導航:首頁 > 小學全識 > 小學六年數學必記知識點

小學六年數學必記知識點

發布時間:2021-01-13 08:13:54

A. 小學六年制數學知識點歸納

(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
小學語文是義務教育階段的一門基礎學科,擔負著全面提高學生語文素養的重任。經過六年的學習,大多數學生已具備了一定的語文素養,但是由於學生的個體差異,導致了小學生語文素養的參差不齊。在小學生即將結束小學生活的這段時間里,我們有責任集中精力,抓住時機,系統地引導學生復習小學階段應掌握的知識,最大限度地提高每個學生的語文素養。
從「標准」入手,明確復習的要求:
學生在畢業時,應基本達到《語文課程標准》的要求。復習時,要根據《語文課程標准》及學生「過程性」的學習情況,有針對性地制定出相關復習要求,各部分的重點要求是:
(一)、基礎知識
1、漢語拼音。
能讀准聲母、韻母、聲調和整體認讀音節;能准確地拼讀音節,正確書寫聲母、韻母和音節;能認識大寫字母,並能熟記《漢語拼音字母表》
2、漢字。
認識常用漢字3000個左右,其中2500個會寫,要能讀准字音,認清字形,了解字義,養成正確的寫字習慣;會查字典;能初步辨析字的音、形、義,掌握學過的常用的多音字,注意不寫錯別字。
3、詞語。
能正確地讀出和寫出學過的詞語;能根據詞義輕重、范圍大小、感情色彩、詞語搭配等方面辨析詞義,進行歸類或順序排列;學會在具體的語言環境中准確地理解詞義;注意積累詞語,並能在口頭語言和書面語言中正確運用。
4、句子。
熟悉句子的類型;能運用學過的常用詞語(包括關聯詞語)造出思想健康、用詞准確、意思完整的句子;能指出句子中的毛病,並加以改正;會區分和運用常用的幾種修

B. 小學六年級數學重點知識大全和公式。

小學數學圖形計算公式 1、正方形 C周長 S面積 a邊長  周長邊長×4 C=4a 面積=邊長×邊長 S=a×a 2、正方體 V:體積 a:棱長  表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3、長方形 C周長 S面積 a邊長  周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5、三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6、平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7、梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圓形 S面積 C周長 л d=直徑 r=半徑 (1)周長=直徑×л=2×л×半徑 C=лd=2лr (2)面積=半徑×半徑×л 9、圓柱體 v:體積 h:高 s底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2 (3)體積=底面積×高 4體積側面積÷2×半徑 10、圓錐體 v:體積 h:高 s底面積 r:底面半徑 體積=底面積×高÷3 11、總數÷總份數平均數 12、和差問題的公式(和差)÷2大數 (和差)÷2小數 13、和倍問題 和÷(倍數1)小數 小數×倍數大數 (或者 和小數大數) 14、差倍問題 差÷(倍數1)小數 小數×倍數大數 (或 小數差大數) 15、相遇問題 相遇路程速度和×相遇時間 相遇時間相遇路程÷速度和 速度和相遇路程÷相遇時間 16、濃度問題 溶質的重量溶劑的重量溶液的重量 溶質的重量÷溶液的重量×100%濃度 溶液的重量×濃度溶質的重量 溶質的重量÷濃度溶液的重量 17、利潤與折扣問題 利潤售出價成本 利潤率利潤÷成本×100%(售出價÷成本1)×100% 漲跌金額本金×漲跌百分比 利息本金×利率×時間 稅後利息本金×利率×時間×(120%) 常用的數量關系式 1、每份數×份數總數 總數÷每份數份數 總數÷份數每份數 2、1倍數×倍數幾倍數 幾倍數÷1倍數倍數 幾倍數÷倍數1倍數 3、速度×時間路程 路程÷速度時間 路程÷時間速度 4、單價×數量總價 總價÷單價數量 總價÷數量單價 5、工作效率×工作時間工作總量 工作總量÷工作效率工作時間 工作總量÷工作時間工作效率 6、加數加數和 和一個加數另一個加數 7、被減數減數差 被減數差減數 差減數被減數 8、因數×因數積 積÷一個因數另一個因數 9、被除數÷除數商 被除數÷商除數 商×除數被除數 常用單位換算 長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算 1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念 第一章 數和數的運算 一 概念 一整數 1 整數的意義 自然數和0都是整數。 2 自然數 我們在數物體的時候用來表示物體個數的123……叫做自然數。 一個物體也沒有用0表示。0也是自然數。 3計數單位 一個、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。 每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。 4 數位 計數單位按照一定的順序排列起來它們所佔的位置叫做數位。 5數的整除 整數a除以整數b(b ≠ 0除得的商是整數而沒有餘數我們就說a能被b整除或者說b能整除a 。 如果數a能被數bb ≠ 0整除a就叫做b的倍數b就叫做a的約數或a的因數。倍數和約數是相互依存的。 因為35能被7整除所以35是7的倍數7是35的約數。 一個數的約數的個數是有限的其中最小的約數是1最大的 約數是它本身。例如10的約數有1、2、5、10其中最小的約數是1最大的約數是10。 一個數的倍數的個數是無限的其中最小的倍數是它本身。3的倍數有3、6、9、12……其中最小的倍數是3 沒有最大的倍數。 個位上是0、2、4、6、8的數都能被2整除例如202、480、304都能被2整除。。 個位上是0或5的數都能被5整除例如5、30、405都能被5整除。。 一個數的各位上的數的和能被3整除這個數就能被3整除例如12、108、204都能被3整除。 一個數各位數上的和能被9整除這個數就能被9整除。 能被3整除的數不一定能被9整除但是能被9整除的數一定能被3整除。 一個數的末兩位數能被4或25整除這個數就能被4或25整除。例如16、404、1256都能被4整除50、325、500、1675都能被25整除。 一個數的末三位數能被8或125整除這個數就能被8或125整除。例如1168、4600、5000、12344都能被8整除1125、13375、5000都能被125整除。 能被2整除的數叫做偶數。 不能被2整除的數叫做奇數。 0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。 一個數如果只有1和它本身兩個約數這樣的數叫做質數或素數100以內的質數有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數如果除了1和它本身還有別的約數這樣的數叫做合數例如 4、6、8、9、12都是合數。 1不是質數也不是合數自然數除了1外不是質數就是合數。如果把自然數按其約數的個數的不同分類可分為質數、合數和1。 每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數叫做這個合數的質因數例如15=3×53和5 叫做15的質因數。 把一個合數用質因數相乘的形式表示出來叫做分解質因數。 例如把28分解質因數 幾個數公有的約數叫做這幾個數的公約數。其中最大的一個叫做這幾個數的最大公約數例如12的約數有1、2、3、4、6、1218的約數有1、2、3、6、9、18。其中1、2、3、6是12和1 8的公約數6是它們的最大公約數。 公約數只有1的兩個數叫做互質數成互質關系的兩個數有下列幾種情況 1和任何自然數互質。 相鄰的兩個自然數互質。 兩個不同的質數互質。 當合數不是質數的倍數時這個合數和這個質數互質。 兩個合數的公約數只有1時這兩個合數互質如果幾個數中任意兩個都互質就說這幾個數兩兩互質。 如果較小數是較大數的約數那麼較小數就是這兩個數的最大公約數。 如果兩個數是互質數它們的最大公約數就是1。 幾個數公有的倍數叫做這幾個數的公倍數其中最小的一個叫做這幾個數的最小公倍數如2的倍數有2、4、6 、8、10、12、14、16、18 …… 3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數6是它們的最小公倍數。。 如果較大數是較小數的倍數那麼較大數就是這兩個數的最小公倍數。 如果兩個數是互質數那麼這兩個數的積就是它們的最小公倍數。 幾個數的公約數的個數是有限的而幾個數的公倍數的個數是無限的。 二小數 1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。 一位小數表示十分之幾兩位小數表示百分之幾三位小數表示千分之幾…… 一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點小數點左邊的數叫做整數部分小數點左邊的數叫做整數部分小數點右邊的數叫做小數部分。 在小數里每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。 2小數的分類 純小數整數部分是零的小數叫做純小數。例如 0.25 、 0.368 都是純小數。 帶小數整數部分不是零的小數叫做帶小數。 例如 3.25 、 5.26 都是帶小數。 有限小數小數部分的數位是有限的小數叫做有限小數。 例如 41.7 、 25.3 、 0.23 都是有限小數。 無限小數小數部分的數位是無限的小數叫做無限小數。 例如 4.33 …… 3.1415926 …… 無限不循環小數一個數的小數部分數字排列無規律且位數無限這樣的小數叫做無限不循環小數。 例如∏ 循環小數一個數的小數部分有一個數字或者幾個數字依次不斷重復出現這個數叫做循環小數。 例如 3.555 …… 0.0333 …… 12.109109 …… 一個循環小數的小數部分依次不斷重復出現的數字叫做這個循環小數的循環節。 例如 3.99 ……的循環節是「 9 」  0.5454 ……的循環節是「 54 」 。 純循環小數循環節從小數部分第一位開始的叫做純循環小數。 例如 3.111 …… 0.5656 …… 混循環小數循環節不是從小數部分第一位開始的叫做混循環小數。 3.1222 …… 0.03333 …… 寫循環小數的時候為了簡便小數的循環部分只需寫出一個循環節並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字就只在它的上面點一個點。例如 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。 三分數
1 分數的意義 把單位「1」平均分成若干份表示這樣的一份或者幾份的數叫做分數。 在分數里中間的橫線叫做分數線分數線下面的數叫做分母表示把單位「1」平均分成多少份分數線下面的數叫做分子表示有這樣的多少份。 把單位「1」平均分成若干份表示其中的一份的數叫做分數單位。 2 分數的分類 真分數分子比分母小的分數叫做真分數。真分數小於1。 假分數分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。 帶分數假分數可以寫成整數與真分數合成的數通常叫做帶分數。 3 約分和通分 把一個分數化成同它相等但是分子、分母都比較小的分數 叫做約分。 分子分母是互質數的分數叫做最簡分數。 把異分母分數分別化成和原來分數相等的同分母分數叫做通分。 四百分數 1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。 運算定律 1. 加法交換律 兩個數相加交換加數的位置它們的和不變即a+b=b+a 。 2. 加法結合律 三個數相加先把前兩個數相加再加上第三個數或者先把後兩個數相加再和第一個數相加它們的和不變即a+b)+c=a+(b+c) 。 3. 乘法交換律 兩個數相乘交換因數的位置它們的積不變即a×b=b×a。 4. 乘法結合律 三個數相乘先把前兩個數相乘再乘以第三個數或者先把後兩個數相乘再和第一個數相乘它們的積不變即(a×b)×c=a×(b×c) 。 5. 乘法分配律 兩個數的和與一個數相乘可以把兩個加數分別與這個數相乘再把兩個積相加即(a+b)×c=a×c+b×c 。 6. 減法的性質 從一個數里連續減去幾個數可以從這個數里減去所有減數的和差不變即a-b-c=a-(b+c) 。

C. 小學六年級數學知識點總結

我都沒有你們小學六年級的書,怎麼幫你?真可笑!!

D. 跪求小學數學一至六年級的知識點總結,必記的公式有哪些(北師大版的)急…

二小學數學知識點匯總(2009-09-14 15:00:22) 小學一年級 九九乘法口訣表。學會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5 工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6 加數+加數=和和-一個加數=另一個加數
7 被減數-減數=差被減數-差=減數 差+減數=被減數
8 因數×因數=積積÷一個因數=另一個因數
9 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2 正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3 長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4 長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5 三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6 平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7 梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形 S面積 C周長 ∏ d=直徑 r=半徑
周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
面積=半徑×半徑×∏
9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑

11圓錐體 體積=底面積×高÷3

E. 小學六年級數學畢業考必考的知識點是什麼

小學數學總復習資料
【常用的數量關系】
1、每份數×份數=總數; 總數÷每份數=份數 ; 總數÷份數=每份數
2、1倍數×倍數=幾倍數; 幾倍數÷1倍數=倍數; 幾倍數÷倍數=1倍數
3、速度×時間=路程 ; 路程÷速度=時間 ; 路程÷時間=速度
4、單價×數量=總價; 總價÷單價=數量 ; 總價÷數量=單價
5、工作效率×工作時間=工作總量; 工作總量÷工作效率=工作時間;
工作總量÷工作時間=工作效率;
6、加數+加數=和; 和-一個加數=另一個加數
7、被減數-減數=差; 被減數-差=減數; 差+減數=被減數
8、因數×因數=積; 積÷一個因數=另一個因數
9、被除數÷除數=商 ; 被除數÷商=除數; 商×除數=被除數
【小學數學圖形計算公式】
1、正方形(C:周長, S:面積, a:邊長)
周長=邊長×4; C=4a
面積=邊長×邊長; S=a×a
2、正方體(V:體積, a:棱長)
表面積=棱長×棱長×6; S表=a×a×6
體積=棱長×棱長×棱長; V= a×a×a
3、長方形(C:周長, S:面積, a:邊長, b:寬 )
周長=(長+寬)×2; C=2(a+b)
面積=長×寬 ; S=a×b
4、長方體(V:體積, S:面積, a:長, b:寬, h:高)
(1)表面積=(長×寬+長×高+寬×高)×2; S=2(ab+ah+bh)
(2)體積=長×寬×高; V=abh
5、三角形(S:面積, a:底, h:高)
面積=底×高÷2 ; S=ah÷2
三角形的高=面積×2÷底 三角形的底=面積×2÷高
6、平行四邊形(S:面積, a:底, h:高)
面積=底×高; S=ah
7、梯形(S:面積, a:上底, b:下底, h:高)
面積=(上底+下底)×高÷2; S=(a+b)×h÷2
8、圓形(S:面積, C:周長,π:圓周率, d:直徑, r:半徑 )
(1)周長=π×直徑π=2×π×半徑; C=πd=2πr
(2)面積=π×半徑×半徑; S= πr2
9、圓柱體(V:體積, S:底面積, C:底面周長, h:高, r:底面半徑 )
(1)側面積=底面周長×高=Ch=πdh=2πrh
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
10、圓錐體(V:體積, S:底面積, h:高, r:底面半徑 )
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式:已知兩數的和及它們的差,求這兩個數各是多少的應用題,叫做和差應用題,簡稱和差問題。
(和+差)÷2=大數; (和-差)÷2=小數
13、和倍問題的公式:已知兩個數的和與兩個數的倍數關系,求兩個數各是多少的應用題,我們通常叫做和倍問題。
和÷(倍數-1)= 小數; 小數×倍數=大數(或者:和-小數=大數)
14、差倍問題的公式:差倍問題即已知兩數之差和兩數之間的倍數關系,求出兩數。
差÷(倍數-1)= 小數; 小數×倍數=大數(或者:小數+差=大數)
15、相遇問題: 相遇路程=速度和×相遇時間;
相遇時間=相遇路程速度和;
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量; 溶液的重量×濃度=溶質的重量;
溶質的重量÷溶液的重量×100%=濃度; 溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題: 利潤=售出價-成本; 利潤率=利潤÷成本×100%;
利息=本金×利率×時間; 漲跌金額=本金×漲跌百分比;
稅後利息=本金×利率×時間×(1-利息稅)

【常用單位換算】
(一)長度單位換算
1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米
(二)面積單位換算: 1平方千米=100公頃; 1公頃=10000平方米;
1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米
(三)體積(容積)單位換算:1立方米=1000立方分米; 1立方分米=1000立方厘米;
1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升
(四)重量單位換算: 1噸=1000千克; 1千克=1000克; 1千克=1公斤
(五)人民幣單位換算: 1元=10角; 1角=10分; 1元=100分
(六)時間單位換算: 1世紀=100年; 1年=12月;
【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】
【平年:2月有28天;全年有365天】; 【閏年:2月有29天;全年有366天】
1日=24小時; 1時=60分=3600秒; 1分=60秒;

F. 小學六年級數學的知識點總結

1到6年級數學公式

1 .每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數

2. 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數

3. 速度×時間=路程
路程÷速度=時間
路程÷時間=速度

4. 單價×數量=總價
總價÷單價=數量
總價÷數量=單價

5. 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率

6 加數+加數=和
和-一個加數=另一個加數

7 被減數-減數=差
被減數-差=減數
差+減數=被減數

8 因數×因數=積
積÷一個因數=另一個因數

9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數

小學數學圖形計算公式
1. 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2. 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a

3. 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 .長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh

5 .三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高

6. 平行四邊形
s面積 a底 h高
面積=底×高
s=ah

7. 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2

8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏

9. 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑

10. 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
和差問題的公式;
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)

植樹問題 :
1. 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)

2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題 :
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題 :
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間

追及問題 :
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間

流水問題 :
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2

濃度問題 :
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量

利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

閱讀全文

與小學六年數學必記知識點相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99