導航:首頁 > 教育計劃 > 小學畢業應用題教學視頻

小學畢業應用題教學視頻

發布時間:2020-12-24 01:55:43

① 誰能推薦我一個小學畢業數學應用題解決的網站

雖然我不知道網站
祝你考試成功
加油!!
挺你!!!!!

② 小學畢業應用題

解:
三堆蘋果數恰好相等 說明此刻三堆都是48÷3=16個

從第三堆中拿出與這時第一堆個數相等的蘋果並放入第一堆 說明此前第一堆有16÷2=8個

第三堆原來數量=(16+8)÷2=12個
第二堆原來數量=(12+16)÷2=14個
第一堆原來數量=48-12-14=22個

答:三堆原來數量是22個 14個 12個

③ 小學畢業數學應用題

工程問題
1.甲乙兩個水管單獨開,注滿一池水,分別需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時後,再打開排水管丙,問水池注滿還是要多少小時?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小時後進水量
1-45/80=35/80表示還要的進水量
35/80÷(9/80-1/10)=35表示還要35小時注滿
答:5小時後還要35小時就能將水池注滿。

2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由於彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九。現在計劃16天修完這條水渠,且要求兩隊合作的天數盡可能少,那麼兩隊要合作幾天?
解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因為,要求「兩隊合作的天數盡可能少」,所以應該讓做的快的甲多做,16天內實在來不及的才應該讓甲乙合作完成。只有這樣才能「兩隊合作的天數盡可能少」。
設合作時間為x天,則甲獨做時間為(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現在先請甲、丙合做2小時後,餘下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?
解:
由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量
(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。
根據「甲、丙合做2小時後,餘下的乙還需做6小時完成」可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。
所以1-9/10=1/10表示乙做6-4=2小時的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小時表示乙單獨完成需要20小時。
答:乙單獨完成需要20小時。

4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那麼恰好用整數天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那麼完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?
解:由題意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最後結束必須如上所示,否則第二種做法就不比第一種多0.5天)
1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)
得到1/甲=1/乙×2
又因為1/乙=1/17
所以1/甲=2/17,甲等於17÷2=8.5天

5.師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?
答案為300個
120÷(4/5÷2)=300個
可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那麼徒弟第二次後共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。

6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵

7.一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鍾可將滿池水放完,丙管也是出水管,30分鍾可將滿池水放完。現在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鍾放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鍾將水放完?
答案45分鍾。
1÷(1/20+1/30)=12 表示乙丙合作將滿池水放完需要的分鍾數。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作將漫池水放完後,還多放了6分鍾的水,也就是甲18分鍾進的水。
1/2÷18=1/36 表示甲每分鍾進水
最後就是1÷(1/20-1/36)=45分鍾。

8.某工程隊需要在規定日期內完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規定日期為幾天?
答案為6天
解:
由「若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,」可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分別做全部的的工作時間比是2:3
時間比的差是1份
實際時間的差是3天
所以3÷(3-2)×2=6天,就是甲的時間,也就是規定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6

9.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鍾後來點了,小芳將兩支蠟燭同時熄滅,發現粗蠟燭的長是細蠟燭的2倍,問:停電多少分鍾?
答案為40分鍾。
解:設停電了x分鍾
根據題意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40

二.雞兔同籠問題
1.雞與兔共100隻,雞的腿數比兔的腿數少28條,問雞與兔各有幾只?
解:
4*100=400,400-0=400 假設都是兔子,一共有400隻兔子的腳,那麼雞的腳為0隻,雞的腳比兔子的腳少400隻。
400-28=372 實際雞的腳數比兔子的腳數只少28隻,相差372隻,這是為什麼?
4+2=6 這是因為只要將一隻兔子換成一隻雞,兔子的總腳數就會減少4隻(從400隻變為396隻),雞的總腳數就會增加2隻(從0隻到2隻),它們的相差數就會少4+2=6隻(也就是原來的相差數是400-0=400,現在的相差數為396-2=394,相差數少了400-394=6)
372÷6=62 表示雞的只數,也就是說因為假設中的100隻兔子中有62隻改為了雞,所以腳的相差數從400改為28,一共改了372隻
100-62=38表示兔的只數

三.數字數位問題
1.把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9餘數是多少?
解:
首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那麼這個數也能被9整除;如果各個位數字之和不能被9整除,那麼得的余數就是這個數除以9得的余數。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數的個位上的數字之和可以被9整除
10~19,20~29……90~99這些數中十位上的數字都出現了10次,那麼十位上的數字之和就是10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數字之和為4500 同樣被9整除
也就是說1~999這些連續的自然數的各個位上的數字之和可以被9整除;
同樣的道理:1000~1999這些連續的自然數中百位、十位、個位 上的數字之和可以被9整除(這里千位上的「1」還沒考慮,同時這里我們少200020012002200320042005
從1000~1999千位上一共999個「1」的和是999,也能整除;
200020012002200320042005的各位數字之和是27,也剛好整除。
最後答案為余數為0。

2.A和B是小於100的兩個非零的不同自然數。求A+B分之A-B的最小值...
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不會變了,只需求後面的最小值,此時 (A-B)/(A+B) 最大。
對於 B / (A+B) 取最小時,(A+B)/B 取最大,
問題轉化為求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100

3.已知A.B.C都是非0自然數,A/2 + B/4 + C/16的近似值市6.4,那麼它的准確值是多少?
答案為6.375或6.4375
因為A/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由於A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。
當是102時,102/16=6.375
當是103時,103/16=6.4375

4.一個三位數的各位數字 之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.
答案為476
解:設原數個位為a,則十位為a+1,百位為16-2a
根據題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7 16-2a=4
答:原數為476。

5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.
答案為24
解:設該兩位數為a,則該三位數為300+a
7a+24=300+a
a=24
答:該兩位數為24。

6.把一個兩位數的個位數字與十位數字交換後得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?
答案為121
解:設原兩位數為10a+b,則新兩位數為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因為這個和是一個平方數,可以確定a+b=11
因此這個和就是11×11=121
答:它們的和為121。

7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.
答案為85714
解:設原六位數為abcde2,則新六位數為2abcde(字母上無法加橫線,請將整個看成一個六位數)
再設abcde(五位數)為x,則原六位數就是10x+2,新六位數就是200000+x
根據題意得,(200000+x)×3=10x+2
解得x=85714
所以原數就是857142
答:原數為857142

8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.
答案為3963
解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9
根據「新數就比原數增加2376」可知abcd+2376=cdab,列豎式便於觀察
abcd
2376
cdab
根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立。
先取d=3,b=9代入豎式的百位,可以確定十位上有進位。
根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知只有當c=6,a=3時成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數,所以不成立。

9.有一個兩位數,如果用它去除以個位數字,商為9餘數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5餘數為3,求這個兩位數.
解:設這個兩位數為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由於a、b均為一位整數
得到a=3或7,b=3或8
原數為33或78均可以

10.如果現在是上午的10點21分,那麼在經過28799...99(一共有20個9)分鍾之後的時間將是幾點幾分?
答案是10:20
解:
(28799……9(20個9)+1)/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鍾,所以現在時間是10:20

四.排列組合問題
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
解:
根據乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。

2 若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有 ( )
A 119種 B 36種 C 59種 D 48種
解:
5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正確的所以60-1=59

五.容斥原理問題
1. 有100種赤貧.其中含鈣的有68種,含鐵的有43種,那麼,同時含鈣和鐵的食品種類的最大值和最小值分別是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根據容斥原理最小值68+43-100=11
最大值就是含鐵的有43種

2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)只解出第一題的學生比餘下的學生中解出第一題的人數多1人;(4)只解出一道題的學生中,有一半沒有解出第一題,那麼只解出第二題的學生人數是( )
A,5 B,6 C,7 D,8
解:根據「每個人至少答出三題中的一道題」可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設各類的人數為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然後將④⑤⑥代入①中,整理得到
a2×4+a3=26
由於a2、a3均表示人數,可以求出它們的整數解:
當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22
又根據a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2。
然後可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。
故只解出第二題的學生人數a2=6人。

3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那麼這次考試的合格率至少是多少?
答案:及格率至少為71%。
假設一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯的最多人數)
87÷3=29(表示5題中有3題做錯的最多人數,即不及格的人數最多為29人)
100-29=71(及格的最少人數,其實都是全對的)
及格率至少為71%

六.抽屜原理、奇偶性問題
1.一隻布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍、黃四種,問最少要摸出幾只手套才能保證有3副同色的?
解:可以把四種不同的顏色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜里至少有2隻手套,根據抽屜原理,最少要摸出5隻手套。這時拿出1副同色的後4個抽屜中還剩3隻手套。再根據抽屜原理,只要再摸出2隻手套,又能保證有一副手套是同色的,以此類推。
把四種顏色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5隻手套。這時拿出1副同色的後,4個抽屜中還剩下3隻手套。根據抽屜原理,只要再摸出2隻手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9隻手套,才能保證有3副同色的。

2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣?
答案為21
解:
每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法.
當有11人時,能保證至少有2人取得完全一樣:
當有21人時,才能保證到少有3人取得完全一樣.

3.某盒子內裝50隻球,其中10隻是紅色,10隻是綠色,10隻是黃色,10隻是藍色,其餘是白球和黑球,為了確保取出的球中至少包含有7隻同色的球,問:最少必須從袋中取出多少只球?
解:需要分情況討論,因為無法確定其中黑球與白球的個數。
當黑球或白球其中沒有大於或等於7個的,那麼就是:
6*4+10+1=35(個)
如果黑球或白球其中有等於7個的,那麼就是:
6*5+3+1=34(個)
如果黑球或白球其中有等於8個的,那麼就是:
6*5+2+1=33
如果黑球或白球其中有等於9個的,那麼就是:
6*5+1+1=32

4.地上有四堆石子,石子數分別是1、9、15、31如果每次從其中的三堆同時各取出1個,然後都放入第四堆中,那麼,能否經過若干次操作,使得這四堆石子的個數都相同?(如果能請說明具體操作,不能則要說明理由)
不可能。
因為總數為1+9+15+31=56
56/4=14
14是一個偶數
而原來1、9、15、31都是奇數,取出1個和放入3個也都是奇數,奇數加減若干次奇數後,結果一定還是奇數,不可能得到偶數(14個)。

七.路程問題
1.狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。問:狗再跑多遠,馬可以追上它?
解:
根據「馬跑4步的距離狗跑7步」,可以設馬每步長為7x米,則狗每步長為4x米。
根據「狗跑5步的時間馬跑3步」,可知同一時間馬跑3*7x米=21x米,則狗跑5*4x=20米。
可以得出馬與狗的速度比是21x:20x=21:20
根據「現在狗已跑出30米」,可以知道狗與馬相差的路程是30米,他們相差的份數是21-20=1,現在求馬的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙輛車同時從a b兩地相對開出,幾小時後再距中點40千米處相遇?已知,甲車行完全程要8小時,乙車行完全程要10小時,求a b 兩地相距多少千米?
答案720千米。
由「甲車行完全程要8小時,乙車行完全程要10小時」可知,相遇時甲行了10份,乙行了8份(總路程為18份),兩車相差2份。又因為兩車在中點40千米處相遇,說明兩車的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

多給你一些吧,謝謝請採納了,啊啊啊謝謝採納吧

小學數學畢業考各種應用題附答案

雖然沒有題,但是我把知識點都給你寫上了!

第一章 數和數的運算

一 概念

(一)整數

1 整數的意義

自然數和0都是整數。

2 自然數

我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。

一個物體也沒有,用0表示。0也是自然數。

3計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4 數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5數的整除

整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。

如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。

一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。

個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。

個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。

一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。

一個數各位數上的和能被9整除,這個數就能被9整除。

能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。

一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的數叫做偶數。

不能被2整除的數叫做奇數。

0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。

一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。

1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。

每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。

把一個合數用質因數相乘的形式表示出來,叫做分解質因數。

例如把28分解質因數

幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。

公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:

1和任何自然數互質。

相鄰的兩個自然數互質。

兩個不同的質數互質。

當合數不是質數的倍數時,這個合數和這個質數互質。

兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。

如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。

如果兩個數是互質數,它們的最大公約數就是1。

幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……

3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。

如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。

如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。

幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。

(二)小數

1 小數的意義

把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。

一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。

在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。

2小數的分類

純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。

帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。

有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。

無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……

無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏

循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。

純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……

混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……

寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。

(三)分數

1 分數的意義

把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。

在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。

把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。

2 分數的分類

真分數:分子比分母小的分數叫做真分數。真分數小於1。

假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。

帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。

3 約分和通分

把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。

分子分母是互質數的分數,叫做最簡分數。

把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

(四)百分數

1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
二 方法

(一)數的讀法和寫法

1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。

2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。

3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。

4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。

5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。

6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。

7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。

8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。

(二)數的改寫

一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。

1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。

2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。

3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。

4. 大小比較

1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。

2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……

3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。

(三)數的互化

1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。

2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。

3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。

4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。

5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。

(四)數的整除

1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。

2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。

3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。

4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。

(五) 約分和通分

約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。

通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
三 性質和規律
(一)商不變的規律

商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。

(二)小數的性質

小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。

(三)小數點位置的移動引起小數大小的變化

1. 小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……

2. 小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……

3. 小數點向左移或者向右移位數不夠時,要用「0"補足位。

(四)分數的基本性質

分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。

(五)分數與除法的關系

1. 被除數÷除數= 被除數/除數

2. 因為零不能作除數,所以分數的分母不能為零。

3. 被除數 相當於分子,除數相當於分母。

四 運算的意義

(一)整數四則運算

1整數加法:

把兩個數合並成一個數的運算叫做加法。

在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。

加數+加數=和 一個加數=和-另一個加數

2整數減法:

已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。

在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。

加法和減法互為逆運算。

3整數乘法:

求幾個相同加數的和的簡便運算叫做乘法。

在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。

在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。

一個因數× 一個因數 =積 一個因數=積÷另一個因數

4 整數除法:

已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。

在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。

乘法和除法互為逆運算。

在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。

被除數÷除數=商 除數=被除數÷商 被除數=商×除數

(二)小數四則運算

1. 小數加法:

小數加法的意義與整數加法的意義相同。是把兩個數合並成一個數的運算。

2. 小數減法:

小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算.

3. 小數乘法:

小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。

4. 小數除法:

小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。

5. 乘方:

求幾個相同因數的積的運算叫做乘方。例如 3 × 3 =32

(三)分數四則運算

1. 分數加法:

分數加法的意義與整數加法的意義相同。 是把兩個數合並成一個數的運算。

2. 分數減法:

分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。

3. 分數乘法:

分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

4. 乘積是1的兩個數叫做互為倒數。

5. 分數除法:

分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。

(四)運算定律

1. 加法交換律:

兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。

2. 加法結合律:

三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。

3. 乘法交換律:

兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。

4. 乘法結合律:

三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。

6. 減法的性質:

從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。

(五)運演算法則

1. 整數加法計演算法則:

相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。

2. 整數減法計演算法則:

相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。

3. 整數乘法計演算法則:

先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。

4. 整數除法計演算法則:

先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。

5. 小數乘法法則:

先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。

6. 除數是整數的小數除法計演算法則:

先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。

7. 除數是小數的除法計演算法則:

先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。

8. 同分母分數加減法計算方法:

同分母分數相加減,只把分子相加減,分母不變。

9. 異分母分數加減法計算方法:

先通分,然後按照同分母分數加減法的的法則進行計算。

10. 帶分數加減法的計算方法:

整數部分和分數部分分別相加減,再把所得的數合並起來。

11. 分數乘法的計演算法則:

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

12. 分數除法的計演算法則:

甲數除以乙數(0除外),等於甲數乘乙數的倒數。

(六) 運算順序

1. 小數四則運算的運算順序和整數四則運算順序相同。

2. 分數四則運算的運算順序和整數四則運算順序相同。

3. 沒有括弧的混合運算:

同級運算從左往右依次運算;兩級運算 先算乘、除法,後算加減法。

4. 有括弧的混合運算:

先算小括弧裡面的,再算中括弧裡面的,最後算括弧外面的。

5. 第一級運算:

加法和減法叫做第一級運算。

6. 第二級運算:

乘法和除法叫做第二級運算。

下面是天津河東實驗小學、天津著名數學老師李勇寫的復習提綱網址,還有很多復習資料呢!

小學六年級畢業語文考試基礎知識綜合運用題

個個培訓學校的網站上都有小學六年級畢業語文考試基礎知識綜合運用方面的試題,你可以去下載。如巨人,傑睿,順天府學等

⑥ 小學畢業數學應用題

1、 一個長方形的周長是24厘米 ,長與寬的比是 2:1 ,這個長方形的面積是多少平方厘米?
2、 一個長方體棱長總和為 96 厘米 ,長、寬、高的比是 3∶2 ∶1 ,這個長方體的體積是多少?
3、某校參加電腦興趣小組的有42人,其中男、女生人數的比是 4 ∶3,男生有多少人?
4、 有兩筐水果,甲筐水果重32千克,從乙筐取出20%後,甲乙兩筐水果的重量比是4:3,原來兩筐水果共有多少千克?
5、做一個600克豆沙包,需要麵粉、紅豆和糖的比是3:2:1,麵粉、紅豆和糖各需多少克?
6、兩桶油共重27千克,大桶的油用去2千克後,剩下的油與小桶內油的重量比是3:2。求大桶里原來裝有多少千克油?
7、一個長方體的棱長和是144厘米,它的長、寬、高之比是4:3:2,長方體的體積是多少?
8、小紅有郵票60張,小明有郵票40張,小紅給多少張小明,兩人的郵票張數比為1:4?
9、兩個城市相距225千米,一輛客車和一輛貨車同時從這兩城市相對開出,2.5小時後相遇,8、知貨車與客車速度比是4︰5,客車和貨車每小時各行多少千米?
10、用一根長282.6厘米的鐵條焊接成一個圓形鐵環,它的半徑是多少厘米?

⑦ 小學畢業班數學應用題

嗯...沒什麼事情,慢慢幫你做好了...
1、爸爸與小強在8年前年齡相差28歲,今年小強的年齡是爸爸的三分之一,8年後爸爸和小強各多少歲?
解:設八年後爸爸x歲,則小強(x-28)歲.
x-28-8=1/3×(x-8)
x=50
小強:50-28=22歲

2、A、B、C、D、E五個同學參加智力競賽,ABCD四人共得130分,BCDE四人共得160分,ABDE四人共得150分,ACDE四人共得170分,ABCE四人共得110分。五人中每人各得多少分?
五個人共得:(130+160+150+170+110)÷4=180分
A得:180-160=20分.
B得:180-170=10分.
C得:180-150=30分.
D得:180-110=70分.
E得:180-130=50分.

3、水果店運來香蕉、桔子、蘋果的比是2:5:7,已知香蕉比桔子少60千克,運來的香蕉、桔子、蘋果各有多少千克?
60÷[5/(2+5+7)-2/(2+5+7)]=280千克
280×2/(2+5+7)=40千克
280×5/(2+5+7)=100千克
280×7/(2+5+7)=140千克

4、聯歡會上按3個紅汽球、2個黃汽球、1個綠氣球的順序把汽球串聯裝飾教室,第61個汽球是什麼顏色?
61÷(3+2+1)=10……1
第61個氣球是紅色的

5、甲、乙兩個車間人數比是5:4,如果從甲車間調21人到乙車間,這時兩車間人數的比是2:3,甲、乙兩車間原來各有多少人?
解:設甲車間原來有x人,則乙車間原來有4/5x人.
(x-21):(4/5x+21)=2:3
x=75
乙車間原有:75×4/5=60人
6、一個最簡分數,如果把它的分子擴大5倍,分母縮小4倍,得到7又二分之一,這個最簡分數是多少?
先把七又二分之一改寫為:15/2
原分子:15÷5=3
原分母:2程4=8
這個最簡分數:3/8

7、xx小學有203人參加書畫興趣小組,後來女生增加29人,男生減少八十分之七,興趣小組總人數增加22人,現在參加興趣小組的女生有多少人?
29-22=7人
7÷7/80=80人
203+22-80×(1-7/80)=152人

8、大小兩桶油共重30千克,大桶油用去5千克後,剩下的油與小桶的油的重量比是3:2,大桶油原來裝有多少千克油?
解:設大桶油原來裝有x千克油.
(x-5):(30-x)=3:2
x=20

9、有兩堆書,甲堆有30本,如果從乙堆中取出五分之一放入甲堆,則乙堆比甲堆多3本,乙堆原有書多少本?
解:設乙堆原有書x本.
30+1/5x+3=(1-1/5)x
x=55

10、工程隊男工人數是女工人數的2倍,若調走24名男工,則女工人數是男工的2倍,工程隊有女工多少人?
解:設工程隊有女工x人.
2(2x-24)=x
x=16

11、有兩列火車,一列長170米,每秒行20米,另一列長250米,每秒行15米。現在兩列火車相向而行,從車頭相遇到車尾離開共需多少米?
共需多少米???應該是170+250=420米.
我覺得應該是問共需多少秒吧...(170+250)÷(15+20)=12秒.

呼~好累喲,終於做完了...~

⑧ 小學畢業數學考試應用題沒有寫答扣多少分

應該說扣1-2分,如果老師比較嚴的話扣一半分,下次要記得寫答

⑨ 2014小學畢業考試可能會考到的數學較難應用題..

2014年小學數學畢業會考試卷(1) 一、做計算,我能行。 1、直接寫得數 32+21= 83×716= 0.36÷0.6= 74-21= 65+172+6 1= 3.5-3.05= 95÷61= 0.25×12= 7×(73+14 1 )= 3.27+1.83 = 2、解方程。 9.5-3=5.6+7.4 91:31=121: 1-60%=76×48 35 3.遞等式計算,能簡算的要簡算。 254×99 13.6-(2.6+0.25÷25﹪) 1200÷〔56×(73-8 3)〕 (136×1.7+137×1.7)÷10 7 1375+450÷15×25 4、列式計算。 ① 2個0.3的積去除6與2 1 4 的和,商是多少? ②某數的一半比12.5少6,求這個數? 5、求陰影部分的面積。(單位:厘米) 6 8 二、做填空,不疏漏。 1、一個數九位數,最高位上是7,千萬位上是6,十萬位和萬位上都是5,百位上是3,其餘各位都是0,這個數寫作 ,用「萬」作單位記作 ,省略「億」後面的尾數約是 。 2、在( )里填上合適的數。 3.2時=( )時( )分 3千克50克=( )克 1.2米=( )分米=( )厘米 3、3∶( )=12÷( )=0.75= 12 =( )%=( )(折數) 小學各年級課件教案習題匯總一年級 二年級 三年級 四年級 五年級 4、在一天中,時針繞鍾面 圈,分針繞鍾面 圈,秒繞鍾面 圈。 5、今年的第一季度有( )天。 6、在500克的水中放入50克的鹽,鹽和鹽水的比是 ,水和鹽水的比值是 。 7、( )比45噸多20%, ( )減去它的20%是40。 8、把3米長的鐵絲平均截成7段,每段長是( )米,每段佔全長的( )。 9、把一個長1.2米,寬0.6米,高4分米的長方體魚缸放在廳堂里,這個魚缸的佔地面積是 。 10、一個圓柱的底面半徑是5厘米,側面展開正好是一個正方形,圓柱的高是( ),這個圓柱所佔空間位置的大小是( ),與它等底等高的圓錐的體積是( )。 11、已知被除數、除數、商的和是1600,除數是30,余數是10,商是( )。 三、細分析,作判斷。(對的在括弧里打「√」,錯的打「×」) 1、圓的半徑與它的周長和面積都成正比例。„„„„„„„„„„„„„„„„„„„„„„ ( ) 2、把線段比例尺 0 40 80 120 千米改寫成數字比例尺是 4000000 1 。„„„„„„„„„„ ( ) 3、把0.7050小數點後面的0去掉,大小不變。„„„„„„„„„„„„„„„„„„„„ ( ) 4、等底等高的圓柱體積是圓錐體積的3倍,把圓錐的底面半徑擴大3倍,它們的體積就相等了。( ) 5、大於90的角叫鈍角。„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„( ) 四、先比較,再選擇。(把正確答案的序號填在括弧里) 1、甲數的32與乙數的5 4 相等(甲數、乙數均大於0),那麼 ( )。 A.甲數大 B.乙數大 C.一樣大 D. 無法比較 2、在直線、射線、線段中,最長的是( ),最短的是( )。 A. 直線 B. 射線 C.線段 D.無法確定 3、描述病人體溫情況,應繪制( )最為合適,反映果園各種果樹種植面積佔有情況應繪制( )最為合適。 A.條形統計圖 B. 折線統計圖 C. 扇形統計圖 4、( )一定可以成為互質的兩個數。 A.兩個奇數 B. 兩個偶數C. 兩個質數 D.兩個合數 5、把長方形按2∶1放大,放大後的面積與原來的面積比是( ) 1、畫一個半徑為1厘米的圓。 2、按要求操作、填寫、作圖。 ①、量出這張試卷長( )厘米,寬( )厘米(保留整厘米) ②、算一算這張試卷的周長是多少厘米。 ③、用1∶10的比例尺,把這張試卷的平面圖畫出來。 六、用數學,解問題。 1、只列式不計算 ①張阿姨2007年買的3000元國家建設債券到今年5月15日到期,年利率是2.88%。張阿姨准備到期後將它全部領回捐給殘障兒童康復工程,張阿姨捐了多少錢? 列式: ②一批貨物160噸,第一次運走 41,第二次又運走剩下的3 1 ,第二次運走了多少噸? 列式: 2、六(1)班早上點名時有46人在教室里,2人是勸導隊員,正參加值日活動,只有2個同學因發燒在醫院住院治療,不能到校上課,求六(1)班上午的出勤率。 3、計劃修一段3600米水渠,前6天完成了計劃的 5 1 ,照這樣計算,修完這條水渠還需多少天?(用比例知識解答) 4、一輛貨車從甲地送貨到乙地 ,每小時平均速度是48千米,3小時到達,返回時少用了半小時,這輛貨車往返的平均速度是多少?(得數保留一位小數) 5、製作一批零件,王師傅獨做 41小時完成,李師傅獨做2 1 小時完成,兩人合作幾分鍾可以完成? 6、看圖編一道應用題,並列式解答。 計劃 χ 多25% 實際 300 7、甲、乙、丙三位工人共製作2050個零件,已知甲和乙製作的零件個數比是5:3,乙和丙製作的零件個數比是4:3,三位工人各製作多少個零件

⑩ 怎樣做好小學畢業班數學動手操作題的復習

為了圓滿完成小學數學復習的全部任務,作為在教育第一線的六年級數學教師,應總結經驗,找出切實可行的措施來做好六年級數學的復習工作,
以提高學生的學習成績。為此,我憑自己多年的教學經驗,提出以下幾點建議:
一、學會把書本從厚教到薄
書本上的知識有些比較零散,我們可以概括出一些規律或一般解題思路,使學生見到題時不會產生狗咬刺蝟,無從下嘴的局面。比如:講復合應用題時,應用題是一大難點,涉及類型較多,用到的數量關系也很多,這時我們就不應只是就題論題,而應教給學生一些分析應用題的方法。復合應用題解題方法就是分析法和綜合法兩種,要麼從已知條件出發,推導出最後的問題;要麼從問題出發,推到最原始的已知條件。再比如:列方程解應用題,我們可歸納幾類,然後教會學生找等量關系的方法,這樣就可把內容繁雜的知識歸為幾類,以一般的規律性知識去對待多種題目,從而把課本從厚教到薄。
二、還要把課本再從薄教到厚
這是知識的擴展過程。比如:還說復合應用題,我們總結了一些規律或解題思路,但復合應用題可能涉及好多數量關系,但它們用到的分析方法就只有分析法和綜合法兩種,我們可以用這兩種方法去分析涉及不同數量關系的應用題,從而教會學生解答不同類型的復合應用題。實現對知識的擴展過程。再比如:幾何初步知識的復習,課本上只出現了一些計算公式,而推導過程表現得不太具體。我們在復習這部分內容時就應該細講一下推導過程,把課本上的知識展開。
三、加強知識問的縱向聯系,橫向、縱向聯系相結合
只有把知識之間的橫向聯系和縱向聯系結合起來,才會對知識有充分的掌握。比如:應用題的教學,在初學過程中,縱向聯系比較突出,分為整數、小數、分數幾大類分別講解,而在12冊復習時橫向聯系比較突出,如何把二者結合起來?我認為可在復習12冊時涉及到哪類應用題.就拿出初學這部分應用題的課本進行縱向復習。然後再復習12冊相關內容。再比如:一些應用題,既可用算術方法解,又可用方程解,可讓學生用多種方法解,從多種角度加以分析,加強兩種解法之間的聯系,在比較中讓學生選擇適合自己的方法去解決問題。
四、要保護後進生的自尊心,採取切實可行的措施提高後進生的學習成績
首先應保護好後進生的自尊心。每次考試丟分最多的是後進生,這部分學生的自尊心很強,也最容易受到傷害。因此我們應充分保護好這部分學生的自尊心。這要求教師說話時注意不說一些挖苦、諷刺的話,適當給予這部分學生一些鼓勵。我們應全面看待後進生,不管哪方面,只要有進步,就適當地給予一些鼓勵,提高他們的自信心和學習興趣。興趣是最好的老師,這對後進生的進步有很大的幫助。其次,應採取切實可行的措施提高後進生的成績。老師對這部分學生課上應該多提問,課下有針對性地進行輔導,發現問題及時解決。(賢昌中心學校艾文興)

閱讀全文

與小學畢業應用題教學視頻相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99