http://wenku..com/view/a79dd3c7d5bbfd0a7956735a.html
http://wenku..com/view/9403c096daef5ef7ba0d3cf0.html
http://wenku..com/view/1eed476bb84ae45c3b358cfa.html
建議你去網上搜一下,這幾個網址里都有
給你一個樣本:
人教版六年級數學上冊知識點整理歸納
六年級上冊數學知識點
第一單元 位置
1、什麼是數對?
——數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。
作用:確定一個點的位置。經度和緯度就是這個原理。
例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
( 列 , 行 )
↓ ↓
豎排叫列 橫排叫行
(從左往右看)(從下往上看)
(從前往後看)
2、圖形左右平移行數不變;圖形上下平移列數不變。
3、兩點間的距離與基準點(0,0)的選擇無關,基準點不同導致數對不同,兩點間但距離不變。
第二單元 分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
註:「分數乘整數」指的是第二個因數必須是整數,不能是分數。
例如: ×7表示: 求7個 的和是多少? 或表示: 的7倍是多少?
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
註:「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分數乘法計演算法則:
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
註:(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
註:(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a.
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b <1時,c<a (b≠0).
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a .
註:在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
附:形如 的分數可折成( )×
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。
例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、任意數a(a≠0),它的倒數為 ;非零整數a的倒數為 ;分數 的倒數是 。
6、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。
假分數的倒數小於或等於1。
帶分數的倒數小於1。
(六)分數乘法應用題 ——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
「1」× =
例如:求25的 是多少? 列式:25× =15
甲數的 等於乙數,已知甲數是25,求乙數是多少? 列式:25× =15
註:已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。
2、( 什麼)是(什麼 )的 。
( )= ( 「1」 ) ×
例1: 已知甲數是乙數的 ,乙數是25,求甲數是多少?
甲數=乙數× 即25× =15
注:(1)「是」「的」字中間的量「乙數」是 的單位「1」的量,即 是把乙數看作單位「1」,把乙數平均分成5份,甲數是其中的3份。
(2)「是」「占」「比」這三個字都相當於「=」號,「的」字相當於「×」。
(3)單位「1」的量×分率=分率對應的量
例2:甲數比乙數多(少) ,乙數是25,求甲數是多少?
甲數=乙數±乙數× 即25±25× =25×(1± )=40(或10)
3、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。
4、什麼是速度?
——速度是單位時間內行駛的路程。速度=路程÷時間 時間=路程÷速度 路程=速度×時間
——單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。
5、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三單元 分數除法
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。例 ÷3= × = 3÷ =3× =5
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c<a (a≠0)
②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
③除以等於1的數,商等於被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
註:(a±b)÷c=a÷c±b÷c
四、比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
註:連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
3、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、 用比的前項和後項同時除以它們的最大公約數。
(2)、 兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、 兩個小數的比,向右移動小數點的位置,也是先化成整數比。
4、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
5、比和除法、分數的區別:
除法 被除數 除號(÷) 除數(不能為0) 商不變性質 除法是一種運算
分數 分子 分數線(——) 分母(不能為0) 分數的基本性質 分數是一個數
比 前項 比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系
附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
五、分數除法和比的應用
1、已知單位「1」的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知單位「1」的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建議列方程答)
3、分數應用題基本數量關系(把分數看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷幾分之幾 (例:9是乙的 ,求乙是多少?9÷ =15)
幾分之幾=甲÷乙 (例:9是15的幾分之幾?9÷15= )(「是」字相當「÷」號,乙是單位「1」)
(2)甲比乙多(少)幾分之幾?
A 差÷乙= (「比」字後面的量是單位「1」的量)(例:9比15少幾分之幾?(15-9)÷15= = = )
B 多幾分之幾是: –1 (例: 15比9少幾分之幾?15÷9= -1= –1= )
C 少幾分之幾是:1– (例:9比15少幾分之幾?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是「+」少是「–」)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是「+」少是「–」)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是「+」少是「–」)
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分別是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。
(3)找等量關系。
(4)列方程。
註:兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
第四單元 圓
一、.圓的特徵
1、圓是平面內封閉曲線圍成的平面圖形,.
2、圓的特徵:外形美觀,易滾動。
3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2= d=
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環
6、畫圓
(1)圓規兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π= =周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π) ——周長公式: c=πd, c=2πr
註:圓周率π是一個無限不循環小數,3.14是近似值。
3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圓周長=圓周長一半+直徑= ×2πr=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
長方形面積 = 長 ×寬
所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r)
S圓 = πr × r
S圓 = πr×r = πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
則:S1∶S2∶S3=4∶9∶16
4、環形面積 = 大圓 – 小圓=πr大2 - πr小2=π(r大2 - r小2)
扇形面積 = πr2× (n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
註:一個圓的半徑增加a厘米,周長就增加2πa厘米
一個圓的直徑增加b厘米,周長就增加πb 厘米
6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五單元、百分數
一、百分數的意義:表示一個數是另一個數的百分之幾。
註:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
1、百分數和分數的區別和聯系:
(1)聯系:都可以用來表示兩個量的倍比關系。
(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。
百分數的分子可以是小數,分數的分子只以是整數。
註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。
(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數 化 分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數 化 小數:分子除以分母。
二、百分數應用題
1、 求常見的百分率 如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾
2、 求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾 (甲-乙)÷乙
求乙比甲少百分之幾 (甲-乙)÷甲
3、 求一個數的百分之幾是多少 一個數(單位「1」) ×百分率
4、 已知一個數的百分之幾是多少,求這個數 部分量÷百分率=一個數(單位「1」)
5、 折扣 折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣 成數 幾分之幾 百分之幾 小數 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八點五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半價
6、 納稅 繳納的稅款叫做應納稅額。
(應納稅額)÷(總收入)=(稅率)
(應納稅額)=(總收入)×(稅率)
7、 利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅後利息=利息-利息的應納稅額=利息-利息×5%
註:國債和教育儲蓄的利息不納稅
8、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100% = ×100% = 百分之幾
(2)求甲比乙多(少)百分之幾—— ×100% = ×100%
例
① 甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%
③ 乙是40,甲是乙的125%,甲數是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙數是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲數是多少?(一個數的80%是40,這個數是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙數是多少?(一個數的125%是50,這個數是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲數是多少?(什麼數比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙數是多少?(什麼數比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲數是多少?(40比什麼數少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙數是多少?(50比什麼數多25%?)40÷(1+25%)=40
第六單元、統計
1、 扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。
2、 常用統計圖的優點:
(1)、條形統計圖直觀顯示每個數量的多少。
(2)、折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。
(3)、扇形統計圖直觀顯示部分和總量的關系。
第七單元、數學廣角
一、研究中國古代的雞兔同籠問題。
1、 用表格方式解決有局限性,數目必須小,例:
頭數 雞(只)兔(只) 腿數
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿數少,小幅度跳躍;腿數多,大幅度跳躍。跳躍逐一相結合、取中列表)
2、 用假設法解決
(1) 假如都是兔
(2) 假如都是雞
(3) 假如它們各抬起一條腿
(4) 假如兔子抬起兩條前腿
3、 用代數方法解(一般規律)
注釋:這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
二、和尚分饅頭
100個和尚吃100個饅頭,大和尚一人吃3個,小和尚三人吃一個。大小和尚各多少人?
國明代珠算家程大位的名著《直指演算法統宗》里有一道著名算題:
一百饅頭一百僧,
大僧三個更無爭,
小僧三人分一個,
大小和尚各幾丁?"
如果譯成白話文,其意思是:有100個和尚分100隻饅頭,正好分完。如果大和尚一人分3隻,小和尚3人分一隻,試問大、小和尚各有幾人?
方法一,用方程解:
解:設大和尚有x人,則小和尚有(100-x)人,根據題意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,雞兔同籠法:
(1)假設100人全是大和尚,應吃饅頭多少個?
3×100=300(個).
(2)這樣多吃了幾個呢?
300-100=200(個).
(3)為什麼多吃了200個呢?這是因為把小和尚當成大和尚。那麼把小和尚當成大和尚時,每個小和尚多算了幾個饅頭?
3- = (個)
(4)每個小和尚多算了8/3個饅頭,一共多算了200個,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分組法:
由於大和尚一人分3隻饅頭,小和尚3人分一隻饅頭。我們可以把3個小和尚與1個大和尚編為一組,這樣每組4個和尚剛好分4個饅頭,那麼100個和尚總共分為100÷(3+1)=25組,因為每組有1個大和尚,所以有25個大和尚;又因為每組有3個小和尚,所以有25×3=75個小和尚。
這是《直指演算法統宗》里的解法,原話是:"置僧一百為實,以三一並得四為法除之,得大僧二十五個。"所謂"實"便是"被除數","法"便是"除數"。列式就是:
100÷(3+1)=25(組)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我國古代勞動人民的智慧由此可見一斑。
三、整數、分數、百分數應用題結構類型
(一)求甲是乙的幾倍(或幾分之幾或百分之幾)的應用題。
解法:甲數除以乙數
例:校園里有楊樹40棵,柳樹有50棵,楊樹的棵樹占柳樹的百分之幾?(或幾分之幾?)
(二)求甲數的幾倍(或幾分之幾或百分之幾)是多少的應用題。
解答分數應用題,首先要確定單位「1」,在單位「1」確定以後,一個具體數量總與一個具體分數(分率)相對應,這種關系叫「量率對應」,這是解答分數應用題的關鍵。
求一個數的幾倍(幾分之幾或百分之幾)是多少用乘法,單位「1」×分率=對應數量
例:六年級有學生180人,五年級的學生人數是六年級人數的56 。五年級有學生多少人?
180×56 =150
(三)已知甲數的幾倍(或幾分之幾或百分之幾)是多少,求甲數(即求標准量或單位「1」)的應用題。
解法:對應數量÷對應分率=單位「1」
例:育紅小學六年級男生有120人,占參加興趣活動小組人數的35 . 六年級參加興趣活動小組人數共有學生多少人?
120÷35 =200(人)
② 小學人教版數學六年級上冊知識點
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
僅供參考:
【和差問題公式】
(和+差)÷2=較大數;
(和-差)÷2=較小數。
【和倍問題公式】
和÷(倍數+1)=一倍數;
一倍數×倍數=另一數,
或 和-一倍數=另一數。
【差倍問題公式】
差÷(倍數-1)=較小數;
較小數×倍數=較大數,
或 較小數+差=較大數。
【平均數問題公式】
總數量÷總份數=平均數。
【一般行程問題公式】
平均速度×時間=路程;
路程÷時間=平均速度;
路程÷平均速度=時間。
【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:
(速度和)×相遇(離)時間=相遇(離)路程;
相遇(離)路程÷(速度和)=相遇(離)時間;
相遇(離)路程÷相遇(離)時間=速度和。
【同向行程問題公式】
追及(拉開)路程÷(速度差)=追及(拉開)時間;
追及(拉開)路程÷追及(拉開)時間=速度差;
(速度差)×追及(拉開)時間=追及(拉開)路程。
【列車過橋問題公式】
(橋長+列車長)÷速度=過橋時間;
(橋長+列車長)÷過橋時間=速度;
速度×過橋時間=橋、車長度之和。
【行船問題公式】
(1)一般公式:
靜水速度(船速)+水流速度(水速)=順水速度;
船速-水速=逆水速度;
(順水速度+逆水速度)÷2=船速;
(順水速度-逆水速度)÷2=水速。
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。
(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。
僅供參考:
【工程問題公式】
(1)一般公式:
工效×工時=工作總量;
工作總量÷工時=工效;
工作總量÷工效=工時。
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾;
1÷單位時間能完成的幾分之幾=工作時間。
(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)
【盈虧問題公式】
(1)一次有餘(盈),一次不夠(虧),可用公式:
(盈+虧)÷(兩次每人分配數的差)=人數。
例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」
解(7+9)÷(10-8)=16÷2
=8(個)………………人數
10×8-9=80-9=71(個)………………………桃子
或8×8+7=64+7=71(個)(答略)
(2)兩次都有餘(盈),可用公式:
(大盈-小盈)÷(兩次每人分配數的差)=人數。
例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(發)
或50×96+200=5000(發)(答略)
(3)兩次都不夠(虧),可用公式:
(大虧-小虧)÷(兩次每人分配數的差)=人數。
例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不夠(虧),另一次剛好分完,可用公式:
虧÷(兩次每人分配數的差)=人數。
(例略)
(5)一次有餘(盈),另一次剛好分完,可用公式:
盈÷(兩次每人分配數的差)=人數。
(例略)
【雞兔問題公式】
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;
總頭數-雞數=兔數。
例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二 (4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答 略)
(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式
(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數
或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。
例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」
解一 (4×1000-3525)÷(4+15)
=475÷19=25(個)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。
例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
【植樹問題公式】
(1)不封閉線路的植樹問題:
間隔數+1=棵數;(兩端植樹)
路長÷間隔長+1=棵數。
或 間隔數-1=棵數;(兩端不植)
路長÷間隔長-1=棵數;
路長÷間隔數=每個間隔長;
每個間隔長×間隔數=路長。
(2)封閉線路的植樹問題:
路長÷間隔數=棵數;
路長÷間隔數=路長÷棵數
=每個間隔長;
每個間隔長×間隔數=每個間隔長×棵數=路長。
(3)平面植樹問題:
佔地總面積÷每棵佔地面積=棵數
【求分率、百分率問題的公式】
比較數÷標准數=比較數的對應分(百分)率;
增長數÷標准數=增長率;
減少數÷標准數=減少率。
或者是
兩數差÷較小數=多幾(百)分之幾(增);
兩數差÷較大數=少幾(百)分之幾(減)。
【增減分(百分)率互求公式】
增長率÷(1+增長率)=減少率;
減少率÷(1-減少率)=增長率。
比甲丘面積少幾分之幾?」
解 這是根據增長率求減少率的應用題。按公式,可解答為
百分之幾?」
解 這是由減少率求增長率的應用題,依據公式,可解答為
【求比較數應用題公式】
標准數×分(百分)率=與分率對應的比較數;
標准數×增長率=增長數;
標准數×減少率=減少數;
標准數×(兩分率之和)=兩個數之和;
標准數×(兩分率之差)=兩個數之差。
【求標准數應用題公式】
比較數÷與比較數對應的分(百分)率=標准數;
增長數÷增長率=標准數;
減少數÷減少率=標准數;
兩數和÷兩率和=標准數;
兩數差÷兩率差=標准數;
【方陣問題公式】
(1)實心方陣:(外層每邊人數)2=總人數。
(2)空心方陣:
(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。
或者是
(最外層每邊人數-層數)×層數×4=中空方陣的人數。
總人數÷4÷層數+層數=外層每邊人數。
例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?
解一 先看作實心方陣,則總人數有
10×10=100(人)
再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是
10-2×3=4(人)
所以,空心部分方陣人數有
4×4=16(人)
故這個空心方陣的人數是
100-16=84(人)
解二 直接運用公式。根據空心方陣總人數公式得
(10-3)×3×4=84(人)
【利率問題公式】利率問題的類型較多,現就常見的單利、復利問題,介紹其計算公式如下。
(1)單利問題:
本金×利率×時期=利息;
本金×(1+利率×時期)=本利和;
本利和÷(1+利率×時期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)復利問題:
本金×(1+利率)存期期數=本利和。
例如,「某人存款2400元,存期3年,月利率為10.2‰(即月利1分零2毫),三年到期後,本利和共是多少元?」
解 (1)用月利率求。
3年=12月×3=36個月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率變成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)
③ 小學六年級數學知識點總結(下冊)
下面是我的復習資料。
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)小學奧數公式
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題的公式
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題的公式
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題的公式
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題的公式
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題的公式
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題的公式
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題的公式
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
參考資料:網路知道
(一)數的讀法和寫法 1.
整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3.
小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。 4.
小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 5.
分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。 6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。 8.
百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。 1.
准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000
改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。 2.
近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。 3.
四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略
345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。 4. 大小比較 1.
比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2.
比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。 (三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。 2.
分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。 3.
一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。 4.
小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。 5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 6.
分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。 7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除 1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。 2.
求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3.
求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;
兩個合數的公約數只有1時,這兩個合數互質。 (五) 約分和通分 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
小數
1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。 2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、
5.26 都是帶小數。 有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54
」 。 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有
一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
分數
1 分數的意義 把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。 2 分數的分類 真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。 分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數 1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率
或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。