⑴ 小學數學概念
公因數:
公因數,就是兩個或兩個以上的數都有的因數.
如:10和5的公因數有1,5.
因為10的公因數有1,2,5,10
5的公因數有1,5.所以10和5的公因數有1,5.
----------------------
兩個數A和B,它們的公倍數就是既是A的倍數又是B的倍數的數,即能同時被A、B整除
比如說:12和15,它們的公倍數是60,120,180,等等
在這些公倍數中最小的那一個就叫最小公倍數,就是60
--------------------------
質數的概念
一個數,如果只有1和它本身兩個因數,這樣的數叫做質數,又稱素數。例如(10以內) 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。特別聲明一點,1既不是質數也不是合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(1不是質數,也不是合數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。質數中除2是偶數外,其他都是奇數。
——————————————
合數的概念
除了1和它本身之外,還有其他的因數 ,一個合數至少有3個因數。
——————————————————
1既不是質數也不是合數,1隻有它本身一個約數,0是有無數個約數(除了它本身以外),因此把自然數分為「質數、合數、0、1」更合理一些。
——————————————————
一個數的因數的特點:
(1)最大因數是其自身,最小因數是1。
(2)因數個數有限。
一個數的倍數的特點:
(1)最小倍數是其自身,沒有最大的倍數。
(2)倍數個數無限。
⑵ 小學數學基本知識的學習主要包括小學數學概念的學習小學數學什麼的學習以及小
小學數學基本知識的學習主要包括小學數學概念的學習
小學生概念學習在小學階段的教學中是一個重點、也是難點,小學生只有了解了知識的概念才能更好了解知識、學習知識。探討小學生數學概念學習的心理特點,才能從小學生的個性出發,教師改進策略,採用更好的方法來讓小學生學習數學知識。對於小學生數學概念學習心理特點及教學策略這一課題,我們可以從小學生數學概念學習的重要性、小學生的心理發展階段特點及小學生學習數學概念的心理特點、學習數學概念的心理過程以及教師在小學數學概念教學中的對策等四個方面來探討。
(一)小學數學概念學習的重要性
數學概念是數學知識結構中的基本材料,也是數學認知結構的重要組成部分。在數學教學中,使學生正確掌握數學概念是理解掌握數學原理、形成基本技能的關鍵,也是培養學生數學能力、發展學生智力的基礎。這就要求教師必須十分重視小學數學概念教學,把它放到極端重要的地位。
(二)小學生的心理發展階段特點及學習數學概念的心理特點
皮亞傑認為,7到11歲的兒童處於具體運算階段。具體運算階段具有以下特點:思維運算離不開具體事物的支持,只能對當時情景中的具體事物的性質和各事物之間的關系進行思考,思維對象限於現實所提供的范圍。
⑶ 小學數學基本概念怎麼教
小學數學的基本概念可以慢慢的,一條條的告訴學生,教一個人舉一個例子,然後讓學生做一下,在實際做題中理解和記憶。
⑷ 小學數學基本概念大全
統計概率與小學數學教學
北京師范大學教育學院 劉京莉
《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。
3.概率的古典定義。
對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:
某試驗具有以下性質
(1)試驗的結果是有限個(n個)
(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)
如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。
例:擲一顆均勻的骰子,求出現2點的概率。
由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。
又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3
出現偶數點的概率是,即。
概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。
在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。
二、在學習統計與概率的過程中發展學生的能力
統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。
例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:
從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。
三、統計、概率與小學其它內容的聯系
例1
上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。
例2
從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。
例3下面是用扇形統計圖統計的資料
對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。
從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。
總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
⑸ 小學數學學習計劃
一、 預習。預習一般是指在老師講課以前,自己先獨立地閱讀新課內容,做到初步理解,做好上課的准備。所以預習就是自學。預習要做到下列四點:
1、通覽教材,初步理解教材的基本內容和思路。
2、預習時如發現與新課相聯系的舊知識掌握得不好,則查閱和補習舊知識,給學習新知識打好牢固的基礎。
3、在閱讀新教材過程中,要注意發現自己難以掌握和理解的地方,以便在聽課時特別注意。
、做好預習筆記。預習的結果要認真記在預習筆記上,預習筆記一般應記載教材的主要內容、自己沒有弄懂需要在聽課著重解決的問題、所查閱的舊知識等。
二、上課。課堂教學是教學過程中最基本的環節,不言而喻,上課也應是同學們學好功課、掌握知識、發展能力的決定性一環。上課要做到:
1、課前准備好上課所需的課本、筆記本和其他文具,並抓緊時間簡要回憶和復習上節課所學的內容。
2、要帶著強烈的求知慾上課,希望在課上能向老師學到新知識,解決新問題。
3、上課時要集中精力聽講,上課鈴一響,就應立即進入積極的學習狀態,有意識地排除分散注意力的各種因素。
4、聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。
5、如果遇到某一個問題或某個問題的一個環節沒有聽懂,不要在課堂上「鑽牛角尖」,而要先記下來,接著往下聽。不懂的問題課後再去鑽研或向老師請教。
6、要努力當課堂的主人。要認真思考老師提出的每一個問題,認真觀察老師的每一個演示實驗,大膽舉手發表自己的看法,積極參加課堂討論。
7、要特別注意老師講課的開頭和結尾。老師的「開場白」往往是概括上節內容,引出本節的新課題,並提出本節課目的要求和要講述的中心問題,起著承上起下的作用。老師的課後總結,往往是一節課的精要提煉和復習提示,是本節課的高度概括和總結。
8、要養成記筆記的好習慣。最好是一邊記一邊聽,當聽與記發生矛盾時,要以聽為主,下課後再補上筆記。記筆記要有重點,要把老師板書的知識提綱、補充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,供課後復習時參考。
三、作業。作業是學習過程中一個重要環節。通過作業不僅可以及時鞏固當天所學知識,加深對知識的理解,更重要的是把學過的知識加以運用,以形成技能技巧,從而發展自己的智力,培養自己的能力。作業必須做到:
1、先看書後作業,看書和作業相結合。只有先弄懂課本的基本原理和法則,才能順利地完成作業,減少作業中的錯誤,也可以達到鞏固知識的目的。
2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應用所學和知識,找到解決問題的途徑和方法。
3、態度要認真,推理要嚴謹,養成「言必有據」的習慣。准確運用所學過的定律、定理、公式、概念等。作業之後,認真檢查驗算,避免不應有的錯誤發生。
4、作業要獨立完成。只有經過自己動腦思考動手操作,才能促進自己對知識的消化和理解,才能培養鍛煉自己的思維能力;同時也能檢驗自己掌握的知識是否准確,從而克服學習上的薄弱環節,逐步形成扎實的基礎。
5、認真更正錯誤。對於作業中出現的錯誤,要認真改正。要懂得,出錯的地方正是暴露自己的知識和能力弱點的地方。經過更正,就可以及時彌補自己知識上的缺陷。
6、作業要規范。解題時不要輕易落筆,要在深思熟慮後一次寫成,切忌塗改過多。書寫工整,步驟簡明有條理,完整無缺。作業時,各科都有各自的格式,要按照各學科的作業規范去做。
7、作業保存好,定期將作業分門別類進行整理,復習時,可隨時拿來參考。
四、復習。復習的主要任務是達到對知識的深入理解和掌握,在理解和掌握過程中提高運用知識的技能技巧,使知識融匯貫通。同時還要通過歸納、整理,使知識系統化,真正成為自己知識鏈條的一個有機組成部分。復習要做到:
1、當天的功課當天復習,並且要同時復習頭一天學習和復習過的內容,使新舊知識聯系起來。對老師講授的主要內容,在全面復習的基礎上,抓住重點和關鍵,特別是聽課中存在的疑難問題更應徹底解決。重點內容要熟讀牢記,對基本要領和定律等能准確闡述,並能真正理解它的意義;對基本公式應會自行推導,曉得它的來龍去脈;同時要搞清楚知識前後之間的聯系,注意總結知識的規律性。
2、單元復習。在課程進行完一個單元以後,要把全單元的知識要點進行一次全面復習,重點領會各知識要點之間的聯系,使知識系統化和結構化。有些需要記憶的知識,要在理解的基礎上熟練地記憶。
3、期中復習。期中考試前,要把上半學期學過的內容進行系統復習。復習時,在全面復習的前提下,特別應著重弄清各單元知識之間的聯系。
4、期末復習。期末考試前,要對本學期學過的內容進行系統復習。復習時力求達到「透徹理解、牢固掌握、靈活運用」的目的。
5、假期復習。每年的寒假和暑假,除完成各科作業外,要把以前所學過的內容進行全面復習,重點復習自己掌握得不太好的部分。這樣可以避免邊學邊忘,造成高三總復習時負擔過重的現象。
6、在達到上面要求基礎上,學有餘力的同學,可在老師的指導下,適當閱讀一些課外參考書或做一些習題,加深對關知識的理解和記憶。
數學的學習計劃一般安排在下午吧 上午適合記文科的東西
計劃的首先是要把書本踏踏實實的過一次 之後再把每一章節後面的習題做了 每天要安排自己一張做卷子
還要在規定的時間內完成 這樣形成習慣 考試的時候才不會因為時間不夠什麼的不能完成試卷
不提倡題海戰術 但是起碼的要知道大概是什麼題型 掌握出題人的考點
雖然計劃趕不上變化 但是 如果計劃一旦出來了 那麼就一定要按計劃安排
有安排,有規律的學習 是比較有成果的
⑹ 小學數學全部概念和定義
定義定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
小學數學定義定理公式(二)
一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數
⑺ 小學數學的基本概念都有哪些
統計概率與小學數學教學
北京師范大學教育學院 劉京莉
《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。
3.概率的古典定義。
對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:
某試驗具有以下性質
(1)試驗的結果是有限個(n個)
(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)
如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。
例:擲一顆均勻的骰子,求出現2點的概率。
由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。
又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3
出現偶數點的概率是,即。
概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。
在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。
二、在學習統計與概率的過程中發展學生的能力
統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。
例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:
從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。
三、統計、概率與小學其它內容的聯系
例1
上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。
例2
從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。
例3下面是用扇形統計圖統計的資料
對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。
從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。
總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
⑻ 小學數學概念性基礎知識總復習
畢業班復習- -
關於畢業班的復習,一直是讓師生們頭疼的一個問題。在這個階段,要做的事情很多,比如知識的整理,後進生的「突擊」,優生的提升,還有面上的關注……如此等等,讓老師往往「心力交瘁」。
要想把復習工作做好,依我的切身體驗,大約有以下幾點(如有時間,再與大家詳細交流) ——
• 只有登高,方能望遠。希望老師們能夠站得「高」一點,一定要認真研究「課程目標」和學生的「學情」,制定方案,把「力量」用在刀刃上。如果你感到無所適從,請不要急急而行,先冷靜下來,用更多的時間思考可能是一個好辦法。
• 欲速則不達。復習階段學生接受的「訓練量」(信息量)是很大的,不要搞單純的「刺激 — 反應」式的機械訓練,這樣往往費力不討好,有些學生,特別是「學困生」很容易「疲」,信心的喪失比能力的缺失更可怕。提高復習的「有效性」比單純提高訓練量來得應該更有效。
• 讓學生成為「復習」的主人。就如我們上面提到的讓學生自己出題,這樣的方法通常很有效(經過試驗),但是也一定不要脫離教師的「主導」,記住是「自主」學習,而不是「自由」學習,這對老師的要求要高一些。
• 變換形式,讓復習變得不再枯燥。許多老師可能都曾遇到在復習階段,試題滿天飛的問題,復習階段的課堂就變成了「做題—— 訂正——再做題」的固定模式,毫無生趣而言。這樣的形式不是一點不需要,因為孩子還是需要在這個過程中獲得一些關於「應考」的一些體驗。但是,日久生厭,自然會影響復習的效率。這時,老師需要冷靜分析,在「這樣做」和「那樣做」之間做出權衡。舉個例子,如果我分析在接下來需要復習的幾個知識點中孩子普遍會出現哪幾個問題,那麼,我就會與學生一同商量,制定出克服辦法,然後再做題,這樣孩子大多能夠在做題中獲得成功的體驗。這讓我想起曾經聽過一個治療胃病的方法,對學困生非常有用,那就是「少吃多餐」,大家想想,為什麼少吃多餐有助消化? :)
• 螺旋上升,前後呼應,讓整個復習階段成為一個有機的整體。這樣,復習過程成了真正促進孩子發展的過程,而不單單是「應試」。不要孤立看待每一個復習過程中遇到的知識點,要分析他們之間的聯系。對於復習進程的表述不應該是一條一直指向目標的直線,而是螺旋上升的「曲線」,孩子最終能力的達成往往是需要「迂迴」的,因此,老師應該理解學生在復習過程中可能出現的「反復」,對此應該積極對待,正確引導。
• 注意應考心理的引導,讓師生都能以愉快的心理面對挑戰。不要給學生「大難臨頭」的感覺,這樣做,除了增加孩子的心理負擔,一般不會有好的效果,或者只能是短時間的。
一、小學數學畢業總復習的目的意義
小學畢業總復習是小學數學教學的重要組成部分,是對學生全面而系統地鞏固整個小學階段所學的數學基礎知識和基本技能,提高知識的掌握水平,進一步發展能力。因此,多年的畢業教學,我都十分重視小學畢業階段的復習整理工作。而畢業總復習作為一種引導小學生對舊知識進行再學習的過程它應是一個有目的,有計劃的學習活動過程。所以,在具體實施前必須制定出切實可行的計劃,以增強復習的針對性,提高復習效率。
二、小學數學畢業總復習的任務
從小學畢業總復習在整個小學數學教學過程中所處的地位來看,它的任務概括為以下幾點:
1、系統地整理知識。實踐表明,學生對數學知識的掌握在很大程度上取決於復習中的系統整理,而小學畢業復習是對小學階段所學知識形成一種網路結構。
2、全面鞏固所學知識。畢業復習的本身是一種重新學習的過程,是對所學知識從掌握水平達到熟練掌握水平。
3、查漏補缺。結合我鎮小學實際,大多採取小循環教學,學生在知識的理解和掌握程度上不可避免地存在某些問題。所以,畢業復習的再學習過程要彌補知識上掌握的缺陷。
4、進一步提高能力。進一步提高學生的計算、初步的邏輯思維、空間觀念和解決實際問題的能力。讓學生在復習中應充分體現從「學會」到「會學」的轉化。
三、小學數學畢業總復習內容的組織
九義新教材在教材的編排體繫上給我們復習創造了有利條件。教材在統計的初步知識後安排了總復習內容,以多個知識點形成六大知識結構體系,並加以練習。這是舊教材所無法相比的。在復習中,要充分利用教材,合理組織內容,適當滲透,拓展知識面。
四、小學數學畢業總復習過程的安排
由於復習是在原有基礎上對已學過的內容進行再學習,所以,學生原有的學習情況直接制約著復習過程的安排。同時,也要根據本班實際復習對象和復習時間來確定復習過程和時間上的安排。結合我班實際,從4月26日進入總復習階段,共計80課時,復習過程和時間安排大致如下:
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
小學語文是義務教育階段的一門基礎學科,擔負著全面提高學生語文素養的重任。經過六年的學習,大多數學生已具備了一定的語文素養,但是由於學生的個體差異,導致了小學生語文素養的參差不齊。在小學生即將結束小學生活的這段時間里,我們有責任集中精力,抓住時機,系統地引導學生復習小學階段應掌握的知識,最大限度地提高每個學生的語文素養。
從「標准」入手,明確復習的要求:
學生在畢業時,應基本達到《語文課程標准》的要求。復習時,要根據《語文課程標准》及學生「過程性」的學習情況,有針對性地制定出相關復習要求,各部分的重點要求是:
(一)、基礎知識
1、漢語拼音。
能讀准聲母、韻母、聲調和整體認讀音節;能准確地拼讀音節,正確書寫聲母、韻母和音節;能認識大寫字母,並能熟記《漢語拼音字母表》
2、漢字。
認識常用漢字3000個左右,其中2500個會寫,要能讀准字音,認清字形,了解字義,養成正確的寫字習慣;會查字典;能初步辨析字的音、形、義,掌握學過的常用的多音字,注意不寫錯別字。
3、詞語。
能正確地讀出和寫出學過的詞語;能根據詞義輕重、范圍大小、感情色彩、詞語搭配等方面辨析詞義,進行歸類或順序排列;學會在具體的語言環境中准確地理解詞義;注意積累詞語,並能在口頭語言和書面語言中正確運用。
4、句子。
熟悉句子的類型;能運用學過的常用詞語(包括關聯詞語)造出思想健康、用詞准確、意思完整的句子;能指出句子中的毛病,並加以改正;會區分和運用常用的幾種修辭方法;熟練地進行句式互換、擴句和縮句;通過理解、分析句子,能體會句子表達的意思和含義,加深對課文內容的理解。
5、標點。
能正確地使用句號、問號、嘆號、逗號、冒號、引號、頓號、分號、書名號和省略號。
(二)、閱讀
1、在閱讀中能揣摩文章的表達順序,體會文章的思想感情及表達方法,在交流和討論中,敢於提出自己的看法,作出自己的判斷。
2、閱讀說明性文章,能抓住要點,了解文章的基本說明方法;閱讀敘事性作品,了解事件梗概,簡單描述自己印象最深的場景、人物、細節,說出自己的感受;閱讀詩歌,大體把握詩意,想像詩歌描述的情境,體會詩人的情感。
3、能背誦優秀詩文160篇(段);課外閱讀總量不少於150萬字。
(三)、習作
1、能寫簡單的記敘文和想像作文,能根據習作內容表達的需要,會分段表述。
2、會寫讀書筆記和常見的應用文。
3、習作能做到內容具體,感情真實,思想健康,有一定條理。
4、會修改自己的習作,並能主動與他人交換修改,做到語句通順,行款正確,書寫規范、整潔。
5、40分鍾能完成不少於400字的習作。
(四)口語交際
1、認真耐心地聽別人講話,能理解主要意思,並能轉述。
2、能清楚明白地口述見聞,稍作準備,能圍繞一個意思,當眾作2、3分鍾的發言,舉止大方,語句比較通順連貫。能主動積極地進行口語交際
3、養成專心聽講、認真思考的習慣。養成先想後說的習慣,說話有禮貌。
4、聽講話、看影視,能轉述主要內容。
以上所列項目是小學生通過五年的學習,在語文基礎知識方面、閱讀方面、習作方面、口語交際方面應達到的基本要求,以上要求是互相融合的,不能單獨地復習一條而舍棄另一條。教學時要將以上條目展示給學生,讓學生對照要求,找到自己的不足,為下一步復習明確目的。
⑼ 想搜集一下小學數學中的基本概念
長方體的特徵:
1.有6個面,都是長方形(也有可能有兩個相對的面是正方形),相對的面的面積相等。
2.有12條棱,相對的棱的長度相等。
3.有8個頂點。相交與一個頂點的有三條棱。