⑴ 小學五六年級奧數題30道帶答案!!
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.
偶數與整數的積是偶數.
性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.
⑵ 小學六年級行程問題奧數題
車速比=1:(抄1+20%)=5:6
時間比襲(與車速比成反比)=6:5
原計劃時間=1÷5/6=6(小時)
車速比=1:(1+25%)=4:5
時間比=5:4
40分鍾=2/3小時 1-4/5=1/5
2/3÷1/5=10/3(小時)
6-10/3=8/3(小時)
120÷8/3×6=270(千米)
答:甲乙兩地相差270千米。
⑶ 六年級奧數行程問題完整知識解析
設乙速度為x
(4-0.5)(x+1.5)+(4-40/60)x=39*3
x=16.35(km/h) x+1.5=17.85(km/h)
2. 如果拋去修車時間,故障點提速,將提前2-1小時到達,專而全程用提速的,屬將提前4小時,設車速為x,則,5.7*(20-3)=3x,x=32.3,故障前部分提前3小時,故障後提前1小時,故障前後路程之比為3:1
則全程 20*32.3*(4/3)=861.3(公里)
⑷ 行程問題,小學六年級奧數題
車速減少10%,為原來抄的:
1-10%=9/10
時間與速度成反比,原來的10/9
比原來多了10/9-1=1/9,為1小時
所以原定時間為1/(1/9)=9小時
車速提高20%,為原來的:
1+20%=6/5
所用時間為原來的5/6
比原速度是少了1-5/6=1/6
所以按原速度行駛這段路程需要:
1/(1/6)=6小時
那麼按原速度行駛180千米需要:
9-6=3小時
所以甲乙兩地相距:
9/3 *180=540千米
或者:
原速度為每小時180/3=60千米
甲乙相距:60×9=540千米
⑸ 小學六年級奧數行程應用題
設從甲地到乙地的途中上坡為x千米,下坡為y千米
x/20+y/35=9
因為從乙地回到甲地原來的上版坡變成了下坡權,下坡變成了上坡,所以
x/35+y/20=15/2
根據以上兩個式子得出結果
x=140 y=70
所以上坡路為140千米,下坡路為70千米
⑹ 小學六年級奧數應用題
1、解:設王林家上月的收入為X元,則成紅家上月的收入為5/8X元。
因為月底王林家結餘720元,所以王林家本月的開支為;
上月的收入-月底的結余=X-720
因為成紅結餘810元,所以成紅家本月的開支為:5/8X-810,因為本月開支錢數比是8:3,所以
(X-720):(5/8X-810)=8:3
X=2160
成紅家收入:2160*5/8=1350元
2、解:設閱覽室原來是X人。
(1/3X+4):(X+4)=5:13
X=48
答:閱覽室原來是48人.
⑺ 小學六年級奧數題,關於行程問題,相遇
第一抄次相遇,兩人合走了一個全程,其中甲走了600米。
第二次相遇,兩人合走了2個全程,其中甲走了600×2=1200(米)
A、B兩地的距離為:600+1200-100=1700(米)
雙方的速度擴大以後,只是相遇的時間縮短了,各自走的路程不變。
請採納答案,支持我一下。
⑻ 奧數題 六年級行程問題
第一輛車是在八點51分出發的。
解:假設九點12分時,第二輛車回行駛的路程為答x,則此時第一輛車行駛的路程為3x,
由於兩輛車的速度相同,那麼從九點12分到九點19分,兩車行駛的距離是相等的,設在這7分鍾內兩車行駛的距離為y,那麼,可得:
2(x+y)=3x+y
有該關系式很容易得到x=y,也就是說在九點12分的時候第二輛車已經行駛了7分鍾的路,而第一輛車已經行駛了三倍的7分鍾的路,也就是已經行駛了21分鍾。
由此從九點12分向前推21分鍾就不難得到第一輛車是在八點51分出發的。