❶ 小學五年級數學日記
6月28日 周二
今天中午,我正在做數學暑假作業。寫著寫著,不幸遇到了一道很難的題,我想了半天也沒想出個所以然,這道題是這樣的:
有一個長方體,正面和上面的兩個面積的積為209平方厘米,並且長、寬、高都是質數。求它的體積。
我見了,心想:這道題還真是難啊!已知的只有兩個面面積的積,要求體積還必須知道長、寬、高,而它一點也沒有提示。這可怎麼入手啊!
正當我急得抓耳撓腮之際,我媽媽的一個同事來了。他先教我用方程的思路去解,可是我對方程這種方法還不是很熟悉。於是,他又教我另一種方法:先列出數,再逐一排除。我們先按題目要求列出了許多數字,如:3、5、7、11等一類的質數,接著我們開始排除,然後我們發現只剩下11和19這兩個數字。這時,我想:這兩個數中有一個是題中長方體正面,上面公用的棱長;一個則是長方體正面,上面除以上一條外另一條
棱長(且長度都為質數)之和。於是,我開始分辯這兩個數各是哪個數。
最後,我得到了結果,為374立方厘米。我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
後來,我又用我本學期學過的知識:分解質因數驗算了這道題,結果一模一樣。
解出這道題後,我心裡比誰都高興。我還明白了一個道理:數學充滿了奧秘,等待著我們去探求。
數學日記二
8月6日 周六
今天晚上,我看見一道會迷惑人的數學題,題目:37個同學要渡河,渡口有一隻能乘上5人的空小船,他們要全部渡過河,至少要使用這只小船多少次?
粗心的人往往會忽略「空小船」,就是忘了要有一個撐船,那麼每次只能乘4人。這樣37人減去一位撐船的同學,剩36位同學,36除以4等於9,最後一次到對岸當船夫的同學也上岸4,所以至少要走9趟。
數學日記三
8月9日 周二
傍晚,我在奧林匹克書中看到一道難題:果園里的蘋果樹是梨樹的3倍,老王師傅每天給50棵蘋果樹20棵梨樹施肥,幾天後,梨樹全部施上肥,但蘋果樹還剩下80棵沒施肥。請問:果園里有蘋果樹和梨樹各多少棵?
我沒有被這道題嚇倒,難題能激發我的興趣。我想,蘋果樹是梨樹的3倍,假如要使兩種樹同一天施完肥,老王師傅就應該每天給「20×3」棵蘋果樹和20棵梨樹施肥。而實際他每天只給50棵蘋果樹施肥,差了10棵,最後共差了80棵,從這里可以得知,老王師傅已經施了8天肥。一天20棵梨樹,8天就是160棵梨樹,再根據第一個條件,可以知道蘋果樹是480棵。這就是用假設的思路來解題,因此我想,假設法實在是一種很好的解題方法。
數學日記四
8月11日 周四
今天我又遇到一道數學難題,費了好大的勁才解出來。題目是:兩棵樹上共有30隻小鳥,乙樹上先飛走4隻,這時甲樹飛向乙樹3隻,兩棵樹上的小鳥剛好相等。兩棵樹上原來各有幾只小鳥?
我一看完題目,就知道這是還原問題,於是用還原問題的方法解。可驗算時卻發現錯了。我便更加認真地重新做起來。我想,少了4隻後一樣多,那一半是13隻,還原乙樹是14隻;甲樹就是16隻。算式為:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案為:甲樹16隻,乙樹14隻。
通過解這道題,我明白了,無論做什麼題,都要細心,否則,即使掌握了解題方法,結果還會出錯。
今天陽光明媚,我正在家中看《小學數學奧林匹克》忽然發現這樣一道題:比較1111/111,11111/1111兩個分數的大小。頓時,我來了興趣,拿起筆在演草紙上「刷刷」地畫了起來,不一會兒,便找到了一種解法。那就是把這兩個假分數化成帶分數,然後利用分數的規律,同分子 分數,分母越小,這個分數就越大。解出1111/111<11111/1111。解完之後,我高興極了,自誇道:「看來,什麼難題都難不倒我了。」正在織毛衣的媽媽聽了我的話,看了看題目,大聲笑道:「喲,我還以為有多難題來,不就是簡單的比較分數大小嗎?」聽了媽媽的話,我立刻生氣起來,說:「什麼呀 ,這題就是難。」說完我又諷刺起媽媽來:「你多高啊,就這題對你來說還不是小菜啊!」媽媽笑了:「好了,好了,不跟你鬧了,不過你要能用兩種方法解這題,那就算高水平了。」我聽了媽媽的話又看了看這道題,還不禁愣了一下「還有一種解法。」我驚訝地說道。「當然了」媽媽說道,「怎麼樣,不會做了吧,看來你還是低水平。」我扣了媽媽的話生氣極了,為了證明我是高水平的人我又做了起來。終於經過我的一番努力,第二種方法出來了,那就是用除法來比較它們之間的大小。你看,一個數如果小於另一個數,那麼這個數除以另一個數商一定是真分數,同理,一個數如果大於另一個數,那麼這個數除以另一個數,商一定大於1。利用這個規律,我用1111/111÷11111/1111,由於這些數太大,所以不能直接相乘,於是我又把這個除法算式改了一下,假設有8個1,讓你組成兩個數,兩個數乘積最大的是多少。不用說,一定是兩個最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那麼也就是1111/111>11111/1111。
今天,我在數學1+2訓練上看到這么一題,在一底面積為648平方厘米的立方體鑄體中,以相對的兩面為底去掉最大的一個圓柱體,求剩下的立體圖形面積是多少?
看到這個題目,我犯糊塗了,想:只告訴一個底面積,這怎麼求啊?坐在椅子上的媽媽看了,嘲笑我說:「哼,還說高水平哩,連這道題都不會做。」
我知道媽媽用的是激將法,目的是激怒我的好勝心,讓我把這題做完。為了讓媽媽認為她的激將法成功了,我就硬著頭皮做了下去,可是怎麼想也理不出頭緒來。但是我並沒灰心,繼續做了下去,我做了出來。
根據圖(要畫圖)可以發現,切掉一個圓柱,又出來一個同原來圓柱同樣大的洞,雖然這洞與圓柱體體積相同,但是它們的表面積並不相同,而是比原來圓柱少了兩個底面的面積。
所以剩下的圖形面積應該等於正方體6個面的面積減去圓柱的兩個底面+圓柱的側面。
列算式是628×6-628×3.14÷4×2+628×3.14
❷ 關於五年級數學日記日記
今天抄晚上,我看見一道會迷惑人的數學題,題目:37個同學要渡河,渡口有一隻能乘上5人的空小船,他們要全部渡過河,至少要使用這只小船多少次?
粗心的人往往會忽略「空小船」,就是忘了要有一個撐船,那麼每次只能乘4人。這樣37人減去一位撐船的同學,剩36位同學,36除以4等於9,最後一次到對岸當船夫的同學也上岸4,所以至少要走9趟。
今天我又遇到一道數學難題,費了好大的勁才解出來。題目是:兩棵樹上共有30隻小鳥,乙樹上先飛走4隻,這時甲樹飛向乙樹3隻,兩棵樹上的小鳥剛好相等。兩棵樹上原來各有幾只小鳥?
我一看完題目,就知道這是還原問題,於是用還原問題的方法解。可驗算時卻發現錯了。我便更加認真地重新做起來。我想,少了4隻後一樣多,那一半是13隻,還原乙樹是14隻;甲樹就是16隻。算式為:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案為:甲樹16隻,乙樹14隻。
❸ 五年級數學日記200~300字2篇
利用除法來比較分數的大小
今天陽光明媚,我正在家中看《小學數學奧林匹克》忽然發現這樣一道題:比較1111/111,11111/1111兩個分數的大小。頓時,我來了興趣,拿起筆在演草紙上「刷刷」地畫了起來,不一會兒,便找到了一種解法。那就是把這兩個假分數化成帶分數,然後利用分數的規律,同分子 分數,分母越小,這個分數就越大。解出1111/111<11111/1111。解完之後,我高興極了,自誇道:「看來,什麼難題都難不倒我了。」正在織毛衣的媽媽聽了我的話,看了看題目,大聲笑道:「喲,我還以為有多難題來,不就是簡單的比較分數大小嗎?」聽了媽媽的話,我立刻生氣起來,說:「什麼呀 ,這題就是難。」說完我又諷刺起媽媽來:「你多高啊,就這題對你來說還不是小菜啊!」媽媽笑了:「好了,好了,不跟你鬧了,不過你要能用兩種方法解這題,那就算高水平了。」我聽了媽媽的話又看了看這道題,還不禁愣了一下「還有一種解法。」我驚訝地說道。「當然了」媽媽說道,「怎麼樣,不會做了吧,看來你還是低水平。」我扣了媽媽的話生氣極了,為了證明我是高水平的人我又做了起來。終於經過我的一番努力,第二種方法出來了,那就是用除法來比較它們之間的大小。你看,一個數如果小於另一個數,那麼這個數除以另一個數商一定是真分數,同理,一個數如果大於另一個數,那麼這個數除以另一個數,商一定大於1。利用這個規律,我用1111/111÷11111/1111,由於這些數太大,所以不能直接相乘,於是我又把這個除法算式改了一下,假設有8個1,讓你組成兩個數,兩個數乘積最大的是多少。不用說,一定是兩個最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那麼也就是1111/111>11111/1111。
今天,我在數學1+2訓練上看到這么一題,在一底面積為648平方厘米的立方體鑄體中,以相對的兩面為底去掉最大的一個圓柱體,求剩下的立體圖形面積是多少?
看到這個題目,我犯糊塗了,想:只告訴一個底面積,這怎麼求啊?坐在椅子上的媽媽看了,嘲笑我說:「哼,還說高水平哩,連這道題都不會做。」
我知道媽媽用的是激將法,目的是激怒我的好勝心,讓我把這題做完。為了讓媽媽認為她的激將法成功了,我就硬著頭皮做了下去,可是怎麼想也理不出頭緒來。但是我並沒灰心,繼續做了下去,我做了出來。
根據圖(要畫圖)可以發現,切掉一個圓柱,又出來一個同原來圓柱同樣大的洞,雖然這洞與圓柱體體積相同,但是它們的表面積並不相同,而是比原來圓柱少了兩個底面的面積。
所以剩下的圖形面積應該等於正方體6個面的面積減去圓柱的兩個底面+圓柱的側面。
列算式是628×6-628×3.14÷4×2+628×3.14
今天又是一個陽光明媚的日子,我在大街上閑逛,突然看到不遠處有很多人圍在一起。我跑過去一年,原來是抓獎游戲。「哼,抓獎有什麼好玩的。」我厭煩地說旁邊的人一聽,連忙說:「抓獎雖不好玩,但有重獎,可吸引人了。」我急切地問:「是什麼呀!」「50元錢。」那人噔大眼睛說。一聽這話,我可來勁了,「這么誘人的的獎品,說什麼,我也得試試。」說完,我便問店主怎麼抓法。店主說:「這是24個麻將,麻將下寫著12個5,12個10,每次只可抓12個麻將,如果12個麻將標的數總和為60,那麼你便可得50元大獎。」我聽了也沒多捲起了袖子,從兜里掏出5元錢給了店主。
盡管,這可以抓10次,但那份大獎我還是沒有拿到。
回到家之後,我想了想,感覺有點不對勁。我想,抓60分,那必須抓得那12個麻將必須都標5,最好的情況就是第1次抓到1個5,第2次抓2個5,第3次抓3個5……第12次抓12個5至少得花去6元錢。但萬一抓得那些麻將標的數是10或有的總和是相同的,那麼得抓多少次花多少錢。
最後經過一番考慮,終於把問題弄清了,我抓緊到街上找那算帳,可已經跑得無影無蹤了。
有粗細不同的兩枝蠟燭,細蠟燭之長是粗蠟燭之長的2倍,細蠟燭點完需1小時,粗蠟燭點完需2小時。有次停電,將這樣的兩枝求用過的蠟燭同時點燃,來電時,發現兩枝蠟燭所剩的長度一樣,問停電多長時間?
解題思路:如高粗蠟燭長為1,燃燒的速度分別為:(1)1÷2=1/2(2)2÷1=2要設停電時間為X小時那麼式子就是:1—1/2X=2—2X分析已知細蠟燭占粗蠟燭的1/2,粗蠟燭就是細蠟燭的2倍,求停電多少小時,也就是第一根燃燒多少時。
解:設停電時間為X小時。
1—1/2X=2—2X
X=2/3
答:停電時間為2/3小時。
今天下午,我在《小學生雙色課課通》上看到了這樣一道題。
一個圓錐底面半徑是8分米,高的長度與底面半徑的比3:2,這個圓錐的體積是多少立方分米?
分析:這是一道按比例分配的應用題與圓錐方面的題相結合的應用題。求圓錐的體積是多少,要知道圓錐的底面積和高,題中告訴了底面半徑,可求出底面積,而高卻不知道,可以根據一個條件求出,可將比轉化成一個數占已知數的幾分之幾,即可知道高占底面半徑的3/2。算出高後,然後根據「V=SH÷3」算出圓錐的體積。
每逢清明節,巨山上便會人山人海,於是一些騙子便想出了一些騙人的把戲來騙人,比如:像圓盤賭物。
道具非常簡單,在一塊木板上畫一個大圓,大圓中心用釘子固定一根可以轉動的指針。大圓被分成24個相等的格,格內的針可以轉,格內分別寫著1—24個相等的數,在單數格中沒有值錢的,而雙數中差不多都是值錢的。
玩法也很簡單,把指針先撥到1,然後你撥動指針,指針就開始旋轉,最後停在某個格內,接著再按著指針所在的格上標的數,再把指針撥動,N-1格,N是格子上所標的數。
這只不過是一個小小的數學游戲,其實你無論撥到哪格,只能吃虧,不能得利。因為當指針轉到奇數格上,撥動的格數便是奇數-1=偶數,奇數+偶數只等於奇數,所以不可能轉到偶數格上,就得不到值錢的東西,假如指針轉到偶數格上,撥動的格數便是偶數-1=奇數,奇數+偶數=奇數,還不能得到值錢的東西。
今天我聽了一節用多媒體進行教學《質數和合數》的一堂公開課,聽後彼有一番感慨,本來運用多媒體進行教學是為了幫助教者的一種組織手段,能夠更好得為教學服務,增加教學的新穎性、獨特性、深化性,更加具有吸引性,這么長一段時間提出對學生進行素質化教學,但是聽了幾節運用多媒體進行教學的課,卻都流露出注入式的影子,不錯注入教學以前已經紮根,但我們一定在平時的教學中得慢慢改之;另一方面運用多媒體教學更能調動學生的積極性,教學是圍繞學生服務的並不是圍繞計算機服務。是否能引出廣大一線教師的共鳴!
今天是一個陽光明媚的中午,我正在家裡看數學報,無意中看到求比值與化簡比這個題目,我想這不是上學期學過的嗎?但是我又一想,我還是看一看吧!
「求比值」與「化簡比」之間既有區別,又有聯系。同學們學習時,要注意以下幾點:
1、求比值的目的是求一比的前項除以後項的結果;化簡比的目的是把一比化成和它相等並且前、後項互質的整數比。
2、求比值與化簡比的方法類似。有以下幾種:
(1)運用比的基本性質。如:
5/6∶1/2=(5/6×6)∶(1/2×6)①比值為5/3;②化簡比為5∶3。
(2)運用比與除法的關系。如:
6.3∶0.9=6.3÷0.9①比值為7;②化簡比為7∶1。
(3)運用比與分數的關系。如:
16∶20=16/20=4/5①比值為4/5或0.8;②化簡比為4∶5。
3、求比值的結果是一個數,可以是整數,也可以是小數和分數;化簡比的結果是一個比,它可以寫成真分數或假分數的形式(見上例),不能寫成整數、小數或帶分數的,化簡比的結果要讀成幾比幾,如:16∶20化簡比為4/5,應讀作:4∶5。
通過這就可看出,只要我們多看一些關於數學方面的資料,你的成績會提高的。
❹ 小學五年級數學日記300字,快..急急急急急!
動物中的數學「天才」 ——蜜蜂
蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。 丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契」? 蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。 冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。 真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。
❺ 五年級數學日記怎麼寫
萬花筒---六年級學生數學日記
2月10日 星期三 晴
八路實驗小學六(7)班馬維力
利用除法來比較分數的大小
今天陽光明媚,我正在家中看《小學數學奧林匹克》忽然發現這樣一道題:比較1111/111,11111/1111兩個分數的大小。頓時,我來了興趣,拿起筆在演草紙上「刷刷」地畫了起來,不一會兒,便找到了一種解法。那就是把這兩個假分數化成帶分數,然後利用分數的規律,同分子 分數,分母越小,這個分數就越大。解出1111/111<11111/1111。解完之後,我高興極了,自誇道:「看來,什麼難題都難不倒我了。」正在織毛衣的媽媽聽了我的話,看了看題目,大聲笑道:「喲,我還以為有多難題來,不就是簡單的比較分數大小嗎?」聽了媽媽的話,我立刻生氣起來,說:「什麼呀 ,這題就是難。」說完我又諷刺起媽媽來:「你多高啊,就這題對你來說還不是小菜啊!」媽媽笑了:「好了,好了,不跟你鬧了,不過你要能用兩種方法解這題,那就算高水平了。」我聽了媽媽的話又看了看這道題,還不禁愣了一下「還有一種解法。」我驚訝地說道。「當然了」媽媽說道,「怎麼樣,不會做了吧,看來你還是低水平。」我扣了媽媽的話生氣極了,為了證明我是高水平的人我又做了起來。終於經過我的一番努力,第二種方法出來了,那就是用除法來比較它們之間的大小。你看,一個數如果小於另一個數,那麼這個數除以另一個數商一定是真分數,同理,一個數如果大於另一個數,那麼這個數除以另一個數,商一定大於1。利用這個規律,我用1111/111÷11111/1111,由於這些數太大,所以不能直接相乘,於是我又把這個除法算式改了一下,假設有8個1,讓你組成兩個數,兩個數乘積最大的是多少。不用說,一定是兩個最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那麼也就是1111/111>11111/1111。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:36:26
--
2月12日 星期五晴
八路實驗小學六(7)班 馬維力
今天,我在數學1+2訓練上看到這么一題,在一底面積為648平方厘米的立方體鑄體中,以相對的兩面為底去掉最大的一個圓柱體,求剩下的立體圖形面積是多少?
看到這個題目,我犯糊塗了,想:只告訴一個底面積,這怎麼求啊?坐在椅子上的媽媽看了,嘲笑我說:「哼,還說高水平哩,連這道題都不會做。」
我知道媽媽用的是激將法,目的是激怒我的好勝心,讓我把這題做完。為了讓媽媽認為她的激將法成功了,我就硬著頭皮做了下去,可是怎麼想也理不出頭緒來。但是我並沒灰心,繼續做了下去,我做了出來。
根據圖(要畫圖)可以發現,切掉一個圓柱,又出來一個同原來圓柱同樣大的洞,雖然這洞與圓柱體體積相同,但是它們的表面積並不相同,而是比原來圓柱少了兩個底面的面積。
所以剩下的圖形面積應該等於正方體6個面的面積減去圓柱的兩個底面+圓柱的側面。
列算式是628×6-628×3.14÷4×2+628×3.14
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:36:49
--
2月14日 星期六 晴
八路實驗小學六(7)班馬維力
今天又是一個陽光明媚的日子,我在大街上閑逛,突然看到不遠處有很多人圍在一起。我跑過去一年,原來是抓獎游戲。「哼,抓獎有什麼好玩的。」我厭煩地說旁邊的人一聽,連忙說:「抓獎雖不好玩,但有重獎,可吸引人了。」我急切地問:「是什麼呀!」「50元錢。」那人噔大眼睛說。一聽這話,我可來勁了,「這么誘人的的獎品,說什麼,我也得試試。」說完,我便問店主怎麼抓法。店主說:「這是24個麻將,麻將下寫著12個5,12個10,每次只可抓12個麻將,如果12個麻將標的數總和為60,那麼你便可得50元大獎。」我聽了也沒多捲起了袖子,從兜里掏出5元錢給了店主。
盡管,這可以抓10次,但那份大獎我還是沒有拿到。
回到家之後,我想了想,感覺有點不對勁。我想,抓60分,那必須抓得那12個麻將必須都標5,最好的情況就是第1次抓到1個5,第2次抓2個5,第3次抓3個5……第12次抓12個5至少得花去6元錢。但萬一抓得那些麻將標的數是10或有的總和是相同的,那麼得抓多少次花多少錢。
最後經過一番考慮,終於把問題弄清了,我抓緊到街上找那算帳,可已經跑得無影無蹤了。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:37:21
--
2月16日 星期一晴
八路實驗小學 六(7)班 歐創
題目:有粗細不同的兩枝蠟燭,細蠟燭之長是粗蠟燭之長的2倍,細蠟燭點完需1小時,粗蠟燭點完需2小時。有次停電,將這樣的兩枝求用過的蠟燭同時點燃,來電時,發現兩枝蠟燭所剩的長度一樣,問停電多長時間?
解題思路:如高粗蠟燭長為1,燃燒的速度分別為:(1)1÷2=1/2(2)2÷1=2要設停電時間為X小時那麼式子就是:1—1/2X=2—2X分析已知細蠟燭占粗蠟燭的1/2,粗蠟燭就是細蠟燭的2倍,求停電多少小時,也就是第一根燃燒多少時。
解:設停電時間為X小時。
1—1/2X=2—2X
X=2/3
答:停電時間為2/3小時。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:37:57
--
2月18日星期三晴
八路實驗小學六(7)班 徐瑞祥
今天下午,我在《小學生雙色課課通》上看到了這樣一道題。
一個圓錐底面半徑是8分米,高的長度與底面半徑的比3:2,這個圓錐的體積是多少立方分米?
分析:這是一道按比例分配的應用題與圓錐方面的題相結合的應用題。求圓錐的體積是多少,要知道圓錐的底面積和高,題中告訴了底面半徑,可求出底面積,而高卻不知道,可以根據一個條件求出,可將比轉化成一個數占已知數的幾分之幾,即可知道高占底面半徑的3/2。算出高後,然後根據「V=SH÷3」算出圓錐的體積。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:38:34
--
2月21日星期六陰
八路實驗小學六(7)班王光普
生活中的小發現
今天早晨,我製作了一個小電燈,用的是兩節電池和一根鋼絲和一個小電燈泡製做的,先准備了兩個電燈泡,生怕晚上玩的時候會閃了。到了晚上,我出去轉悠一圈,我拿出了小電燈一照了一圈,我發現有時照出一個面,有時照出的是一條線,這是一次意想不到的小發現,給我帶來了興趣,去探索它到底為什麼並且獲得了答案。它不但給我帶來了對數學的興趣,又提高了我對生活新的看法,希望大家在生活中,要勤於發現,要做一個善於觀察、善於思考的好學生。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:39:19
--
2月22日 星期日陰
八路實驗小學六(7)班馬維力
這幾天我一直在思考著另外一種求圓柱體積的方法,憑著我的感覺我列出了這樣一個算式:直徑×直徑×高×3.14÷4。
放學回到家,我就開始證明這個式子到底對不對,我試了一下,用課本上的解法和我的這種解法來算一個圓柱的體積完全一樣,我又試了很多次結果都一樣。
我感到非常地納鬧,我的這種解法到底是什麼意思,經過我一番的思考和證明發現原來是把圓柱看成一個相當於直徑和高相等的正方體。然後求出正方體的體積,再根據圓柱與正方體的比是:3.14∶4就成了一個圓柱的體積了。
這只是我個人的想法,請廣大愛好者參與研究,給予指正。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:40:00
--
2月28日星期六 晴
八路實驗小學六(7)班侯京
今天我在看報紙的時候看見了這樣一個題目:求圓錐的表面積。
[題目]一個圓錐,底面直徑是6米,圓錐的頂點到底面圓周上任點長是5米,求這個圓錐的表面積。
我雖沒有學習過求圓錐的表面積,但已經學習過圓柱的表面積,通過圓柱的表面積的解題方法知道:圓柱的表面積等於一個側面加上兩個底面積,而圓錐的表面積就是一個側面積加上一個底面積,側面是一個扇形,我雖沒學過但我查了資料知道求扇形的面積是:扇形的面積=弧長×圓半徑×1/2,題目中已經告訴了我們圓錐頂點到底面圓周上任一點長是5米,而弧長是3.14×6=18.84(米),扇形面積是18.84×5×1/2=47.1(平方米),最後用扇形面積加上底面積,就得到圓錐的表面積:47.1+3.14×(6/2)×(6/2)=75.36(平方米)。
數學是思維的體操,我們只要勤學善思,就一定會攻克難題,走上成功之路!
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:40:31
--
2月27日 星期六陰
八路實驗小學六(7)班 馬維力
今天,我學習了比例的基本性質,我感到萬分的不解,為什麼比例的外項之積等於內項之積。我經過了冥思苦想終天明白了。
假如 b/a=c/d,將a擴大d倍,要想使比值不變,也必須將b擴大a倍,也就變成了bd/ad;再把等號右邊比中的d擴大a倍,要想使比值不變,也要把c擴大a倍,就變成了ca/da。那麼比例就變成了bd/ad=ca/da,把等號左右的ad消去,所以就變成了ad=ca。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:41:01
--
3月2日星期二 晴
八路實驗小學六(7)班馬維力
每逢清明節,巨山上便會人山人海,於是一些騙子便想出了一些騙人的把戲來騙人,比如:像圓盤賭物。
道具非常簡單,在一塊木板上畫一個大圓,大圓中心用釘子固定一根可以轉動的指針。大圓被分成24個相等的格,格內的針可以轉,格內分別寫著1—24個相等的數,在單數格中沒有值錢的,而雙數中差不多都是值錢的。
玩法也很簡單,把指針先撥到1,然後你撥動指針,指針就開始旋轉,最後停在某個格內,接著再按著指針所在的格上標的數,再把指針撥動,N-1格,N是格子上所標的數。
這只不過是一個小小的數學游戲,其實你無論撥到哪格,只能吃虧,不能得利。因為當指針轉到奇數格上,撥動的格數便是奇數-1=偶數,奇數+偶數只等於奇數,所以不可能轉到偶數格上,就得不到值錢的東西,假如指針轉到偶數格上,撥動的格數便是偶數-1=奇數,奇數+偶數=奇數,還不能得到值錢的東西。
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:41:37
--
3月8日 星期一 晴
今天我聽了一節用多媒體進行教學《質數和合數》的一堂公開課,聽後彼有一番感慨,本來運用多媒體進行教學是為了幫助教者的一種組織手段,能夠更好得為教學服務,增加教學的新穎性、獨特性、深化性,更加具有吸引性,這么長一段時間提出對學生進行素質化教學,但是聽了幾節運用多媒體進行教學的課,卻都流露出注入式的影子,不錯注入教學以前已經紮根,但我們一定在平時的教學中得慢慢改之;另一方面運用多媒體教學更能調動學生的積極性,教學是圍繞學生服務的並不是圍繞計算機服務。是否能引出廣大一線教師的共鳴!
--------------------------------------------------------------------------------
--作者:翱翔
--發布時間:2004-3-20 13:42:16
--
3月6日星期六晴
八路實驗小學六(7)班侯晶晶
今天是一個陽光明媚的中午,我正在家裡看數學報,無意中看到求比值與化簡比這個題目,我想這不是上學期學過的嗎?但是我又一想,我還是看一看吧!
「求比值」與「化簡比」之間既有區別,又有聯系。同學們學習時,要注意以下幾點:
1、求比值的目的是求一比的前項除以後項的結果;化簡比的目的是把一比化成和它相等並且前、後項互質的整數比。
2、求比值與化簡比的方法類似。有以下幾種:
(1)運用比的基本性質。如:
5/6∶1/2=(5/6×6)∶(1/2×6)①比值為5/3;②化簡比為5∶3。
(2)運用比與除法的關系。如:
6.3∶0.9=6.3÷0.9①比值為7;②化簡比為7∶1。
(3)運用比與分數的關系。如:
16∶20=16/20=4/5①比值為4/5或0.8;②化簡比為4∶5。
3、求比值的結果是一個數,可以是整數,也可以是小數和分數;化簡比的結果是一個比,它可以寫成真分數或假分數的形式(見上例),不能寫成整數、小數或帶分數的,化簡比的結果要讀成幾比幾,如:16∶20化簡比為4/5,應讀作:4∶5。
通過這就可看出,只要我們多看一些關於數學方面的資料,你的成績會提高的。
❻ 小學五年級的數學日記400字以上
你們知道算式:91+92+93+94+95+96+97有幾種解法嗎?也許你會認為只有一種或兩種,那讓我告訴你們這題有三種解法.
第一種:這幾個數是公差為1的可用等差數列求和公式直接計算.
(91+97)*7/2=188*7/2=658
第二種:因這幾個,都很接近100,我們把這7個數看成100相加,這樣多加了9+8+7+6+5+4+3,最後用700減去這幾個數的和即可.
91+92+93+94+95+96+97=100*7-(9+8+7+6+5+4+3)=700-42=658
第三種:這7個連續的自然數中,94在最中間,第一個數91比最後一個數97少6,再把6平分給91,使91與97變成2個94,同樣,92與96,93與95都可變成94,這樣7個數就變成了7個94,原題變成:
91+92+93+94+95+96+97=94*7=658
今天我又遇到一道數學難題,費了好大的勁才解出來.題目是:兩棵樹上共有30隻小鳥,乙樹上先飛走4隻,這時甲樹飛向乙樹3隻,兩棵樹上的小鳥剛好相等.兩棵樹上原來各有幾只小鳥?
我一看完題目,就知道這是還原問題,於是用還原問題的方法解.可驗算時卻發現錯了.我便更加認真地重新做起來.我想,少了4隻後一樣多,那一半是13隻,還原乙樹是14隻;甲樹就是16隻.算式為:(30―4)÷2=13(只);13―3+4=14(只);30―14=16(只).答案為:甲樹16隻,乙樹14隻.
通過解這道題,我明白了,無論做什麼題,都要細心,否則,即使掌握了解題方法,結果還會出錯.
❼ 五年級數學日記
天是星期六,我一個人在家,睡醒覺來已經8:30了,我立刻跳下床,這時媽媽打來了一個電話,囑咐了我一番,接這個電話我花了五分鍾,我迅速換衣服,刷牙洗臉。然後直奔餐桌吃早飯,我又花了十五分鍾,15+5=20(分鍾),8:30+20=8:50(分鍾)12:00—8:50=3:50(分),還有三小時五十分鍾就到中午了,我走回小房時正好9:00整,我忙拿出作業本開始寫作業,我花了一個小時的時間寫作業,9:00+1:00=10:00,12:00—10:00=2(小時),還有兩小時!這時我發現沒面條了,於是帶了30元去新生力商場買面條。
到了商場,我看見有兩種面條供我選擇,一種是450克,4.5元,一種是400克,是第一種面條的價錢的3分之2,4.5÷3=1.5(元),1.5×2=3(元),我一個人在家吃飯,一點點就夠了,於是我選擇了第2種面條,還節省了父母的血汗錢,一舉兩得,我突然又想起來媽媽讓我買五個羽毛球,羽毛球兩元一個,5×2=10(元),10+3=13(元),30—13=17(元),唉,沒辦法,本來想剩多點的,現在只能剩這么多了。
回到家裡,10;20分,我先准備好了兩個雞蛋,然後看電視去了。
時間一晃到了12:00,我連忙下面條,打雞蛋,過了20分鍾,一碗熱氣騰騰的面條煮好了,我狼吞虎咽地吃完了面條,疲倦的上床睡午覺了。
睡完午覺醒來4:00了,還差兩個小時爸爸媽媽就要回來了,我無事可干,突然看見一堆沒洗的衣服,我立刻沖過去開始洗衣服。
我每洗一件衣服要五分鍾,一共有八件衣服,我把八件衣服平均分成兩堆,8÷2=4(件),每堆四件衣服,我一共要8×5=40(分鍾)才能洗完衣服,沒辦法,只能硬著頭皮往下洗了。
洗完衣服已是5:00鍾了,洗衣服40分鍾,再加上醒來活動了十分鍾,爸媽提早回來了,看見了我所做的一切,都直誇我能幹呢!
這次「小鬼當家」的經歷太有趣了,我增強了自己的自立性,雖然是一些簡單數學題,但還使我懂得了怎樣用數學知識更好地為父母理財了。