1. 小學語文1-6年級各年級知識點
一年級【要求掌握拼音的運用,難點把字母表背熟,重點字母的運用】
二年級【要求認專識簡單的字屬,學習閱讀文章,重點多音字的運用,還有字的認識,難點區別多音字】
三年級【要求認識多字,學習作文,難點聯繫上下文,解決課後問題,重點回答問題】
四年級【要求學習作文,寫作文,難點把課文理解,重點作文,閱讀的掌握】
五年級【要求掌握許多多音字,字詞,會寫好作文 難點作文,重點閱讀與作文】
六年級【要求認識很多字,區別很多讀音,字詞,寫好作文,難點閱讀,重點作文與閱讀,通常占整張試卷的60分】
2. 小學1~6年級語文知識點總結大全
小學語文知識點總結——概要
一、拼音
1、聲母、韻母、整體認讀、字母。
2、標調規則:看見a母別放過,沒有a母找o、e、i、u並列標在後。
3、u上兩點省略的規則。(遇到j q x,摘掉烏紗帽)
二、漢字
1、基本筆畫、筆順規則、偏旁部首、間架結構。
2、查字典:能夠熟練地運用音序查字法和部首查字法。
3、 同音字、多音字和形近字。(
2、豎在上面(左橫的左面,在上包下或全包圍結構里,一般光寫,如:戰、岡、圈。
3、「之」「廴」作偏旁的字,和一些下包上的半包圍結構,一般先內後外,如:過、延、畫。
第四
漢字結構
:天、木
左右結構:說、你
上下結構:忠、秀
左中右結構:謝、做
上中下結構:意、喜
全包圍結構:國、園
半包圍結構:同、凶
品安結構:森、晶
小學語文知識點總結——詞語
詞語復習要做到能正確地讀,寫已學過的詞語,理解學過的詞語的意思,並能正確運用。能按要求給詞語進生歸類。
1辨析詞義
辨析詞義的方法:
1、要搞清詞語的感情色彩。例:「團結」和「勾結」,都有一個「為了一個目的聯合和結合「的意思。「團結」用於好的方面,而「勾結」用於壞的方面,指「進行不正當的活動而暗中結合」。
2、注意運用的對象。如:「愛戴」和「愛撫」,前者用於黨、領袖、英雄,後者用於老一輩對後代。
3、注意范圍的大小。如:「遼闊」和「廣闊」,都是指面積廣大,但遼闊比廣闊所指的范圍更大。
4、注意程度的輕重。如:「喜愛」和「酷愛」,都有愛好某事某物之意,但「酷愛」比「喜愛」的程度重。
5、考慮詞語搭配的習慣。如「提高水平」,「改進方法」,「改善生活」等。
2用詞造句
用詞造句要做到:
1、正確理解詞語的意思,注意它的使用習慣,特別要留心這個詞語用在什麼場合,常跟哪些詞語搭配。
2、把意思表達完整。
3詞語的歸類或排列
常見的可以從詞語所代表事物的性質、特點、用途、概念大小,相關相對關系等方面來考慮。
3. 小學數學六年級上冊知識點總結
我有教案,上面有,你自己找吧,選我吧。
1.用數對表示物體的位置。
2.在方格紙上用數對確定位置。
分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算
分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算
例1 倒數的意義
例2 倒數的求法
例1 分數除法的意義
例2 分數除法的計算方法
例3
例4 分數四則混合運算例1 己知一個數的幾分之幾是多少,求這個數的問題
例2 稍復雜的己知一個數的幾分之幾是多少,求這個數的問題
第一小節 比的意義
第二小節 例1 比的基本性質
第三小節 例2 比的應用
認識圓 例1 用一般的物體畫圓
例2 通過折圓的操作活動認識圓
用圓規畫圓
例3 認識圓是軸對稱圖形
圓的周長 探索圓的周長公式、圓周率
例1 圓的周長的計算
圓的面積 探索圓的面積公式
例1 圓的面積計算
例2 圓形的面積計算
4. 小學一至六年級數學知識點
小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
以上回答你滿意么?
5. 小學人教版數學六年級上冊知識點
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
僅供參考:
【和差問題公式】
(和+差)÷2=較大數;
(和-差)÷2=較小數。
【和倍問題公式】
和÷(倍數+1)=一倍數;
一倍數×倍數=另一數,
或 和-一倍數=另一數。
【差倍問題公式】
差÷(倍數-1)=較小數;
較小數×倍數=較大數,
或 較小數+差=較大數。
【平均數問題公式】
總數量÷總份數=平均數。
【一般行程問題公式】
平均速度×時間=路程;
路程÷時間=平均速度;
路程÷平均速度=時間。
【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:
(速度和)×相遇(離)時間=相遇(離)路程;
相遇(離)路程÷(速度和)=相遇(離)時間;
相遇(離)路程÷相遇(離)時間=速度和。
【同向行程問題公式】
追及(拉開)路程÷(速度差)=追及(拉開)時間;
追及(拉開)路程÷追及(拉開)時間=速度差;
(速度差)×追及(拉開)時間=追及(拉開)路程。
【列車過橋問題公式】
(橋長+列車長)÷速度=過橋時間;
(橋長+列車長)÷過橋時間=速度;
速度×過橋時間=橋、車長度之和。
【行船問題公式】
(1)一般公式:
靜水速度(船速)+水流速度(水速)=順水速度;
船速-水速=逆水速度;
(順水速度+逆水速度)÷2=船速;
(順水速度-逆水速度)÷2=水速。
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。
(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。
僅供參考:
【工程問題公式】
(1)一般公式:
工效×工時=工作總量;
工作總量÷工時=工效;
工作總量÷工效=工時。
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾;
1÷單位時間能完成的幾分之幾=工作時間。
(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)
【盈虧問題公式】
(1)一次有餘(盈),一次不夠(虧),可用公式:
(盈+虧)÷(兩次每人分配數的差)=人數。
例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」
解(7+9)÷(10-8)=16÷2
=8(個)………………人數
10×8-9=80-9=71(個)………………………桃子
或8×8+7=64+7=71(個)(答略)
(2)兩次都有餘(盈),可用公式:
(大盈-小盈)÷(兩次每人分配數的差)=人數。
例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(發)
或50×96+200=5000(發)(答略)
(3)兩次都不夠(虧),可用公式:
(大虧-小虧)÷(兩次每人分配數的差)=人數。
例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不夠(虧),另一次剛好分完,可用公式:
虧÷(兩次每人分配數的差)=人數。
(例略)
(5)一次有餘(盈),另一次剛好分完,可用公式:
盈÷(兩次每人分配數的差)=人數。
(例略)
【雞兔問題公式】
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;
總頭數-雞數=兔數。
例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二 (4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答 略)
(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式
(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數
或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。
例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」
解一 (4×1000-3525)÷(4+15)
=475÷19=25(個)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。
例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
【植樹問題公式】
(1)不封閉線路的植樹問題:
間隔數+1=棵數;(兩端植樹)
路長÷間隔長+1=棵數。
或 間隔數-1=棵數;(兩端不植)
路長÷間隔長-1=棵數;
路長÷間隔數=每個間隔長;
每個間隔長×間隔數=路長。
(2)封閉線路的植樹問題:
路長÷間隔數=棵數;
路長÷間隔數=路長÷棵數
=每個間隔長;
每個間隔長×間隔數=每個間隔長×棵數=路長。
(3)平面植樹問題:
佔地總面積÷每棵佔地面積=棵數
【求分率、百分率問題的公式】
比較數÷標准數=比較數的對應分(百分)率;
增長數÷標准數=增長率;
減少數÷標准數=減少率。
或者是
兩數差÷較小數=多幾(百)分之幾(增);
兩數差÷較大數=少幾(百)分之幾(減)。
【增減分(百分)率互求公式】
增長率÷(1+增長率)=減少率;
減少率÷(1-減少率)=增長率。
比甲丘面積少幾分之幾?」
解 這是根據增長率求減少率的應用題。按公式,可解答為
百分之幾?」
解 這是由減少率求增長率的應用題,依據公式,可解答為
【求比較數應用題公式】
標准數×分(百分)率=與分率對應的比較數;
標准數×增長率=增長數;
標准數×減少率=減少數;
標准數×(兩分率之和)=兩個數之和;
標准數×(兩分率之差)=兩個數之差。
【求標准數應用題公式】
比較數÷與比較數對應的分(百分)率=標准數;
增長數÷增長率=標准數;
減少數÷減少率=標准數;
兩數和÷兩率和=標准數;
兩數差÷兩率差=標准數;
【方陣問題公式】
(1)實心方陣:(外層每邊人數)2=總人數。
(2)空心方陣:
(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。
或者是
(最外層每邊人數-層數)×層數×4=中空方陣的人數。
總人數÷4÷層數+層數=外層每邊人數。
例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?
解一 先看作實心方陣,則總人數有
10×10=100(人)
再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是
10-2×3=4(人)
所以,空心部分方陣人數有
4×4=16(人)
故這個空心方陣的人數是
100-16=84(人)
解二 直接運用公式。根據空心方陣總人數公式得
(10-3)×3×4=84(人)
【利率問題公式】利率問題的類型較多,現就常見的單利、復利問題,介紹其計算公式如下。
(1)單利問題:
本金×利率×時期=利息;
本金×(1+利率×時期)=本利和;
本利和÷(1+利率×時期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)復利問題:
本金×(1+利率)存期期數=本利和。
例如,「某人存款2400元,存期3年,月利率為10.2‰(即月利1分零2毫),三年到期後,本利和共是多少元?」
解 (1)用月利率求。
3年=12月×3=36個月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率變成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)