導航:首頁 > 教育計劃 > 小學定義點大全人教版

小學定義點大全人教版

發布時間:2021-01-09 18:08:20

A. 小學數學概念大全

你好!你是教師可到新華書店去買這方面的書,你是學生或家長,就把小學數學書拿出來,一本一本的從頭把有關概念抄一遍,抄在採集本上。到開校還來得及,也算是復習一遍。祝:好好學習,天天向上。

B. 小學所有的重點知識(人教版)語文數學

平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)

四邊形 d,D-對角線長
α-對角線夾角 S=dD/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 S=ah
=absinα
菱形 a-邊長
α-夾角
D-長對角線長
d-短對角線長 S=Dd/2
=a2sinα
梯形 a和b-上、下底長
h-高
m-中位線長 S=(a+b)h/2
=mh
圓 r-半徑
d-直徑 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圓環 R-外圓半徑
r-內圓半徑
D-外圓直徑
d-內圓直徑 S=π(R2-r2)
=π(D2-d2)/4
橢圓 D-長軸
d-短軸 S=πDd/4
立方圖形
名稱 符號 面積S和體積V
正方體 a-邊長 S=6a2
V=a3
長方體 a-長
b-寬
c-高 S=2(ab+ac+bc)
V=abc
稜柱 S-底面積
h-高 V=Sh
棱錐 S-底面積
h-高 V=Sh/3
稜台 S1和S2-上、下底面積
h-高 V=h[S1+S2+(S1S1)1/2]/3
擬柱體 S1-上底面積
S2-下底面積
S0-中截面積
h-高 V=h(S1+S2+4S0)/6
圓柱 r-底半徑
h-高
C—底面周長
S底—底面積
S側—側面積
S表—表面積 C=2πr
S底=πr2
S側=Ch
S表=Ch+2S底
V=S底h
=πr2h

空心圓柱 R-外圓半徑
r-內圓半徑
h-高 V=πh(R2-r2)
直圓錐 r-底半徑
h-高 V=πr2h/3
圓台 r-上底半徑
R-下底半徑
h-高 V=πh(R2+Rr+r2)/3
球 r-半徑
d-直徑 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半徑
h-高 V=πh[3(r12+r22)+h2]/6
圓環體 R-環體半徑
D-環體直徑
r-環體截面半徑
d-環體截面直徑 V=2π2Rr2
=π2Dd2/4
桶狀體 D-桶腹直徑
d-桶底直徑
h-桶高 V=πh(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母線是拋物線形)
提問人的追問 2010-02-02 23:18
謝謝 問一下有沒有什麼定理啊 如勾股定理,燕尾定理這樣的幾何定理呀 謝謝團隊的補充 2010-02-03 11:44 哥們,慢慢看,這是初一到初三全部定理,夠多了!

數學定理
三角形三條邊的關系
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和
三角形內角和定理 三角形三個內角的和等於180°
推論1 直角三角形的兩個銳角互余
推論2 三角形的一個外角等於和它不相鄰的兩個內角和
推論3 三角形的一個外角大雨任何一個和它不相鄰的內角
角的平分線
性質定理 在角的平分線上的點到這個角的兩邊的距離相等
幾何語言:
∵OC是∠AOB的角平分線(或者∠AOC=∠BOC)
PE⊥OA,PF⊥OB
點P在OC上
∴PE=PF(角平分線性質定理)
判定定理 到一個角的兩邊的距離相等的點,在這個角的平分線上
幾何語言:
∵PE⊥OA,PF⊥OB
PE=PF
∴點P在∠AOB的角平分線上(角平分線判定定理)
等腰三角形的性質
等腰三角形的性質定理 等腰三角形的兩底角相等
幾何語言:
∵AB=AC
∴∠B=∠C(等邊對等角)
推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
幾何語言:
(1)∵AB=AC,BD=DC
∴∠1=∠2,AD⊥BC(等腰三角形頂角的平分線垂直平分底邊)
(2)∵AB=AC,∠1=∠2
∴AD⊥BC,BD=DC(等腰三角形頂角的平分線垂直平分底邊)
(3)∵AB=AC,AD⊥BC
∴∠1=∠2,BD=DC(等腰三角形頂角的平分線垂直平分底邊)
推論2 等邊三角形的各角都相等,並且每一個角等於60°
幾何語言:
∵AB=AC=BC
∴∠A=∠B=∠C=60°(等邊三角形的各角都相等,並且每一個角都等於60°)
等腰三角形的判定
判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等
幾何語言:
∵∠B=∠C
∴AB=AC(等角對等邊)
推論1 三個角都相等的三角形是等邊三角形
幾何語言:
∵∠A=∠B=∠C
∴AB=AC=BC(三個角都相等的三角形是等邊三角形)
推論2 有一個角等於60°的等腰三角形是等邊三角形
幾何語言:
∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)
∴AB=AC=BC(有一個角等於60°的等腰三角形是等邊三角形)
推論3 在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半
幾何語言:
∵∠C=90°,∠B=30°
∴BC= AB或者AB=2BC(在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半)
線段的垂直平分線
定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
幾何語言:
∵MN⊥AB於C,AB=BC,(MN垂直平分AB)
點P為MN上任一點
∴PA=PB(線段垂直平分線性質)
逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
幾何語言:
∵PA=PB
∴點P在線段AB的垂直平分線上(線段垂直平分線判定)
軸對稱和軸對稱圖形
定理1 關於某條之間對稱的兩個圖形是全等形
定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3 兩個圖形關於某直線對稱,若它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理 若兩個圖形的對應點連線被同一條直線垂直平分,那這兩個圖形關於這條直線對稱
勾股定理
勾股定理 直角三角形兩直角邊a、b的平方和,等於斜邊c的平方,即
a2 + b2 = c2
勾股定理的逆定理
勾股定理的逆定理 如果三角形的三邊長a、b、c有關系,那麼這個三角形是直角三角形
四邊形
定理 任意四邊形的內角和等於360°
多邊形內角和
定理 多邊形內角和定理n邊形的內角的和等於(n - 2)·180°
推論 任意多邊形的外角和等於360°
平行四邊形及其性質
性質定理1 平行四邊形的對角相等
性質定理2 平行四邊形的對邊相等
推論 夾在兩條平行線間的平行線段相等
性質定理3 平行四邊形的對角線互相平分
幾何語言:
∵四邊形ABCD是平行四邊形
∴AD‖BC,AB‖CD(平行四邊形的對角相等)
∠A=∠C,∠B=∠D(平行四邊形的對邊相等)
AO=CO,BO=DO(平行四邊形的對角線互相平分)
平行四邊形的判定
判定定理1 兩組對邊分別平行的四邊形是平行四邊形
幾何語言:
∵AD‖BC,AB‖CD
∴四邊形ABCD是平行四邊形
(兩組對邊分別平行的四邊形是平行四邊形)
判定定理2 兩組對角分別相等的四邊形是平行四邊形
幾何語言:
∵∠A=∠C,∠B=∠D
∴四邊形ABCD是平行四邊形
(兩組對角分別相等的四邊形是平行四邊形)
判定定理3 兩組對邊分別相等的四邊形是平行四邊形
幾何語言:
∵AD=BC,AB=CD
∴四邊形ABCD是平行四邊形
(兩組對邊分別相等的四邊形是平行四邊形)
判定定理4 對角線互相平分的四邊形是平行四邊形
幾何語言:
∵AO=CO,BO=DO
∴四邊形ABCD是平行四邊形
(對角線互相平分的四邊形是平行四邊形)
判定定理5 一組對邊平行且相等的四邊形是平行四邊形
幾何語言:
∵AD‖BC,AD=BC
∴四邊形ABCD是平行四邊形
(一組對邊平行且相等的四邊形是平行四邊形)
矩形
性質定理1 矩形的四個角都是直角
性質定理2 矩形的對角線相等
幾何語言:
∵四邊形ABCD是矩形
∴AC=BD(矩形的對角線相等)
∠A=∠B=∠C=∠D=90°(矩形的四個角都是直角)
推論 直角三角形斜邊上的中線等於斜邊的一半
幾何語言:
∵△ABC為直角三角形,AO=OC
∴BO= AC(直角三角形斜邊上的中線等於斜邊的一半)
判定定理1 有三個角是直角的四邊形是矩形
幾何語言:
∵∠A=∠B=∠C=90°
∴四邊形ABCD是矩形(有三個角是直角的四邊形是矩形)
判定定理2 對角線相等的平行四邊形是矩形
幾何語言:
∵AC=BD
∴四邊形ABCD是矩形(對角線相等的平行四邊形是矩形)
菱形
性質定理1 菱形的四條邊都相等
性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
幾何語言:
∵四邊形ABCD是菱形
∴AB=BC=CD=AD(菱形的四條邊都相等)
AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC
(菱形的對角線互相垂直,並且每一條對角線平分一組對角)
判定定理1 四邊都相等的四邊形是菱形
幾何語言:
∵AB=BC=CD=AD
∴四邊形ABCD是菱形(四邊都相等的四邊形是菱形)
判定定理2 對角線互相垂直的平行四邊形是菱形
幾何語言:
∵AC⊥BD,AO=CO,BO=DO
∴四邊形ABCD是菱形(對角線互相垂直的平行四邊形是菱形)
正方形
性質定理1 正方形的四個角都是直角,四條邊都相等
性質定理2 正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱和中心對稱圖形
定理1 關於中心對稱的兩個圖形是全等形
定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
梯形
等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
幾何語言:
∵四邊形ABCD是等腰梯形
∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的兩個角相等)
等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
幾何語言:
∵∠A=∠B,∠C=∠D
∴四邊形ABCD是等腰梯形(在同一底上的兩個角相等的梯形是等腰梯形)
三角形、梯形中位線
三角形中位線定理 三角形的中位線平行與第三邊,並且等於它的一半
幾何語言:
∵EF是三角形的中位線
∴EF= AB(三角形中位線定理)
梯形中位線定理 梯形的中位線平行與兩底,並且等於兩底和的一半
幾何語言:
∵EF是梯形的中位線
∴EF= (AB+CD)(梯形中位線定理)
比例線段
1、 比例的基本性質
如果a∶b=c∶d,那麼ad=bc
2、 合比性質
3、 等比性質
平行線分線段成比例定理
平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
幾何語言:
∵l‖p‖a
(三條平行線截兩條直線,所得的對應線段成比例)
推論 平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行與三角形的第三邊
垂直於弦的直徑
垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
幾何語言:
∵OC⊥AB,OC過圓心
(垂徑定理)
推論1
(1) 平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
幾何語言:
∵OC⊥AB,AC=BC,AB不是直徑
(平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧)
(2) 弦的垂直平分線過圓心,並且平分弦所對的兩條弧
幾何語言:
∵AC=BC,OC過圓心
(弦的垂直平分線過圓心,並且平分弦所對的兩條弧)
(3) 平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
幾何語言:
(平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧)
推論2 圓的兩條平分弦所夾的弧相等
幾何語言:∵AB‖CD
圓心角、弧、弦、弦心距之間的關系
定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距也相等
推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等
圓周角
定理 一條弧所對的圓周角等於它所對的圓心角的一半
推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直角
推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
圓的內接四邊形
定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
幾何語言:
∵四邊形ABCD是⊙O的內接四邊形
∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE
切線的判定和性質
切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
幾何語言:∵l ⊥OA,點A在⊙O上
∴直線l是⊙O的切線(切線判定定理)
切線的性質定理 圓的切線垂直於經過切點半徑
幾何語言:∵OA是⊙O的半徑,直線l切⊙O於點A
∴l ⊥OA(切線性質定理)
推論1 經過圓心且垂直於切線的直徑必經過切點
推論2 經過切點且垂直於切線的直線必經過圓心
切線長定理
定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
幾何語言:∵弦PB、PD切⊙O於A、C兩點
∴PA=PC,∠APO=∠CPO(切線長定理)
弦切角
弦切角定理 弦切角等於它所夾的弧對的圓周角
幾何語言:∵∠BCN所夾的是 ,∠A所對的是
∴∠BCN=∠A
推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
幾何語言:∵∠BCN所夾的是 ,∠ACM所對的是 , =
∴∠BCN=∠ACM
和圓有關的比例線段
相交弦定理:圓內的兩條相交弦,被焦點分成的兩條線段長的積相等
幾何語言:∵弦AB、CD交於點P
∴PA·PB=PC·PD(相交弦定理)
推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
幾何語言:∵AB是直徑,CD⊥AB於點P
∴PC2=PA·PB(相交弦定理推論)
切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項
幾何語言:∵PT切⊙O於點T,PBA是⊙O的割線
∴PT2=PA·PB(切割線定理)
推論 從圓外一點因圓的兩條割線,這一點到每條割線與圓的焦點的兩條線段長的積相等
幾何語言:∵PBA、PDC是⊙O的割線
∴PT2=PA·PB(切割線定理推論)

完善答案
問問團隊DT.MD共2人編輯答案 評價答案
是否解決問題(參與評價0次) 能 解 決: 5次評價成功原創加2!部分解決: 0次評價成功原創加2!不能解決: 0次評價成功原創加2!是否原創答案(參與評價0次) 原 創: 5次評價成功原創加2!非原創: 0次評價成功原創加2!提問人的感言:
感激不盡 謝謝了
滿意答案小學類:三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。 單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
小學數學定義定理公式(二)
一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
回答人的補充 2010-02-04 14:53 平方差公式:a^2-b^2=(a+b)(a-b)
完全平方公式:(a±b)^2=a^2±2*a*b+b^2 (每項系數根據楊輝三角決定)
完全立方公式:(a±b)^3=a^3±3*a^2*b+3*a*b^2±b^3 (每項系數根據楊輝三角決定)
幾何:

面積計算

圓周長: 2πr(πd) 面積: r2π

勾股定律:兩直角邊的平方和等於斜邊的平

(首項加末項)乘項數除以2

m,n的最小公倍數為t,,最大公約數為l

那麼t*l=m*n

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

C. 小學數學人教版所有的概念

1、長方形的周長=(長+寬)× C=(a+b)×2

2、正方形的周長=邊長×4 C=4a

3、長方形的面積=長×寬 S=ab

4、正方形的面積=邊長×邊長 S=a.a= a

5、三角形的面積=底×高÷2 S=ah÷2

6、平行四邊形的面積=底×高 S=ah

7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2

8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

10、圓的面積=圓周率×半徑×半徑 ?=πr

11、長方體的表面積=(長×寬+長×高+寬×高)×2

12、長方體的體積 =長×寬×高 V =abh

13、正方體的表面積=棱長×棱長×6 S =6a

14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a

15、圓柱的側面積=底面圓的周長×高 S=ch

16、圓柱的表面積=上下底面面積+側面積

S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch

17、圓柱的體積=底面積×高 V=Sh

V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圓錐的體積=底面積×高÷3

V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

19、長方體(正方體、圓柱體)的體積=底面積×高 V=Sh

4 、長方體

V:體積 s:面積 a:長 b: 寬 h:高

(1)表面積(長×寬+長×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長×寬×高

V=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

S面積 C周長 ∏ d=直徑 r=半徑

(1)周長=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

(1)側面積=底面周長×高

(2)表面積=側面積+底面積×2

(3)體積=底面積×高

(4)體積=側面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

總數÷總份數=平均數

和差問題的公式

(和+差)÷2=大數

(和-差)÷2=小數

和倍問題

和÷(倍數-1)=小數

小數×倍數=大數

(或者 和-小數=大數)

差倍問題

差÷(倍數-1)=小數

小數×倍數=大數

(或 小數+差=大數)

植樹問題

1 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:

株數=段數+1=全長÷株距-1

全長=株距×(株數-1)

株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1

全長=株距×(株數+1)

株距=全長÷(株數+1)

2 封閉線路上的植樹問題的數量關系如下

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數

(大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題

相遇路程=速度和×相遇時間

相遇時間=相遇路程÷速度和

速度和=相遇路程÷相遇時間

追及問題

追及距離=速度差×追及時間

追及時間=追及距離÷速度差

速度差=追及距離÷追及時間

流水問題

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

濃度問題

溶質的重量+溶劑的重量=溶液的重量

溶質的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質的重量

溶質的重量÷濃度=溶液的重量

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅後利息=本金×利率×時間×(1-20%)

長度單位換算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面積單位換算

1平方千米=100公頃

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

體(容)積單位換算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量單位換算

1噸=1000 千克

1千克=1000克

1千克=1公斤

人民幣單位換算

1元=10角

1角=10分

1元=100分

時間單位換算

1世紀=100年 1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 閏年2月29天

平年全年365天, 閏年全年366天

1日=24小時 1時=60分

1分=60秒 1時=3600秒

小學數學幾何形體周長 面積 體積計算公式

1、長方形的周長=(長+寬)×2 C=(a+b)×2

2、正方形的周長=邊長×4 C=4a

3、長方形的面積=長×寬 S=ab

4、正方形的面積=邊長×邊長 S=a.a= a

5、三角形的面積=底×高÷2 S=ah÷2

6、平行四邊形的面積=底×高 S=ah

7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2

8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

10、圓的面積=圓周率×半徑×半徑

定義定理公式

三角形的面積=底×高÷2。 公式 S= a×h÷2

正方形的面積=邊長×邊長 公式 S= a×a

長方形的面積=長×寬 公式 S= a×b

平行四邊形的面積=底×高 公式 S= a×h

梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高 公式:V=abh

長方體(或正方體)的體積=底面積×高 公式:V=abh

正方體的體積=棱長×棱長×棱長 公式:V=aaa

圓的周長=直徑×π 公式:L=πd=2πr

圓的面積=半徑×半徑×π 公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

單位換算

(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤

(5)1公頃=10000平方米 1畝=666.666平方米

(6)1升=1立方分米=1000毫升 1毫升=1立方厘米

數量關系計算公式方面

1.單價×數量=總價

2.單產量×數量=總產量

3.速度×時間=路程

4.工效×時間=工作總量

小學數學定義定理公式(二)

一、算術方面

1.加法交換律:兩數相加交換加數的位置,和不變。

2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第

三個數相加,和不變。

3.乘法交換律:兩數相乘,交換因數的位置,積不變。

4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。

6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。

7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8.方程式:含有未知數的等式叫方程式。

9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15.分數除以整數(0除外),等於分數乘以這個整數的倒數。

16.真分數:分子比分母小的分數叫做真分數。

17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20.一個數除以分數,等於這個數乘以分數的倒數。 21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

D. 小學一至五年級數學公式及定義(人教版)

基本公式:
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式:
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 π d=直徑 r=半徑
(1)周長=直徑×π=2×π×半徑
C=πd=2πr
(2)面積=半徑×半徑×n
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
和差問題的公式:
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
棱長總和:
長方體棱長和=(長+寬+高)
正方體棱長和=棱長×12
熟記下列正反比例關系:
正比例關系:
正方形的周長與邊長成正比例關系
長方形的周長與(長+寬)成正比例關系
圓的周長與直徑成正比例關系
圓的周長與半徑成正比例關系
圓的面積與半徑的平方成正比例關系
常用數量關系:
1.路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工作總量=工作效率×工作時間 工作效率=工作總量÷工作時間 工作時間=工作總量÷工作效率
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
總產量=單產量×面積 單產量=總產量÷面積 面積=總產量÷單產量
單位換算:
長度單位:
一公里=1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=100公畝 1公畝=100平方米
1平方千米=1000000平方米 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體積單位:
1立方千米=1000000000立方米 1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米 1立方分米=1升 1立方厘米=1毫升 1升=1000毫升
重量單位:
1噸=1000千克 1千克=1000克
時間單位:
一世紀=100年 一年=四季度 一年=12月 一年=365天(平年) 一年=366天(閏年)
一季度=3個月 一個月= 3旬(上、中、下) 一個月=30天(小月) 一個月=31天(大月)
一星期=7天 一天=24小時 一小時=60分 一分=60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七個月)
一年中的小月:四月、六月、九月、十一月(四個月)
特殊分數值:
=0.5=50% = 0.25 = 25% = 0.75 = 75%
= 0.2 = 20% = 0.4 = 40% = 0.6 = 60% = 0.8 = 80%
=0.125=12.5% = 0.375 = 37.5% = 0.625 = 62.5% = 0.875 = 87.5%
算術
1、加法交換律:兩數相加交換加數的位置,和不變。 (2)你最敬重卑微者的哪一點,為什麼?
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
一個數除以分數,等於這個數乘以分數的倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數

什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的換算。
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
整除
如果c|a, c|b,那麼c|(a±b)
如果,那麼b|a, c|a
如果b|a, c|a,且(b,c)=1, 那麼bc|a
如果c|b, b|a, 那麼c|a
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
奇數與偶數
偶數:個位是0,2,4,6,8的數。
奇數:個位不是0,2,4,6,8的數。
偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數。
偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數。
如果乘式中有一個數為偶數,那麼乘積一定是偶數。
奇數≠偶數
小數
自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
純小數:個位是0的小數。
帶小數:各位大於0的小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3. 141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數。如3. 141414……
無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
內角和
邊數—2乘180

E. 小學人教版數學1-6年級所有的概念 ,公式。

小學人教版數學1-6年級所有的概念 ,公式。

推薦內容

小學人教版數學1-6年級所有的概念 ,公式。

小學人教版數學1-6年級所有的概念 ,公式

1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑 ?=πr 11、長方體的表面積=(長×寬+長×高+寬×高)×2 12、長方體的體積 =長×寬×高 V =abh 13、正方體的表面積=棱長×棱長×6 S =6a 14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a 15、圓柱的側面積=底面圓的周長×高 S=ch 16、圓柱的表面積=上下底面面積+側面積 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圓柱的體積=底面積×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圓錐的體積=底面積×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、長方體(正方體、圓柱體)的體積=底面積×高 V=Sh 4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高

F. 小學數學所有定義(人教版)

小學數學公式:
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒

G. 小學語文知識點總結人教版1-6年級

搜索「小學語文知識點總結」,在經濟生活網有個很不錯的總結,不知道你是否內是需要這個容。網址在下面,但網路可能會抽。你把頁面拉到最下面,藍色字那裡有個「投訴舉報」。
http://www.economicdaily.com.cn/a/201304/22661.html

H. 小學人教版3.4.5年重點定義

小學數學定義定理公式

必背定義定理公式

三角形的面積=底×高÷2。公式S= a×h÷2

正方形的面積=邊長×邊長公式S= a×a

長方形的面積=長×寬 公式S= a×b

平行四邊形的面積=底×高 公式S= a×h

梯形的面積=(上底+下底)×高÷2 公式S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高 公式:V=abh

長方體(或正方體)的體積=底面積×高公式:V=abh

正方體的體積=棱長×棱長×棱長 公式:V=aaa

圓的周長=直徑×π 公式:L=πd=2πr

圓的面積=半徑×半徑×π 公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面 1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414……
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c

閱讀全文

與小學定義點大全人教版相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99