⑴ 這是小學高斯數學5年紀的題!求詳細解答方法
請採納
⑵ 能力沖刺高斯數學六年級下冊答案
這是一則小故事,摘抄一下公式,就ok了,^_^
高斯念小學的時候,有一次在內老師教完加法後,所容以便出了一道題目要同學們算算看,題目是:
1+2+3+
..
+97+98+99+100
=
?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被
高。
⑶ 高斯數學六年級上課本答案
這是一則小故事來,摘抄一下公式,自就OK了,^_^ 高斯念小學的時候,有一次在老師教完加法後,所以便出了一道題目要同學們算算看,題目是: 1+2+3+ .. +97+98+99+100 = ? 老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高。
⑷ 高斯數學課本提高體系蘇教版六年級秋季,作業本答案
這個可以去網路搜一搜,資源應該有的
⑸ 高斯數學培優期中考試試卷六年級暑假,有的話拍照發
assss數學新概念奧林匹克數學高斯四年級搜索資料
⑹ 六年級奧數題(簡單一點比較好)
「中國剩餘定理」算理及其應用:(可以讓你學會並考別人)
為什麼這樣解呢?因為70是5和7的公倍數,且除以3餘1。21是3和7的公倍數,且除以5餘1。15是3和5的公倍數,且除以7餘1。(任何一個一次同餘式組,只要根據這個規律求出那幾個關鍵數字,那麼這個一次同餘式組就不難解出了。)把70、21、15這三個數分別乘以它們的余數,再把三個積加起來是233,符合題意,但不是最小,而105又是3、5、7的最小公倍數,去掉105的倍數,剩下的差就是最小的一個答案。
用歌訣解題容易記憶,但有它的局限性,只能限於用3、5、7三個數去除,用其它的數去除就不行了。後來我國數學家又研究了這個問題,運用了像上面分析的方法那樣進行解答。
例1:一個數被3除餘1,被4除餘2,被5除餘4,這個數最小是幾?
題中3、4、5三個數兩兩互質。
則〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
為了使20被3除餘1,用20×2=40;
使15被4除餘1,用15×3=45;
使12被5除餘1,用12×3=36。
然後,40×1+45×2+36×4=274,
因為,274>60,所以,274-60×4=34,就是所求的數。
例2:一個數被3除餘2,被7除餘4,被8除餘5,這個數最小是幾?
題中3、7、8三個數兩兩互質。
則〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
為了使56被3除餘1,用56×2=112;
使24被7除餘1,用24×5=120。
使21被8除餘1,用21×5=105;
然後,112×2+120×4+105×5=1229,
因為,1229>168,所以,1229-168×7=53,就是所求的數。
例3:一個數除以5餘4,除以8餘3,除以11餘2,求滿足條件的最小的自然數。
題中5、8、11三個數兩兩互質。
則〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
為了使88被5除餘1,用88×2=176;
使55被8除餘1,用55×7=385;
使40被11除餘1,用40×8=320。
然後,176×4+385×3+320×2=2499,
因為,2499>440,所以,2499-440×5=299,就是所求的數。
例4:有一個年級的同學,每9人一排多5人,每7人一排多1人,每5人一排多2人,問這個年級至少有多少人?(幸福123老師問的題目)
題中9、7、5三個數兩兩互質。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除餘1,用35×8=280;
使45被7除餘1,用45×5=225;
使63被5除餘1,用63×2=126。
然後,280×5+225×1+126×2=1877,
因為,1877>315,所以,1877-315×5=302,就是所求的數。
例5:有一個年級的同學,每9人一排多6人,每7人一排多2人,每5人一排多3人,問這個年級至少有多少人?(澤林老師的題目)
題中9、7、5三個數兩兩互質。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除餘1,用35×8=280;
使45被7除餘1,用45×5=225;
使63被5除餘1,用63×2=126。
然後,280×6+225×2+126×3=2508,
因為,2508>315,所以,2508-315×7=303,就是所求的數。
(例5與例4的除數相同,那麼各個余數要乘的「數」也分別相同,所不同的就是最後兩步。)
「中國剩餘定理」簡介:
我國古代數學名著《孫子算經》中,記載這樣一個問題:「今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何。」用現在的話來說就是:「有一批物品,三個三個地數餘二個,五個五個地數餘三個,七個七個地數餘二個,問這批物品最少有多少個。」這個問題的解題思路,被稱為「孫子問題」、「鬼谷算」、「隔牆算」、「韓信點兵」等等。
那麼,這個問題怎麼解呢?明朝數學家程大位把這一解法編成四句歌訣:
三人同行七十(70)稀,
五樹梅花廿一(21)枝,
七子團圓正月半(15),
除百零五(105)便得知。
歌訣中每一句話都是一步解法:第一句指除以3的余數用70去乘;第二句指除以5的余數用21去乘;第三句指除以7的余數用15去乘;第四句指上面乘得的三個積相加的和如超過105,就減去105的倍數,就得到答案了。即:
70×2+21×3+15×2-105×2=23
《孫子算經》的「物不知數」題雖然開創了一次同餘式研究的先河,但由於題目比較簡單,甚至用試猜的方法也能求得,所以尚沒有上升到一套完整的計算程序和理論的高度。真正從完整的計算程序和理論上解決這個問題的,是南宋時期的數學家秦九韶。秦九韶於公元1247年寫成的《數書九章》一書中提出了一個數學方法「大衍求一術」,系統地論述了一次同餘式組解法的基本原理和一般程序。
從《孫子算經》到秦九韶《數書九章》對一次同餘式問題的研究成果,在19世紀中期開始受到西方數學界的重視。1852年,英國傳教士偉烈亞力向歐洲介紹了《孫子算經》的「物不知數」題和秦九韶的「大衍求一術」;1876年,德國人馬蒂生指出,中國的這一解法與西方19世紀高斯《算術探究》中關於一次同餘式組的解法完全一致。從此,中國古代數學的這一創造逐漸受到世界學者的矚目,並在西方數學史著作中正式被稱為「中國剩餘定理」。
還有一些測試題
六年級奧數測試題
(每道題都要寫出詳細解答過程)
1. 三個數的和是555,這三個數分別能被3,5,7整除,而且商都相同,求這三個數。
2. 已知A是一個自然數,它是15的倍數,並且它的各個數位上的數字只有0和8兩種,問A最小是幾?
3. 把自然數依次排成以下數陣:
1,2,4,7,…
3,5,8,…
6,9,…
10,…
…
現規定橫為行,縱為列。求
(1) 第10行第5列排的是哪一個數?
(2) 第5行第10列排的是哪一個數?
(3) 2004排在第幾行第幾列?
4. 三個質數的乘積恰好等於它們的和的11倍,求這三個質數。
5. 有兩個整數,它們的和恰好是兩個數字相同的兩位數,它們的乘積恰好是三個數字相同的三位數。求這兩個整數。
6. 在800米的環島上,每隔50米插一面彩旗,後來又增加了一些彩旗,就把彩旗的間隔縮短了,起點的彩旗不動,重新插完後發現,一共有4根彩旗沒動,問現在的彩旗間隔多少米?
7. 13511,13903,14589被自然數m除所得余數相同,問m最大值是多少?
8. 求1到200的自然數中不能被2、3、5中任何一個數整除的數有多少個?
9. 有一列數:1,999,998,1,997,996,1,…從第3個數起,每一個數都是它前面2個數中大數減小數的差。求從第1個數起到999個數這999個數之和。
10. 從200到1800的自然數中有奇數個約數的數有多少個?
11. 在下圖中,有左右兩個一樣的等腰直角三角形,其面積都是100,分別沿著圖中的虛線剪下兩個小正方形,請你求一下兩個正方形的面積各是多少,並比較大小。
12. 甲說:「我和乙、丙共有100元。」乙說:「如果甲的錢是現有的6倍,我的錢是現有的1/3,丙的錢不變,我們三人仍有錢100元。」丙說:「我的錢連30元都不到。」問三人原來各有多少錢?
13. B兩人要到沙漠中探險,他們每天向沙漠深處走20千米,已知每人最多可攜帶一個人24天的食物和水,如果不準將部分食物存放於途中,問其中一個人最遠可以深入沙漠多少千米(要求最後兩人返回出發點)?如果可以將部分食物存放於途中以備返回時取用呢?
14. 一筆獎金分一等獎、二等獎和三等獎。每個一等獎的獎金是每個二等獎金的2倍,每個二等獎的獎金是每個三等獎獎金的2倍。如果評一、二、三等獎各兩人,那麼每個一等獎的獎金是308元;如果評一個一等獎,兩個二等獎,三個三等獎,那麼一等獎的獎金是多少元?
15. 把1296分為甲、乙、丙、丁四個數,如果甲數加上2,乙數減去2,丙數乘以2,丁數除以2,則四個數相等。求這四個數各是多少?
⑺ 6年級、高斯掃雷游戲數學題例題
答案:60秒
三人所用時間比為9:12:14
多的20秒就是12比9多的3。
而9裡面有三個3,所以3*20=60秒
⑻ 六年級奧數題140道
1、大小兩桶油,重量比是7:3,如果從大桶取出12千克倒入小桶,則兩桶油中的油正好相等。兩桶油原來各有多少油?
12/2*10=60(千克)
7+3=10
60/10*7=42(千克)
60/10*3=18(千克)
答:大桶里有42千克油,
小桶里有18千克油。
2、一桶汽油,桶的重量是油的8%,倒出48千克後,油的重量相當於同的二分之一,原有油多少千克?
48/(1-8%*0.5)
=48/96%
=50(千克)
答:原有油50千克。
*=乘號
/=除號
回答者: 叛逆精靈屋 - 魔法學徒 一級 2-4 17:50
查看用戶評論(3)>>
評價已經被關閉 目前有 2 個人評價
好
50% (1) 不好
50% (1)
相關內容
• 六年級 奧數題
• 五年級奧數題目哦
• 幫我算一下這道六年級奧數題。
• 六年級奧數題
• 誰有三年級奧數題目
更多相關問題>>
查看同主題問題:六年級 奧數題
其他回答 共 1 條
中國剩餘定理」算理及其應用:(可以讓你學會並考別人)
為什麼這樣解呢?因為70是5和7的公倍數,且除以3餘1。21是3和7的公倍數,且除以5餘1。15是3和5的公倍數,且除以7餘1。(任何一個一次同餘式組,只要根據這個規律求出那幾個關鍵數字,那麼這個一次同餘式組就不難解出了。)把70、21、15這三個數分別乘以它們的余數,再把三個積加起來是233,符合題意,但不是最小,而105又是3、5、7的最小公倍數,去掉105的倍數,剩下的差就是最小的一個答案。
用歌訣解題容易記憶,但有它的局限性,只能限於用3、5、7三個數去除,用其它的數去除就不行了。後來我國數學家又研究了這個問題,運用了像上面分析的方法那樣進行解答。
例1:一個數被3除餘1,被4除餘2,被5除餘4,這個數最小是幾?
題中3、4、5三個數兩兩互質。
則〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
為了使20被3除餘1,用20×2=40;
使15被4除餘1,用15×3=45;
使12被5除餘1,用12×3=36。
然後,40×1+45×2+36×4=274,
因為,274>60,所以,274-60×4=34,就是所求的數。
例2:一個數被3除餘2,被7除餘4,被8除餘5,這個數最小是幾?
題中3、7、8三個數兩兩互質。
則〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
為了使56被3除餘1,用56×2=112;
使24被7除餘1,用24×5=120。
使21被8除餘1,用21×5=105;
然後,112×2+120×4+105×5=1229,
因為,1229>168,所以,1229-168×7=53,就是所求的數。
例3:一個數除以5餘4,除以8餘3,除以11餘2,求滿足條件的最小的自然數。
題中5、8、11三個數兩兩互質。
則〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
為了使88被5除餘1,用88×2=176;
使55被8除餘1,用55×7=385;
使40被11除餘1,用40×8=320。
然後,176×4+385×3+320×2=2499,
因為,2499>440,所以,2499-440×5=299,就是所求的數。
例4:有一個年級的同學,每9人一排多5人,每7人一排多1人,每5人一排多2人,問這個年級至少有多少人?(幸福123老師問的題目)
題中9、7、5三個數兩兩互質。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除餘1,用35×8=280;
使45被7除餘1,用45×5=225;
使63被5除餘1,用63×2=126。
然後,280×5+225×1+126×2=1877,
因為,1877>315,所以,1877-315×5=302,就是所求的數。
例5:有一個年級的同學,每9人一排多6人,每7人一排多2人,每5人一排多3人,問這個年級至少有多少人?(澤林老師的題目)
題中9、7、5三個數兩兩互質。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除餘1,用35×8=280;
使45被7除餘1,用45×5=225;
使63被5除餘1,用63×2=126。
然後,280×6+225×2+126×3=2508,
因為,2508>315,所以,2508-315×7=303,就是所求的數。
(例5與例4的除數相同,那麼各個余數要乘的「數」也分別相同,所不同的就是最後兩步。)
「中國剩餘定理」簡介:
我國古代數學名著《孫子算經》中,記載這樣一個問題:「今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何。」用現在的話來說就是:「有一批物品,三個三個地數餘二個,五個五個地數餘三個,七個七個地數餘二個,問這批物品最少有多少個。」這個問題的解題思路,被稱為「孫子問題」、「鬼谷算」、「隔牆算」、「韓信點兵」等等。
那麼,這個問題怎麼解呢?明朝數學家程大位把這一解法編成四句歌訣:
三人同行七十(70)稀,
五樹梅花廿一(21)枝,
七子團圓正月半(15),
除百零五(105)便得知。
歌訣中每一句話都是一步解法:第一句指除以3的余數用70去乘;第二句指除以5的余數用21去乘;第三句指除以7的余數用15去乘;第四句指上面乘得的三個積相加的和如超過105,就減去105的倍數,就得到答案了。即:
70×2+21×3+15×2-105×2=23
《孫子算經》的「物不知數」題雖然開創了一次同餘式研究的先河,但由於題目比較簡單,甚至用試猜的方法也能求得,所以尚沒有上升到一套完整的計算程序和理論的高度。真正從完整的計算程序和理論上解決這個問題的,是南宋時期的數學家秦九韶。秦九韶於公元1247年寫成的《數書九章》一書中提出了一個數學方法「大衍求一術」,系統地論述了一次同餘式組解法的基本原理和一般程序。
從《孫子算經》到秦九韶《數書九章》對一次同餘式問題的研究成果,在19世紀中期開始受到西方數學界的重視。1852年,英國傳教士偉烈亞力向歐洲介紹了《孫子算經》的「物不知數」題和秦九韶的「大衍求一術」;1876年,德國人馬蒂生指出,中國的這一解法與西方19世紀高斯《算術探究》中關於一次同餘式組的解法完全一致。從此,中國古代數學的這一創造逐漸受到世界學者的矚目,並在西方數學史著作中正式被稱為「中國剩餘定理」。
還有一些測試題
六年級奧數測試題
(每道題都要寫出詳細解答過程)
1. 三個數的和是555,這三個數分別能被3,5,7整除,而且商都相同,求這三個數。
2. 已知A是一個自然數,它是15的倍數,並且它的各個數位上的數字只有0和8兩種,問A最小是幾?
3. 把自然數依次排成以下數陣:
1,2,4,7,…
3,5,8,…
6,9,…
10,…
…
現規定橫為行,縱為列。求
(1) 第10行第5列排的是哪一個數?
(2) 第5行第10列排的是哪一個數?
(3) 2004排在第幾行第幾列?
4. 三個質數的乘積恰好等於它們的和的11倍,求這三個質數。
5. 有兩個整數,它們的和恰好是兩個數字相同的兩位數,它們的乘積恰好是三個數字相同的三位數。求這兩個整數。
6. 在800米的環島上,每隔50米插一面彩旗,後來又增加了一些彩旗,就把彩旗的間隔縮短了,起點的彩旗不動,重新插完後發現,一共有4根彩旗沒動,問現在的彩旗間隔多少米?
7. 13511,13903,14589被自然數m除所得余數相同,問m最大值是多少?
8. 求1到200的自然數中不能被2、3、5中任何一個數整除的數有多少個?
9. 有一列數:1,999,998,1,997,996,1,…從第3個數起,每一個數都是它前面2個數中大數減小數的差。求從第1個數起到999個數這999個數之和。
10. 從200到1800的自然數中有奇數個約數的數有多少個?
11. 在下圖中,有左右兩個一樣的等腰直角三角形,其面積都是100,分別沿著圖中的虛線剪下兩個小正方形,請你求一下兩個正方形的面積各是多少,並比較大小。
12. 甲說:「我和乙、丙共有100元。」乙說:「如果甲的錢是現有的6倍,我的錢是現有的1/3,丙的錢不變,我們三人仍有錢100元。」丙說:「我的錢連30元都不到。」問三人原來各有多少錢?
13. B兩人要到沙漠中探險,他們每天向沙漠深處走20千米,已知每人最多可攜帶一個人24天的食物和水,如果不準將部分食物存放於途中,問其中一個人最遠可以深入沙漠多少千米(要求最後兩人返回出發點)?如果可以將部分食物存放於途中以備返回時取用呢?
14. 一筆獎金分一等獎、二等獎和三等獎。每個一等獎的獎金是每個二等獎金的2倍,每個二等獎的獎金是每個三等獎獎金的2倍。如果評一、二、三等獎各兩人,那麼每個一等獎的獎金是308元;如果評一個一等獎,兩個二等獎,三個三等獎,那麼一等獎的獎金是多少元?
15. 把1296分為甲、乙、丙、丁四個數,如果甲數加上2,乙數減去2,丙數乘以2,丁數除以2,則四個數相等。求這四個數各是多少?