❶ 三年級下冊數學的知識點
三年級數學(下冊)知識要求歸納
第一單元 位置與方向
1、(東與西)相對,(南與北)相對,
(東南與西北)相對,(西南與東北)相對。
面南左為東,面北左為西,面東左為北,面西左為南。
2、地圖通常是按(上北、下南、左西、右東)來繪制的。
通常所說的八個方向:東、西、南、北、東南、西北、西南、東北。
3、會看簡單的路線圖,會描述行走路線。(做題時先標出東 南 西 北。)
一定寫清楚從哪兒向哪個方向走,走了多少米,到哪兒再向哪個方向走就到了哪裡。(在轉彎處要注意方向的變化)
判斷一個地方在什麼方向,先要找到一個為中心點(觀測點) 處畫「米」字元號,再進行判斷。
4、指南針是用來指示方向的,它的一個指針永遠指向(南方),另一端永遠指向(北方)。
5、生活中的方位知識:
①北斗星永遠在北方。 ②影子與太陽的方向相對。
③早上太陽在東方,中午在南方,傍晚在西方。
④風向與物體傾斜的方向相反。
(刮風時的樹朝風向相對的方向彎,煙朝風向相對的方向飄……)
我國地處北半球,樹葉茂盛的一面是南方,樹葉稀疏的一面是北方。
第二單元 除數是一位數的除法
1、只要是平均分就用(除 法)計算。
2、除數是一位數的豎式除法法則:
(1)從被除數的高位除起,每次用除數先試被除數的前一位數,如果它比除數小,再試除前兩位數。
(2)除到被除數的哪一位,就把商寫在那一位上。
(3)每求出一位商,餘下的數必須比除數小。
順口溜:除數是一位,先看前一位,一位不夠看兩位,除到哪位商那位,每次除後要比較,余數要比除數小。
3、被除數末尾有幾個0,商的末尾不一定就有幾個0。(如:30÷5 = 6)
4、筆算除法:
(1)余數一定要比除數小。在有餘數的除法中:最小的余數是1;最大的余數是除數減去1;最小的除數是余數加1;
最大的被除數=商×除數+最大的余數; 最小的被除數=商×除數+1;
(2)除法驗算:→ 用乘法
沒有餘數的除法 有餘數的除法
被除數÷除數=商 被除數÷除數=商……余數
商×除數=被除數 商×除數+余數=被除數
被除數÷商=除數 (被除數-余數)÷商=除數
0除以任何不是0的數(0不能為除數)都等於0;0乘以任何數都得0;
0加任何數都得任何數本身,任何數減0都得任何數本身。
5、筆算除法順序:確定商的位數,試商,檢查,驗算。
6、筆算除法時,哪一位上不夠商1,就添0佔位。(最高位不夠除,就向後退一位再商。)
7、多位數除以一位數(判斷商是幾位數):
用被除數最高位上的數跟除數進行比較,當被除數最高位上的數大於或等於除數時,被除數是幾位數商就是幾位數;當被除數最高位上的數小於除數時,商的位數就是被除數的位數減去1。
第三單元 復式統計表
復式統計圖的特點:有利於數據的比較,更容易分辨相同項目的區別。
第四單元 兩位數乘兩位數
1、兩位數乘兩位數,積可能是(三)位數,也可能是(四)位數。
2、口算乘法:整十、整百的數相乘,只需把前面數字相乘,再看兩個因數一共有幾個0,就在結果後面添上幾個0。
3、估算:18×22,可以先把因數看成整十、整百的數,再去計算。
→(可以把一個因數看成近似數,也可以把兩個因數都同時看成近似數。)
4、有大約字樣的一般要估算。
5、凡是問夠不夠,能不能等的題目,都要三大步:
①計算、②比較、③答題。→ 別忘了比較這一步。
6、筆算乘法:先把第一個因數同第二個因數個位上的數相乘,再與第二個因數十位上的數相乘。
7、相關公式: 因數×因數=積 積÷因數=另一個因數
運算順序:先乘除,再算加減;同級運算,應按從左到右的順序進行計算;如果有括弧,要先算括弧內的運算。
第五單元 面 積
1、物體的表面或封閉圖形的大小,就是它們的面積。
封閉圖形一周的長度叫周長。長度單位和面積單位的單位不同,無法比較。
2、比較兩個圖形面積的大小,要用統一的面積單位來測量。
3、①邊長1厘米的正方形,面積是1平方厘米;
②邊長1分米的正方形,面積是1平方分米;
③邊長1米的正方形,面積是1平方米;
4、長方形:
長方形的面積=長×寬 長方形的周長=(長+寬)×2
求長:長=長方形面積÷寬 已知周長求長:長=長方形周長÷2-寬
求寬:寬=長方形面積÷長 已知周長求寬:寬=長方形周長÷2-長
正方形:
正方形的面積=邊長×邊長 正方形的周長=邊長×4
邊長:邊長=正方形面積÷邊長 已知周長求邊長:邊長=正方形周長÷4
5、長度單位之間的進率:
1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米
6、周長相等的兩個長方形,面積不一定相等。面積相等的兩個長方形,周長也不一定相等。
7、在生活中找出接近於1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲蓋)、1平方分米(電腦A盤或電線插座)、1平方米(教室側面的小展板)。
8、區分長度單位和面積單位的不同:長度單位測量線段的長短,面積單位測量面的大小。
(二)長方形、正方形的面積計算
1、歸類:
什麼樣的問題是求周長?(縫花邊、圍柵欄、圍欄桿、池塘或花壇周圍小路長度、圍操場跑步的長度等等)
什麼樣的問題是求面積?或與面積有關?(課本等封面大小、刷牆、花壇周圍小路面積、給餐桌配玻璃、給課桌配桌布、灑水車灑到的地面、某物品佔地面積、買玻璃、買鏡子、買布、買地毯、鋪地磚、裁手帕等等)
2、長方形或正方形紙的剪或拼。
有兩個或兩個以上長方形或正方形拼成新的圖形後的面積與周長。從一個圖形中(通常是長方形)剪掉一個圖形(最大的正方形等)求剪掉部分的面積或周長、求剩下部分的面積或周長。要求先畫圖,再標上所用數據,最後列式計算。
3、刷牆的(有的中間有黑板、窗戶等):求要用到的面積等於大面積減去小面積。
4、常用的面積單位有:平方厘米、平方分米、平方米。
相鄰兩個常用的面積單位之間的進率是 100 。
測量房間、菜園、教室、操場的面積通常用平方米為單位 。
6、面積單位換算:1平方米 = 100平方分米
1平方分米 = 100平方厘米 1平方米 = 10000平方厘米
第六單元 年、月、日
1、重要的日子:1月1日元旦節,3月8日婦女節,3月12日植樹節,5月1日勞動節,5月4日青年節,6月1日兒童節,7月1日建黨節,8月1日建軍節,9月10日教師節,10月1日國慶節。
2、一、三、五、七、八、十、臘,三十一天永不差,四、六、九、冬三十整,平年二月二十八,閏年二月把一加。
3、季度: 一年分四季度,每3個月為一季度。
一、二、三月是 第一季度(平年有90天,閏年有91天)
四、五、六月是 第二季度(有91天)
七、八、九月是 第三季度(92天)
十、十一、十二月是 第四季度(有92天)。
平年上半年181天,閏年上半年182天,下半年都是184天。
4、求有多少個星期?用天數÷7。→ 如:31天 31÷7=4(個)……3(天)
平年一年有52個星期零1天,閏年一年有52個星期零2天。
5、判斷平年、閏年的方法:
① 一般用公歷年份÷4,正好余數是0,就是閏年;
② 公歷年份是整百的÷400,余數是0,就是閏年。
公歷年份是整百的閏年有:1200年,1600年,2000年,2400年;
6、經過的天數的計算:公式→結束時間—開始時間+1=經過的天數;
(二)24計時法
1、普通計時法轉化為24時計時法: ①從凌晨0時到中午12時,時刻相同,去掉時刻前的時間限制詞。 ②下午1時到晚上12時,時刻加上12,並去掉時刻前的時間限制詞。 2、24時計時法轉化為普通計時法: ①從凌晨0時到中午12時在時間前加上凌晨、早上或上午等時間限制詞。 ②13時到24時,用時刻減去12,再加下午、傍晚或晚上等時間限制詞。 3、計算經過時間:用結束時刻—開始時刻=經過時間。時刻—時刻=時間段
4、時間單位進率:1世紀=100年 1年=12個月 1天=24小時
1時=60分 1分=60秒
第七單元 小數的初步認識
1、比較兩個小數的大小,先比較小數的整數部分,整數部分大的數就大,如果整數部分相同就比較小數的小數部分,小數部分要從小數點後最高位比起,十分位上的數大的小數就大;十分位上的數相同的,再比較百分位上的數,以此類推。
2、計算小數加、減法時,一定要先對齊小數點再相加、減。
3、分母是10的分數寫成一位小數,分母是100的分數寫成兩位小數。
4、小數讀寫法:① 讀法→漢字形式;② 寫法→阿拉伯數字。
5、小數不一定比整數小。
第八單元 數學廣角----搭配
有順序地組數、搭配連線,才能保證不重復、不遺漏。
❷ 最新小學三年級下冊數學知識點總結(完整版)
十八歲的天空。🏌🏏⛳️⛳️⛳️⛳️⛳️
❸ 三年級下冊科學知識點
新教科版三年級下冊科學知識點
第一單元 植物的生長變化
1、 綠色開花植物一般是用(種子)繁殖後代的。
2、 播種前,挑選那些(飽滿的)、(沒有受過損傷的)種子的過程叫選種。
3、 種子萌發先長(根),再長(莖、葉),根總是向(下)生長的,根的生長速度(很快)。
4、 植物的根能夠吸收(水分和礦物質),還能將植物(固定)在土壤中。
5、 植物的綠葉可以製造植物生長所需要的(養料),植物生長所需的養料是由植物綠色的葉依靠太陽光提供的能量,利用水和二氧化碳製成的。
6、 綠色開花植物如鳳仙花的身體由根、莖、葉、花、果實、種子六個部分組成。
7、 植物的生長過程中需要陽光、溫度、土壤和適宜的水分等條件。
8、 植物的莖具有支撐植物和運輸水分和養料的作用。能從下到上將根吸收的水分和礦物質運輸到植物的各個部分;從上到下將植物製造的養料運輸到植物的各個部分。
第二單元 動物的生命周期
1、 雞、青蛙、魚、烏龜等動物都產卵,卵是動物生命的開始。
2、 蠶卵的孵化需要適宜的溫度和濕度。在放蠶卵的盒子上要扎些小孔,因為蠶卵需要呼吸。
3、 蠶寶寶最愛吃的食物是桑葉,蠶能吐絲結繭,蠶寶寶的生長過程中,要經過四次蛻皮,蠶和蝴蝶等昆蟲的一生要經過卵、幼蟲、蛹、成蟲四個時期,蠶蛹被繭包裹,繭能起到保護蛹的作用。蠶蛹經過10-15天,會變成蠶蛾,蠶蛾是蠶的成蟲,分雌蛾和雄蛾。雌蛾和雄蛾交配後,雌蛾產卵繁殖後代。
4、 養蠶、抽取蠶絲,是我國的偉大發明之一。遠在4000多年以前,我國勞動人民就開始養蠶,利用蠶絲織成華麗的絲綢和各種絲織品,並遠銷國外。
5、 蠶的一生是不斷生長變化的,要經歷蠶卵、蠶、蛹、蠶蛾四個不同形態的變化階段。
6、 蠶的身體分為頭、胸、腹三部分,胸部有三對足。蠶長到一定階段會長出新皮,換下舊皮,這叫蛻皮。
7、 蠶的一生會經歷出生、生長發育、繁殖、死亡四個階段,這一過程稱為蠶的生命周期,一般大約為56天;自然界中的動物都有生命周期,也都要經歷出生、生長發育、繁殖、死亡四個階段;人也要經歷出生、生長發育、繁殖、死亡四個階段;人和動物一樣也具有生命周期。
8、 影響蠶生命和變化的因素有食物、氣溫、有害氣體、疾病等。
第三單元 溫度與水的變化
1、物體的冷熱程度,我們稱為溫度,通常用攝氏度(℃)表示,物體的溫度可以用溫度計進行測量,溫度計正確的讀數方法是平視。
2、測量水溫的方法是:①手應拿溫度計的上端;②要將溫度計的下端浸入水中,並且不能碰到杯壁或杯底;③讀數時視線與溫度計液面持平;④當溫度計的液柱不再上升或下降時讀數;⑤讀數時,溫度計不能離開被測的水。水燒開時的溫度大約是100℃;水結冰時的溫度是0℃
3、零下6攝氏度寫作:-6℃;九十四攝氏度寫作:94℃;100℃讀作:一百攝氏度;-20℃讀作:零下二十攝氏度。
4、對一個物體來說,物體失去熱量,溫度下降;物體獲得熱量,溫度上升。通過測量一個物體的溫度變化可以知道這個物體失去熱量還是獲得熱量。
5、液態水降到0℃時開始凝固成冰,從液體狀態變成了固體狀態。水在結冰過程中,要向周圍放出熱量。當環境溫度高於0℃,冰的溫度升至0℃時開始融化;冰在融化過程中,溫度會長時間保持在0℃,直至完全融化成水。冰在融化過程中,要從周圍吸收熱量。熱量是使水的狀態發生變化的重要因素。水和冰的共同點是:無色、無味、透明等。加快冰融化的方法有:把冰放在溫度更高的地方;把冰放在陽光下曬;用手捂等。
6、裝冰的玻璃杯外壁出現小水珠是因為空氣中的水蒸氣遇到冷的玻璃杯內的冰形成的。
7、水變成水蒸氣的過程叫蒸發;加熱能加快水的蒸發。空氣中的水蒸氣冷卻變成了水滴的現象叫凝結。
8、水在自然界有液態、固態、氣態三種狀態存在,水的狀態變化與熱量有關。水的三種狀態之間可以互相轉化,這使水在自然界中產生了循環運動。
第四單元 磁鐵
1、磁鐵能吸引鐵制的物體,這種性質叫磁鐵。磁鐵隔著一些物體也能吸鐵。
2、磁鐵上磁力最強的部分叫磁極,磁鐵有兩個磁極。一個磁鐵摔斷了也有兩個磁極。
3、磁鐵能指南北方向。指南的磁極叫南極,用「S」表示;指北的磁極叫北極,用「N」表示。
4、磁鐵的同極相互排斥,異極相互吸引,兩個磁極的作用是相互的。磁懸浮列車就是根據同極相互排斥的原理製造的。
5、兩個或多個磁鐵吸在一直,磁力大小會發生改變。
6、指南針是利用磁鐵能指南北的性質製成的指示方向的儀器。鋼針經過磁鐵沿一個方向磨擦可以變成磁鐵。
7、被稱為世界上最早的指南針叫司南,是我國四大發明之一。
8、磁鐵的用途和它的性質是相聯系的。
9、檢驗沒有標明南北極的磁鐵可以採用懸掛法、指南針驗測法、磁鐵檢測等。
❹ 小學三年級數學下冊知識點梳理
一、 植樹問題:
這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:
沿線段植樹
棵樹=總路程÷株距+1
棵樹=段數+1
株距=總路程÷(棵樹-1)
總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
棵樹=段數
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
二、分數和百分數的應用
1 分數加減法應用題:
分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本相同,所不同的只是在已知數或未知數中含有分數。
2分數乘法應用題:
是指已知一個數,求它的幾分之幾是多少的應用題。
特徵:已知單位「1」的量和分率,求與分率所對應的實際數量。
解題關鍵:准確判斷單位「1」的量。找准要求問題所對應的分率,然後根據一個數乘分數的意義正確列式。
3 分數除法應用題:
求一個數是另一個數的幾分之幾(或百分之幾)是多少。
特徵:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾。「一個數」是比較量,「另一個數」是標准量。求分率或百分率,也就是求他們的倍數關系。
解題關鍵:從問題入手,搞清把誰看作標準的數也就是把誰看作了「單位一」,誰和單位一的量作比較,誰就作被除數。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標准量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關系式(甲數減乙數)/乙數或(甲數減乙數)/甲數 。
已知一個數的幾分之幾(或百分之幾 ) ,求這個數。
特徵:已知一個實際數量和它相對應的分率,求單位「1」的量。
解題關鍵:准確判斷單位「1」的量把單位「1」的量看成x根據分數乘法的意義列方程,或者根據分數除法的意義列算式,但必須找准和分率相對應的已知實際
數量。
三、度量
一、 長度
(一) 什麼是長度
長度是一維空間的度量。
(二) 長度常用單位
公里(km) 、 米(m) 、 分米(dm)、 厘米(cm)、毫米(mm) 、 微米(um)
(三) 單位之間的換算
1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米
二、 面積
(一)什麼是面積
面積,就是物體所佔平面的大小。對立體物體的表面的多少的測量一般稱表面積。
(二)常用的面積單位
平方毫米 、平方厘米 、 平方分米、平方米 、平方千米
(三)面積單位的換算
1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米
1公傾 =10000 平方米 , 1平方公里 =100 公頃
三、 體積和容積
(一)什麼是體積、容積
體積,就是物體所佔空間的大小。
容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。
(二)常用單位
1、 體積單位
立方米 、 立方分米、立方厘米
2 、容積單位: 升、毫升
(三)單位換算
(1) 體積單位
1立方米=1000立方分米
1立方分米=1000立方厘米
(2) 容積單位
1升=1000毫升
1升=1立方米
1毫升=1立方厘米
四、 質量
(一)什麼是質量
質量,就是表示表示物體有多重。
(二)常用單位
噸 :t 千克: kg 克: g
(三)常用換算
一噸=1000千克
1千克=1000克
五、 時間
(一)什麼是時間
是指有起點和終點的一段時間
(二)常用單位
世紀、 年 、 月 、 日 、 時 、 分、 秒
(三)單位換算
1世紀=100年
1年=365天 (平年)
1年=366天 (閏年)
一、三、五、七、八、十、十二是大月, 大月有31 天
四、六、九、十一是小月,小月有30天
平年2月有28天, 閏年2月有29天
1天= 24小時
1小時=60分
1分=60秒
六、 貨幣
(一)什麼是貨幣
貨幣是充當一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。
(二)常用單位
元 、 角 、 分
(三)單位換算
1元=10角
1角=10分
❺ 三年級下冊數學知識點
不知道你的教材是哪個版本的
三年級下冊知識點整理
分數部分:
1、 分數的意義:把單位「1」平均分成若干份,表示其中一份或幾份的數叫做分數。表示其中一份的數,叫作分數單位。
如:23 表示把一個整體平均分成3份,取其中的2份。
分子(表示取其中的幾份)
分數線(表示平均分)
分母(表示把一個整體平均分成幾份)
23 的分數單位是13 ,它有2個這樣的分數單位。
2、 分數的基本性質:分數的分子和分母同時乘或除以同一個數(0除外),分數的大小不變。
如: 13 = 26 = 39 = 412 1620 = 810 = 45
3、 分數比較大小:
(1) 同分母分數相比較,分子大的分數就大。如:
(2) 同分子分數相比較,分母小的分數反而大。如:
(3) 分子和分母都不同的分數相比較,先化成同分母再比較。
如:
4、 分數加、減法:
(1) 同分母分數相加、減,分母不變,分子相加減。
如:25 + 35 = 55 = 1 89 - 19 =79
(2) 異分母分數相加、減,先化成同分母分數,再相加、減。
如:
小數部分:
1、 小數的概念:
像5.83,12.5,16.72,0.8這樣的數叫做小數。
2、 小數各部分的名稱:
讀作:五十六點八三
3、 小數比較大小:
小數比較大小,先比較整數部分,整數部分大的就大;如果整數部分相同,就比較小數部分的第一位,如果小數部分第一位相同,就比較小數部分第二位……
如:
4、 小數的加減法:
用豎式進行兩個小數相加、減,要對齊小數點。
如:
方向與位置
1、 在實際生活中,我們判斷方向的方法是:早晨起來,面向太陽,前面是東,後面是西,左邊是北,右邊是南。
2、 南與北相對,東與西相對。
3、 地圖一般根據上北、下南,左西、右東來繪制的。
平移與旋轉
1、 平移:電梯、纜車都是整體朝著一定的方向移動,這種現象稱為平移。
如:升國旗;拉抽屜;電梯的移動;纜車等。
2、 旋轉:風車、風扇轉動的時候,位置沒有移動,始終繞著一個固定的點轉動,這樣的現象稱為旋轉。
如:摩天輪的轉動;時針、分針、秒針在鍾面上的轉動;擰瓶蓋等。
3、 軸對稱圖形:兩邊對折完全重合的圖形,稱為軸對稱圖形。
摺痕所在的直線叫做對稱軸。
如:長方形、正方形、圓等。
兩位數乘兩、三位數
1、 求幾個相同加數的和用乘法比較簡便。(求幾個幾是多少,用乘法)
如: 8個50連加的和是多少? 50×8=400
10個90是多少? 90×10=900
2、 求一個數的幾倍是多少,用乘法計算。
如:14的20倍是多少? 14×20=280
長方形、正方形的面積
1、 物體表面或封閉圖形的大小,叫做它們的面積。
2、 正方形的相關公式:
正方形的周長=邊長×4; 邊長=周長÷4;
正方形的面積=邊長×邊長。
3、 長方形相關公式:
長方形的周長=(長+寬)×2;長=周長÷2-寬;寬=周長÷2-長。
長方形的面積=長×寬; 長=面積÷寬; 寬=面積÷長。
4、 面積單位:
(1) 每相鄰兩個長度單位間的進率是10。
1米=10分米;1分米=10厘米;1米=100厘米……
千米 □ □ 米 分米 厘米 毫米
(2) 每相鄰兩個面積單位間的進率是100。
1平方米=100平方分米;1平方分米=100平方厘米;1平方米=10000平方厘米;
1平方千米=100公頃;1公頃=10000平方米;1平方千米=1000000平方米……
平方千米 公頃 □ 平方米 平方分米 平方厘米 平方毫米
第一單元《位置與方向》
l 知識要點:
(一)認識東、南、西、北、東北、東南、西北、西南八個方向。
1.知道辨認方向的方法:可以藉助太陽等身邊事物辨別方向,也可以藉助指南針等工具辨別方向。
2.能根據一個方向確定其它七個方向,知道哪些方向是相對的。南←→北,西←→東;西北←→東南,東北←→西南。
3.會辨別地圖上的方向:上北下南、左西右東。(書:練習一第3、4題;)
4.了解繪制簡單示意圖的方法:先確定好觀察點,把選好的觀察點畫在平面圖的中心位置,再確定好各物體相對於觀察點的方向。在紙上按「上北下南、左西右東」繪制,用箭頭「↑」標出北方。(書:練習二第2題。)
5.並能看懂地圖。(p4例2:知道建築或地點在整個地圖的什麼方向,地圖上兩個地點之間的位置關系:誰在誰的什麼方向等)(大本p1雙基訓練)。
(二)看簡單的路線圖描述行走路線。
1.看簡單路線圖的方法:先要確定好自己所處的位置,以自己所處的位置為中心,再根據上北下南,左西右東的規律來確定目的地和周圍事物所處的方向,最後根據目的地的方向和路程確定所要行走的路線。
2.描述行走路線的方法:以出發點為基準,再看哪一條路通向目的地,最後把行走路線描述出來(先向哪走,再向哪走)。有時還要說明路程有多遠。(書:p5做一做;p9做一做;)(大本:p3 左邊第1、2題;右邊第1、2、3題;)
3.綜合性題目:給出路線圖,說出去某地的走法,並根據信息求出所用時間、應該按什麼速度行駛、或幾時能到達、付多少錢買車票等等。(大本:p5 第1、3題。)
第二單元《除數是一位數的除法》
l 知識要點:
(一)口算除法
1.整千、整百、整十數除以一位數的口算方法(P14 例1)
(1)用表內除法計算:用被除數0前面數除以一位數,算出結果後,看被除數的末尾有幾個0,就在算出的結果後添幾個0。
(2)先乘法,算除法:看一位數乘多少等於被除數,乘的數就是所求的商。
2.三位數除以一位數的估算方法(P16 例2):
(1)除數不變,把三位數看成幾百幾十或整百的數,再用口算除法的基本方法計算。
(2)想口訣估算:想一位數乘幾最接近或等於被除數的最高位或前兩位,幾百或幾十就是所要估算的商。
(二)筆算除法
1.牢固掌握兩位數除以一位數、三位數除以一位數的筆算方法、步驟與格式,尤其是商中間、末尾有0的筆算算式的寫法。(p29 例6;p31 例7)
2.會判斷商是幾位數。(p24 第5題)
3.知道除法的驗算方法:
(1)沒有餘數的除法:商×除數=被除數;
(2)有餘數的除法:商×除數+余數=被除數;
4.熟記關於0的一些規定:
(1)0不能作除數。
(2)相同的兩個數相除商是1。(既然能相除這個數就不是0)
(3)0除以任何不是0的數都得0。
(三)特別提醒:
1.口算、估算、筆算,其中中間、末尾有0的要特別注意。
2.應用題看清要求,選擇合適的方法解決問題。口算題可以直接列式計算;估算題要注意書寫格式:124÷3≈40;筆算題最好寫出除法豎式。(書p35 第1、2、3題)
第三單元《統計》
l 知識要點:
1.會看橫向條形統計圖及起始格與其他格代表的單位量不一致的條形統計圖。能根據統計表中的數據完成統計圖,完成的統計圖上一定要標數據。
2.能根據統計圖表進行分析,解決簡單的實際問題(應用題)。能根據統計圖、表提出簡單的問題,並進行解答。如書P45第2題。
3.能根據統計圖、表中的內容進行簡單的數據分析提出合理化的建議。如書P39。
4.理解平均數的含義,給出一組數據會求它們的平均數。如:3個女生身高:135厘米、140厘米、132厘米,求平均身高。熟記平均數的格式,總數量除以總份數:( + + …… + )÷ 並脫式計算p42。會檢查平均數的對錯,平均數一定介於最大數與最小數之間。
5.會用平均數來比較兩組數據的總體情況。如:書45頁第4題。會求哪種餅干第一季度的月平均銷售量多,多多少。分析乙種餅干銷售量越來越大的原因。
6.給出平均數和幾個數據,求另一個數據。如:小明三科成績的平均分是85分,其中外語83分,數學80分,求語文多少分。
7.與時間、速度等知識點結合的綜合性題目。
請參考課本中的統計圖的樣子
第四單元《年月日》
l 知識要點:
(一)年、月、日部分
1.熟記每個月的天數,知道大月一個月有31天,小月一個月有30天。平年二月28天,閏年二月29天,二月既不是大月也不是小月。一年有12個月,7個大月,4個小月。
可藉助歌謠記憶:一、三、五、七、八、十、臘(即十二月),
三十一天永不差,
四、六、九、冬三十整,(冬即十一月)
平年二月二十八,閏年二月二十九。
2.熟記全年天數:平年365天,閏年366天。上半年多少天(平年181天,閏年182天),下半年多少天(184天)。
3.知道1、2、3月是第一季度,4、5、6月是第二季度,7、8、9月是第三季度,10、11、12月是第四季度。會計算每個季度有多少天,連續幾個月共有多少天。連續兩個月共62天的是:7月和8月,12月和第二年的1月;一年中連續兩個月共62天的是:7月和8月。
4.給出一個天數會計算有幾個星期零幾天。如:第三季度有(92)天,有(13 )個星期零( 1)天。平年全年有(365)天,是(52 )個星期零(1)天。
5.公歷年份是4的倍數的一般都是閏年;一般情況下可以用年份除以4的方法判斷平年閏年。年份除以4有餘數是平年,沒有餘數是閏年。如:1978÷4=494……2,1978年是平年。
1988÷4=497,1988年是閏年。
6.公歷年份是整百數的必須是400的倍數才是閏年。如1900年是平年,2000年是閏年。參見書P49。
7.給出一個人出生的年份,會計算這個人多少周歲;給出一個人的年齡會計算他是哪一年出生的。如:小華1994年6月出生,到今年6月(15歲)。小華今年12歲,他是(1997年)出生的。
8.熟記中華人民共和國建國的時間是1949年10月1日,會計算到今年(或任一年)建國多少周年。如:到1999年是建國(50周年);到今年10月1日是建國(60周年)。
(二)24時計時法部分
1.會用24時計時法表示時刻;會把普通計時法和24時計時法進行互化。
如:普通計時法 24時計時法
上午9時 9時
晚上9時 21時
普通計時法一定要加上「上午」、「下午」等前綴。
2.會計算經過時間、開始時刻、結束時刻。認識時間與時刻的區別。如:火車11:00出發,21時30分到達,火車運行時間是(10時30分),注意不要寫成(10:30)。
正確的列式格式為:21時30分-11時=10時30分,不能用電子表的形式相減。
再如:火車19時出發,第二天8時到達,火車運行時間是(13小時)。像這種跨越兩天的,可以先計算第一天行駛了多長時間:24-19=5(時),再加上第二天行駛的8個小時:5+8=13(時)
又如:一場球賽,從19時30分開始,進行了155分鍾,比賽什麼時候結束?先換算,155分=2時35分,再計算。
3.會根據給出的信息製作月歷和年歷。如:某年8月1日是星期二,製作8月份的月歷。再如:某年4月30日是星期四,製作5月份月歷。