點在圓心上的角叫做圓心角(central angle)。
2. 頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等於相同弧所對的圓心角的一半。
圓周率
圓周長度與圓的直徑長度的比值叫做圓周率。它是一個無限不循環小數,通常用字母表示,
≈3.1415926535......計算時通常取近似值3.14。我們可以說圓的周長是直徑的π倍,或大約3.14倍,不能直接說圓的周長是直徑的3.14倍。
Ⅲ 怎樣整理6年級圓的知識點
圓形:(圓周率:π,通常取3.14)周長=直徑×圓周率 面積=半徑的平方×圓周率 圓的整理和復習回知識點梳理:⑴答什麼叫做圓的半徑、直徑?半徑和直徑的關系? ⑵什麼叫做圓的周長?用公式怎麼表示?⑶什麼叫做圓周率?用字母怎樣表示?⑷圓的周長總是直徑的多少倍?⑸什麼叫做圓的面積?圓的面積公式是怎樣推導出來的?怎樣表示?⑹什麼叫軸對稱圖形?什麼叫對稱軸?⑺在我們所學的平面圖形當中,哪些是軸對稱圖形?各有幾條對稱軸?⑻如何畫圓?什麼決定圓的位置?什麼決定圓的大小?⑼圓環的面積怎樣求? 如何梳理圓的知識?第一,選擇一條主線梳理圓的有關知識,如點與圓的位置,直線與圓的位置關系,圓圓的位置關系第二,用圖形表示他們之間的關系第三,用數學符號表示這些關系第四,解決這部分內容得方法是什麼?
Ⅳ 小學六年級上冊數學圓的知識點
圓的認識,圓的周長,圓,圓環,扇形的面積,
Ⅳ 圓的知識點總結
1、圓是定點的距離等於定長的點的集合
2、圓的內部可以看作是圓心的距離小於半徑回的點的集合
3、圓的外部可答以看作是圓心的距離大於半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
Ⅵ 關於圓的知識點(小學六年級)
圓的特徵:圓是抄由一條曲線構成的封閉圖形,圓上任意一點到圓心的距離相等。
圓心和半徑的作用:圓心決定圓的位置,半徑決定圓的大小
圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數條對稱軸
同一圓中直徑是半徑的2倍
圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用π表示,計算時通常取3.14
圓的周長:C=2πr或C=πd
面積計算公式:πr²
Ⅶ 圓的認識知識點。
1 在同一平面內,到定點的距離等於定長的點的集合叫做圓。這個定點叫做圓的回圓心答。圖形一周的長度,就是圓的周長。
2 連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r。
3 通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d。直徑所在的直線是圓的對稱軸。
4 連接圓上任意兩點的線段叫做弦。最長的弦是直徑,直徑是過圓心的弦。
5 圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,優弧是用三個字母表示。小於半圓的弧稱為劣弧,劣弧用兩個字母表示。半圓既不是優弧,也不是劣弧。優弧是大於180度的弧,劣弧是小於180度的弧。
6 由兩條半徑和一段弧圍成的圖形叫做扇形。
7 由弦和它所對的一段弧圍成的圖形叫做弓形。
8 頂點在圓心上的角叫做圓心角。
9 頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
10 圓周長度與圓的直徑長度的比值叫做圓周率。它是一個無限不循環小數,通常用π表示,π=3.14159265……在實際應用中,一般取π≈3.14。
11圓周角等於相同弧所對的圓心角的一半。
12 圓是一個正n邊形(n為無限大的正整數),邊長無限接近0但不等於0。