⑴ 談談在小學數學教學中如何運用轉化思想
小學數學修訂後的課標在原來「雙基」的基礎上,提出了「四基」,即基礎知識、基本技能、基本思想和基本活動經驗。 小學數學思想方法許多,基本的數學思想方法有:轉化思想方法、分類思想方法、集合思想方法、統計思想方法、假設思想方法、對應思想方法、比較思想方法、符號化思想方法、類比思想方法、數形結合思想方法、極限思想方法、代換思想方法、可逆思想方法以、化歸思想方法、變中抓不變思想方法、數學模型思想方法、整體思想方法等,結合本周教學比武中的課例談談數學教學中滲透轉化思想方法:
1.化新為舊。根據學生已有的新舊知識的聯系,將新知識轉化為已有的知識來解決。
如:賴傳淇老師執教的《通分》一課中,出示2/5○1/4,進行比較大小。異分母分數大小的比較對學生來說是新的知識,學生不會比較,老師啟發學生將新的知識轉化成已學過的知識進行解決這個問題。學生進行小組討論,然後進行匯報,生1:根據分數的基本性質,把這個兩個分數化成分母相同的分數,2/5=8/20,1/4=5/20,因為8/20>5/20,所以2/5>1/4;生2:把2/5和1/4這兩個分數都化成已學過的小數,2/5=0.4,1/4=0.25,因為0.4>0.25,所以2/5>1/4;生3:根據分數的基本性質,把2/5和1/4這兩個分數的分子化成相同,2/5○1/4=2/8,因為2/5>2/8,所以2/5>1/4;生4:將2/5和1/4用線段來表示,畫一條長20厘米的線段,平均分成5份,取其中的2份,這兩份長8厘米,也就是這條線段總長的2/5,再畫一條長20厘米的線段,平均分成4份,取其中的1份,這一份長5厘米,也就是這條線段總長的1/4,因為8厘米>5厘米,所以2/5>1/4。學生運用了化新為舊的轉化思想解決了新知。
又如:郭秋妹老師執教的《兩位數乘兩位數》一課中,學生列出算式24×12後,問學生可以用什麼方法計算?學生回答可以用估算、口算、筆算。師問如何口算24×12,學生一時愣住了,郭老師進行引導,可以將它轉化成已學過的。學生開始嘗試做,不一會兒學生紛紛舉手回答。生1:24×3×4=288,把12拆成3×4,就變成已學過的兩位數乘一位數的了24×3=72,72×4=288;生2:24×2×6=288;生3:12×4×6=288;生4:12×3×8=288;生5:把24看成20和4的和,20×12=240,4×12=48,240+48=288;生6:把12看成10和2的和,24×10=240,24×2=48,240+48=288;生7:把12看成9和3的和,24×9=216,24×3=72,216+72=288……學生運用了化新為舊的轉化思想解決了新知,發散了思維。
2.化難為易。如:蔣友成老師執教的《數學思考》一課中,出示一題20個點最多可以輕連幾條線段?學生一時也無從下手,老師進行引導,將問題化難為易,化大為小,化多為少,將20點轉化為1,2,3,4,5點,分別能畫幾條線段?讓學生動手操作、小組討論。然後學生匯報:點數1,條數0(條);點數2,條數1(條);點數3,條數1+2=3(條);點數4,條數1+2+3=6(條);點數5,條數1+2+3+4=10(條)。讓學生觀察、分析條數與點數的關系,學生通過觀、分析、小組討論發現:條數的計算方法是從1加2加到點數減1的和。學生發現這個規律後,再來解答20個點最多可以輕連幾條線段就輕而易舉了,學生就很快的說出算式1+2+3+4+……+19=190(條)。師生進行小結:遇到難的題目,可以將它轉化為容易的,簡單的來解決,接著找出規律,然後運用規律解決較難的題目,這就是運用了化難為易的轉化思想方法。
3.化數為形。如:在計算1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512中,通過引導學生化數為形,畫一個正方形, 1/2塗上色,空白的也是1/2,塗色部分可以用1減去空白的;接著在空白的1/2上再塗色一半,塗色部分就是1/2+1/4,塗色部分可以用1減去空白的, 塗色部分就是1-1/4,接著在空白的1/4上再塗色一半,塗色部分就是1/2+1/4+1/8,塗色部分可以用1減去空白的, 塗色部分就是1-1/8。從剛才的過程可以發現規律,塗色部分可以用1減去空白的,因此,1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512=1-1/512=511/512。通過化數為形,可以把這個算式轉化成1-1/512=511/512。
4.為曲為直。如:圓的面積公式的推導,就要用到化曲為直的思想方法,通過將圓分割成若乾等份,拼成近似的長方形,由圓的半徑與面積的關系轉化為長方形的長寬與面積的關系,由長方形的面積公式,推導出圓的面積的公式。這里,就是將長方形的面積公式轉化為圓的面積公式。在學習圓柱的體積計算時,學生也能很快悟到立體圖形之間的聯系,感悟到圓柱體積的計算公式。
陶行知先生曾說過:「我以為好的先生不是教書,不是教學生,乃是教學生學。」任何功課最終的目的就是要達到不需要教,需要有會學習的能力、會學習的方法,而數學思想的形成及運用就會產生好的方法,就會提高學習的能力,就會為不教奠定基礎。因此,小學數學教師要拓展視野,在教學中滲透數學思想,為學生的終身發展奠基。
⑵ 求助:論文簡談化歸思想在數學解題中的應用開題報告 急急急!!1
化歸思想是初中數學中常見的一種思想方法。 「化歸」是轉化和歸結的簡稱。我們內在處理容和解決數學問題時,總的指導思想是把問題轉化為能夠解決的問題,這就是化歸思想。 正如古之「圍魏救趙」是戰史上「避實就虛」的典型戰例,軍事上的這種策略思想遷移到數學解題方面,可以這樣理解它:「實」是指繁、難、隱蔽、曲折,「虛」是指簡、易、明顯、徑直。在解題中表現為:化難為易,避繁從簡,轉暗為明,化生為熟。具體的說,即把生疏的問題轉化為熟悉的問題,把抽象的問題轉化為具體的問題,把復雜的問題轉化為簡單的問題,把一般的問題轉化為特殊的問題,把高次的問題轉化為低次的問題,把未知轉化為已知,把一個綜合的問題轉化為幾個基本的問題等等。
⑶ 急!!!化歸思想的和諧化原則在小學數學中有什麼應用啊!!!
化歸思想是數學中最普遍使用的一種思想方法,其基本思想是:
把遇到的沒有解決過的問題,
轉化歸結為已經解決了的問題。
它的基
本原則是:化難為易,化生為熟,化繁為簡。
⑷ 如何在小學數學教學中培養化歸的思想方法
小學數學知識分為顯性知識和隱性知識兩個方面。小學數學教材是數學教學的顯性知識系統,而數學思想方法是數學教學的隱性知識系統。
在小學階段數學學科最重要的知識莫過於數學思想方法的知識,它是學生未來能夠適應社會和繼續學習的一種能力。笛卡爾說過:「數學是使人變聰明的一門學科」。數學思想方法是數學的精髓,是數學精神和科學世界觀的重要組成部分,需要長期培養,經常應用,潛移默化。
小學數學常用的數學思想方法有:對應思想方法、假設思想方法、比較思想方法、符號化思想方法、類比思想方法、轉化思想方法、分類思想方法、集合思想方法、數形結合思想方法、統計思想方法、極限思想方法、代換思想方法、可逆思想方法、化歸思想方法、變中抓不變的思想方法等等。
本文就自己在教學中的實踐談談如何培養化歸的思想方法。
所謂「化歸」,就是轉化和歸結。在解決數學問題時,人們常常將待解決的問題甲,通過某種轉化過程,歸結為一個已經解決或者比較容易解決的問題乙,然後通過對問題乙的解答返回去求得原問題甲的解答,這就是化歸方法的基本思想。
化歸思想的實質,是將新問題轉化為已掌握的舊知識,然後進一步理解並解決新問題。它的基本形式有:化未知為已知,化新為舊,化難為易,化繁為簡,化曲為直。
一些學生平時學習很認真,可遇到新問題卻無從下手,不知道從何開始解決問題,出現這種情況的根本原因就是不會靈活應用已學的數學思想方法去思考問題,實現問題的轉化。
那麼如何在小學數學教學過程中培養學生掌握化歸的數學思想方法呢?
一、搭建新問題向已學知識化歸的橋梁
例1.計算 + ==?
學生剛開始學習異分母分數加法,怎樣求出它們的和?是一個所要解決的未知問題,為了解決這個問題。
教師搭橋:我們沒學過這樣的分數加法,但我們已學過 + = 的加法。問:算式的含義是什麼?你們能用平面圖表示出算式的意義嗎?能不能想辦法把現在的新問題轉化為已學過的問題,從而找出解決問題的途徑呢?
教師引導學生必須把 + =?化歸為學生能解決的同分母分數相加的問題上來。即通過通分,把異分母分數加法化為同分母分數加法,使之達到原問題的解決。即:
+ (新問題)=(轉化為) + (舊問題)== (結論)
當得出結論後,教師一定要追問:你們是怎麼想的?是運用什麼數學思想方法解決問題的?
看似這平常的、簡單的一問,其實化歸的數學思想方法在這一問中,得到了升華、得到了加強、得到了鞏固。
二、歸納概括出化歸思想方法在知識構建中的作用
學完一種知識,比如小數加減法;或學完一類知識,比如,平面圖形面積的計算;或學完階段知識,比如,小學階段的數學學習結束時,教師就要引導學生歸納概括出我們學習這些知識時,運用了哪些數學思想方法去解決的?從而進一步明確這些個數學思想方法在知識建構中的重要作用。
比如:當學完平面圖形時,教師可以引導學生歸納概括出小學階段我們學過的平面圖形的面積的計算公式都是如何推導出來的?即總結概括在同類知識結構中,化歸思想方法在知識建構中的運用。
設問:我們都學習過哪些平面圖形的面積公式?
總結:長方形、正方形、三角形、梯形、圓形。
啟思:同學們想想,這些平面圖形的面積都是怎麼推導出來的?運用的是什麼方法?
在給出充分的時間讓學生獨立思考、合作探究後,總結概括:
正方形用數格子的方式,得出正方形的面積=邊長×邊長;
長方形的面積,是用正方形和數格子的方法得出長方形的面積=長×寬;
平行四邊形的面積,是把平行四邊形轉化為長方形的圖形,長方形的長就是平行四邊形的長,長方形的寬就是平行四邊形的高,長方形的面積=長×寬,那麼,平行四邊形的面積就等於長乘以高。從而推導出平行四邊形的面積=底×高;
三角形的面積,是把三角形轉化為長方形或平行四邊形(或正方形),從而推導出三角形的面積=底×高÷2;
梯形(轉化為)長方形(或正方形),從而推導出梯形的面積=(上底+下底)×高÷2
圓的面積:我們用剪一剪、拼一拼、旋轉、平移的方法,把圓形化歸為一個近似於長方形的圖形。發現:圓周長的一半相當於長方形的長,寬相當於圓的半徑,平行四邊形的面積等於長乘以寬,圓的面積就等於圓周長的一半乘以半徑,那麼,圓的面積=圓周長的一半×半徑= ×r=π× r2 。所以得出圓的面積等於π× r2
我們推導出的平面圖形的面積計算公式,都是把一種新圖形化歸為已學過的圖形,從而用已學過的面積公式推導出新圖形的面積公式,把沒有學過的知識轉化為我們已經學過的知識來解決新問題,這種解決數學問題的方法就是——化歸的數學思想方法。
化歸的數學思想方法,不僅僅在小學階段學習佔有重要的地位,同時,它也是中學、高中學習的一種重要的思想方法,更是我們終身學習的一種思想方法。
當小學階段學習結束時,教師還要引導學生歸納概括出:化歸的數學思想方法在計算中的應用、在幾何圖形中的應用、在應用題中的應用,從而告訴學生學習數學知識最重要的是思想方法的學習,它是進一步學習知識的最重要的武器。
⑸ 如何在小學數學教學中培養化歸思想方法
化歸方法的含義:把待解決和未解決的問題,通過轉化,或再轉化,將原問題歸回結為一個已經能解決的問答題,或者歸結為一個比較容易解決的問題甚至為人們所熟知的具有既定解決方法和程序的問題,最終求得原問題的解決. 數學中的化歸有其特定的方向,一般為:化復雜為簡單,化抽象為具體;化生疏為熟悉;化難為易;化一般為特殊;化特殊為一般;化「綜合」為「單—」;化「高維」為「低維」等
⑹ 一句話,說出,數學中,轉化思想,和化歸思想,的區別
簡而言之,化歸是一種目的性轉化。
化歸思想,將一個問題由難化易,由繁化簡,由復雜化簡單的過程稱為化歸,它是轉化和歸結的簡稱。
在解決問題的過程中,數學家往往不是直接解決原問題,而是對問題進行變形、轉化,直至把它化歸為某個(些)已經解決的問題,或容易解決的問題。 把所要解決的問題,經過某種變化,使之歸結為另一個問題*,再通過問題*的求解,把解得結果作用於原有問題,從而使原有問題得解,這種解決問題的方法,我們稱之為化歸法。
化歸法是一種分析問題解決問題的基本思想方法.在數學中通常的作法是:將一個非基本的問題通過分解、變形、代換…,或平移、旋轉、伸縮…等多種方式,將它化歸為一個熟悉的基本的問題,從而求出解答.如學完一元一次方程、因式分解等知識後,學習一元二次方程我們就是通過因式分解等方法,將它化歸為一元一次方程來解的.後來我們學到特殊的一元高次方程時,又是化歸為一元一次和一元二次方程來解的.對一元不等式也有類似的作法.又如在平面幾何中我們在學習了三角形的內角和、面積計算等有關定理後,對n邊形的內角和、面積的計算,也是通過分解、拼合為若干個三角形來加以解決的.再如在解析幾何中,當我們學完了最基本、最簡單的圓錐曲線知識以後,對一般圓錐曲線的研究,我們也是通過坐標軸平移或旋轉,化歸為基本的圓錐曲線(在新坐標系中)來實現的.其它如幾何問題化歸為代數問題,立體幾何問題化歸為平面幾何問題,任意角的三角函數問題化歸為銳角三角函數問題來表示的例子就更多了.所以,掌握化歸的思想方法對於數學學習有著重要的意義.總之,化歸的原則是以已知的、簡單的、具體的、特殊的、基本的知識為基礎,將未知的化為已知的,復雜的化為簡單的,抽象的化為具體的,一般的化為特殊的,非基本的化為基本的,從而得出正確的解答.
⑺ 轉化思想在小學數學教學中的應用普遍嗎
普遍
數學知識中概念、法則、公式、性質等都是明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中,關鍵是教師如何去發現、發掘教材中蘊含的轉化思想。為此,我們有必要對此進行系統的梳理,在理清知識網路的同時系統了解數學思想方法在小學各階段、各章節中的分布,例如小學數學的教學內容中,加法與減法的轉化、乘法與除法的轉化,分數與小數的轉化,除法、分數與比的轉化,二維空間(平面圖形)之間的轉化、三維空間(立體圖形)之間的轉化、二維與三維空間之間的轉化,數與形的轉化等等。這樣才能結合雙基的教學,有意識地向學生滲透,逐步培養他們初步地掌握相關的轉化的思想和方法。
數學教學論告訴我們,數學知識是數學思想的載體,進行數學思想方法教學時要注意以數學知識為載體,把隱藏於知識背後的思想方法揭示出來,使之明朗化,這樣才能通過知識傳授過程達到思想方法教學之目的。因此一節課結合具體教學內容考慮滲透哪些數學思想方法、怎麼滲透、滲透到什麼程度,老師都應有一個精心的設計和具體的要求。如《平行四邊形的面積》的教學可以設計如下相關的教學目標:引導學生經歷平行四邊形面積計算的探究過程,初步理解化歸思想,掌握方法,滲透「變與不變」的函數思想;培養學生分析、綜合、抽象、概括和解決實際問題的能力,發展學生的空間觀念。
⑻ 化歸與轉化思想在教學中如何滲透
一、 引新中滲透
例如:老師在教學分數的基本性質時,有分數的基本性質的學習遷移到比的基本性質的學習。
教學中教師應抓住新舊知識之間的聯結點,創設情境,讓學生初步感悟數學的思想方法,為學生搭建有意建構的橋梁,讓學生運用轉化類比的數學思想方法進行合理的正遷移。如教學京版數學教材第十二冊圓柱的認識一課時,我是這樣進行導入環節的:
如在教學「圓柱的認識」時,教師提出如下問題:「同學們,你們知道孫悟空之所以神通廣大不僅僅是他有七十二般變化,更是因為他有一件降妖除魔的法寶,同學們知道它是什麼嗎?」學生異口同聲的回答:「如意金箍棒。」「同學們知道它是什麼形狀的嗎?」「是圓柱形的」「同學們你們知道它和我們平常見到的如粉筆、電線桿等柱體有什麼不同嗎?」這時學生的學習興趣就濃了,踴躍發言。老師這時可以趁勢打鐵:「我們這一節課要學習的圓柱和粉筆、電線桿不一樣。哪我們所學習的圓柱又是什麼形狀的呢?圓柱圓柱,兩頭是圓,中間是柱。兩頭是什麼樣的兩個圓?中間是柱,中間又是什麼樣的柱子?」這時老師可以要求學生分組討論交流,課堂氣氛一下子就活躍了。有同學們熟悉而又感興趣的話題遷移到教學中來,教學效果可想而知。
二、過程中滲透
1、滲透對應的思想方法。對應是人的思維對兩個集合間問題聯系的把握,是現代數學的一個最基本的概念。小學數學教學中主要利用虛線、實線、箭頭、計數器等圖形將元素與元素、實物與實物、數與算式、量與量聯系起來,滲透對應思想。
在小學數學中,有很多方面運用了對應的數學思想方法,如教材六年級教材中的數對,和根據方向和距離來確定物體的位置,無不融進了一一對應的數學思想。
2、滲透分類的思想方法。「分類」就是把具有相同屬性的事物歸納在一起,它的本質是把一個復雜的問題分解成若干個較為簡單的問題。如老師在教學統計與初步這一小節內容時,要學生統計出一小時內經過該路口的各種車輛各有多少時,通過學生們的分類整理,能有效糾正學生的無序性甚至盲目拼湊的毛病,有利於培養學生的邏輯思維能力。
3、滲透集合的思想方法。集合的數學思想方法是從某一角度看所研究的對象,使之成為合乎一定抽象要求的元素。在小學數學教學中,通常採用直觀手段,利用畫集合圖的辦法來滲透集合思想。
例如教學長方體、正方體之後,使學生明確正方體是長、寬、高分別相等的長方體,即正方體是一種特殊的長方體,用圓圈圖表示更形象。讓他們感知大圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合——長方體集合,小圈內的物體也具有某種共同的屬性,可以看作一個小整體,這個小整體就是一個小集合——正方體集合,如長方體集合包含正方體集合。集合的數學思想方法在小學各年級段都有所滲透,如數的整除中就滲透了子集和交集等數學思想。
4、滲透符號化思想。滲透符號化思想主要是指人們有意識地、普遍地運用符號去表達研究的對象,恰當的符號可以清晰、准確、簡潔地數學思想、概念、方法和邏輯關系。
符號化思想在小學數學內容中隨處可見,教師要有意識地進行滲透。
例如:在教學加法結合律時,我首先讓學生通過試題計算明確:三個數相加,可以先把前面兩個數相加,再和第三個數相加;也可以先把後兩個數相加,再和第一個數相加,結果不變。把它變成符號化的語言就是:a+b+c=a+(b+c)在這里,一定要讓學生明確每個符號的意義,知道這樣表示更一般化、抽象化,也更簡潔,更能表示一般規律,進而再引導學生用符號化語言表達兩個數的差與一個數相乘的規律,加深理解符號的含義,建立符號化思想。當然像我們所學過的一些計算公式等,無不滲透了數學思想在裡面。
5、滲透數形結合的思想。數形結合思想方法是指將數與式的代數信息和點與形的幾何信息互相轉換,把數量關系的精確深刻與幾何圖形的形象直觀有機地結合起來,用代數方法去解決幾何問題或用幾何方法去解決代數問題,從而易於將已知條件和解題目標聯系起來,使問題得到解決。
例如:老師在教學應用題時,常常要藉助於線段圖來幫助學生理解,使教學起到事半功倍的效果。如「修路隊前三天修了全長的30%,照這樣計算,修完全程一共需要多少天?」通過畫圖來進行教學,學生易於理解,老師講課也輕松。這樣做,幫助學生藉助數形結合理解了退位減法筆算算理,利於學生掌握筆算方法。
三、練習中滲透
練習是數學教學的重要環節,習題的設計和選擇不僅要體現基礎性、層次性和可選擇性,而且要具有實踐性、應用性、探索性和開放性,做到基礎性練習與發展性練習協調互補,使數學練習適應不同學生發展的需要。教師應精心設計練習,在鞏固練習中運用數學思想方法。
例如:在學習了分數、百分數應用題之後,我為學生出示了這樣一道練習題:一條路全長1200米,修路隊前三天就修了它的30%,照這樣計算,修完這
⑼ 小學數學思想中的化歸思想與轉化思想怎麼區分
化歸思想和轉化思想實質上是一樣的。都是將一個問題由難化易,由繁化簡,由復雜化簡單的過程