1. 小學一至六年級數學公式大全
分數與整數相乘,用分數的分子和整數相乘的積做分子,分母不變。
整數與分數相乘,用整數和分數的分子相乘的積做分子,分母不變。
分數與分數相乘,用分子相乘的積做分子,分母相乘的積做分母。
三個數相乘,為了簡便,可以先把所有分數的分子和分母約分,再把約分後的分子、分母相乘。
乘積是1的兩個數互為倒數。
求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。
分數除法的意義與證書出發的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
分數除以整數(0除外),等於分數乘這個整數的倒數。
表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,要把小數點向右移動兩位,同時在後面添上百分號(位數不夠要用0補齊)。
把百分數化成小數,要把百分號去掉,同時小數點向左移動兩位。
把化成百分數,通常先把分數化成小數(遇到除不盡或小數位數多時,一般保留三位小數),再把小數化成百分數。
把百分數化成分數,先把分數改寫成分母是100的分數,再把能約分的約分成最簡分數。
畫圓時,固定的一點叫做圓心,圓心通常用字母O表示;從圓心到圓上任意一點的線段,叫做半徑,半徑通常用字母r表示;通過圓心,並且兩端都在圓上的線段,叫做直徑,直徑通常用字母d表示。
如果一個平面圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是對稱軸圖形。摺痕所在的這條直線叫做對稱軸。
圍成圓的曲線的長是圓的周長。
對於大小不同的圓,周長總是直徑的3倍多一些。這個倍數是個固定的數,我們把它叫做圓周率,用字母(讀pāi)表示。
發芽率=發芽種子數/試驗種子總數*100%
y=kx(k>0),y隨x的增大而增大,則y與x成正比,
y=k/x(k>0),y隨x的增大而減小,則y與x成反比,
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
5、 角
直線;直線是無限的。
線段:直線上兩點間的一段叫做線段。線段有兩個端點。線段是直線的一部分。
射線:把線段的一端無限延長,就得到一條射線。射線只有一個端點。
角:從一點引出兩條射線所組成的圖形叫做角。這個點叫做角的頂點。這兩條射線叫做角的邊。角通常用符號「∠」來表示。如下圖:
邊
頂點
邊
比較角的大小:先把兩個角的頂點和一條邊重合,然後看另一條邊的位置。哪個角的另一條邊在外面,哪個角就大。如果另一條邊也重合,說明兩個角相等。
角的大小要看兩條邊的大小叉開的越大,角越大。角的大小與角的兩邊畫出的長短沒有關系。
角的度量:角的計量單位是「度」,用符號「°」表示。把半圓分成180等份,每一份所對的角叫做1度的角。記作1°,用量角器量角的時候,把量角器放在角的上面,使量角器的中心和角的頂點重合。0°該度線和角的一條邊重合,角的另一條邊所對的量角器上的刻度,就是這個角的度數。
角的分類:大於0°,而小於90°的角叫做銳角。等於90°的角叫做直角。大於90°而小於180°的角叫做鈍角。角的兩邊成一條直線,等於180°的角叫做平角。一條射線繞它的端點旋轉一周所成為一個360°的角叫做周角。
垂線:兩條線相交成直角時,這兩條線叫做互相垂直,其中一條直線叫做另一條直線的垂線(如下圖1),這兩條直線的交點,叫做垂足。
平行:在同一個平面內永不相交的兩條直線叫做平行線(如下圖2)。也可以說這兩條直線互相平行。
垂直 平行
2. 小學六年級數學重點知識大全和公式。
小學數學圖形計算公式 1、正方形 C周長 S面積 a邊長 周長邊長×4 C=4a 面積=邊長×邊長 S=a×a 2、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3、長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5、三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6、平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7、梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圓形 S面積 C周長 л d=直徑 r=半徑 (1)周長=直徑×л=2×л×半徑 C=лd=2лr (2)面積=半徑×半徑×л 9、圓柱體 v:體積 h:高 s底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2 (3)體積=底面積×高 4體積側面積÷2×半徑 10、圓錐體 v:體積 h:高 s底面積 r:底面半徑 體積=底面積×高÷3 11、總數÷總份數平均數 12、和差問題的公式(和差)÷2大數 (和差)÷2小數 13、和倍問題 和÷(倍數1)小數 小數×倍數大數 (或者 和小數大數) 14、差倍問題 差÷(倍數1)小數 小數×倍數大數 (或 小數差大數) 15、相遇問題 相遇路程速度和×相遇時間 相遇時間相遇路程÷速度和 速度和相遇路程÷相遇時間 16、濃度問題 溶質的重量溶劑的重量溶液的重量 溶質的重量÷溶液的重量×100%濃度 溶液的重量×濃度溶質的重量 溶質的重量÷濃度溶液的重量 17、利潤與折扣問題 利潤售出價成本 利潤率利潤÷成本×100%(售出價÷成本1)×100% 漲跌金額本金×漲跌百分比 利息本金×利率×時間 稅後利息本金×利率×時間×(120%) 常用的數量關系式 1、每份數×份數總數 總數÷每份數份數 總數÷份數每份數 2、1倍數×倍數幾倍數 幾倍數÷1倍數倍數 幾倍數÷倍數1倍數 3、速度×時間路程 路程÷速度時間 路程÷時間速度 4、單價×數量總價 總價÷單價數量 總價÷數量單價 5、工作效率×工作時間工作總量 工作總量÷工作效率工作時間 工作總量÷工作時間工作效率 6、加數加數和 和一個加數另一個加數 7、被減數減數差 被減數差減數 差減數被減數 8、因數×因數積 積÷一個因數另一個因數 9、被除數÷除數商 被除數÷商除數 商×除數被除數 常用單位換算 長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算 1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念 第一章 數和數的運算 一 概念 一整數 1 整數的意義 自然數和0都是整數。 2 自然數 我們在數物體的時候用來表示物體個數的123……叫做自然數。 一個物體也沒有用0表示。0也是自然數。 3計數單位 一個、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。 每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。 4 數位 計數單位按照一定的順序排列起來它們所佔的位置叫做數位。 5數的整除 整數a除以整數b(b ≠ 0除得的商是整數而沒有餘數我們就說a能被b整除或者說b能整除a 。 如果數a能被數bb ≠ 0整除a就叫做b的倍數b就叫做a的約數或a的因數。倍數和約數是相互依存的。 因為35能被7整除所以35是7的倍數7是35的約數。 一個數的約數的個數是有限的其中最小的約數是1最大的 約數是它本身。例如10的約數有1、2、5、10其中最小的約數是1最大的約數是10。 一個數的倍數的個數是無限的其中最小的倍數是它本身。3的倍數有3、6、9、12……其中最小的倍數是3 沒有最大的倍數。 個位上是0、2、4、6、8的數都能被2整除例如202、480、304都能被2整除。。 個位上是0或5的數都能被5整除例如5、30、405都能被5整除。。 一個數的各位上的數的和能被3整除這個數就能被3整除例如12、108、204都能被3整除。 一個數各位數上的和能被9整除這個數就能被9整除。 能被3整除的數不一定能被9整除但是能被9整除的數一定能被3整除。 一個數的末兩位數能被4或25整除這個數就能被4或25整除。例如16、404、1256都能被4整除50、325、500、1675都能被25整除。 一個數的末三位數能被8或125整除這個數就能被8或125整除。例如1168、4600、5000、12344都能被8整除1125、13375、5000都能被125整除。 能被2整除的數叫做偶數。 不能被2整除的數叫做奇數。 0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。 一個數如果只有1和它本身兩個約數這樣的數叫做質數或素數100以內的質數有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數如果除了1和它本身還有別的約數這樣的數叫做合數例如 4、6、8、9、12都是合數。 1不是質數也不是合數自然數除了1外不是質數就是合數。如果把自然數按其約數的個數的不同分類可分為質數、合數和1。 每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數叫做這個合數的質因數例如15=3×53和5 叫做15的質因數。 把一個合數用質因數相乘的形式表示出來叫做分解質因數。 例如把28分解質因數 幾個數公有的約數叫做這幾個數的公約數。其中最大的一個叫做這幾個數的最大公約數例如12的約數有1、2、3、4、6、1218的約數有1、2、3、6、9、18。其中1、2、3、6是12和1 8的公約數6是它們的最大公約數。 公約數只有1的兩個數叫做互質數成互質關系的兩個數有下列幾種情況 1和任何自然數互質。 相鄰的兩個自然數互質。 兩個不同的質數互質。 當合數不是質數的倍數時這個合數和這個質數互質。 兩個合數的公約數只有1時這兩個合數互質如果幾個數中任意兩個都互質就說這幾個數兩兩互質。 如果較小數是較大數的約數那麼較小數就是這兩個數的最大公約數。 如果兩個數是互質數它們的最大公約數就是1。 幾個數公有的倍數叫做這幾個數的公倍數其中最小的一個叫做這幾個數的最小公倍數如2的倍數有2、4、6 、8、10、12、14、16、18 …… 3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數6是它們的最小公倍數。。 如果較大數是較小數的倍數那麼較大數就是這兩個數的最小公倍數。 如果兩個數是互質數那麼這兩個數的積就是它們的最小公倍數。 幾個數的公約數的個數是有限的而幾個數的公倍數的個數是無限的。 二小數 1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。 一位小數表示十分之幾兩位小數表示百分之幾三位小數表示千分之幾…… 一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點小數點左邊的數叫做整數部分小數點左邊的數叫做整數部分小數點右邊的數叫做小數部分。 在小數里每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。 2小數的分類 純小數整數部分是零的小數叫做純小數。例如 0.25 、 0.368 都是純小數。 帶小數整數部分不是零的小數叫做帶小數。 例如 3.25 、 5.26 都是帶小數。 有限小數小數部分的數位是有限的小數叫做有限小數。 例如 41.7 、 25.3 、 0.23 都是有限小數。 無限小數小數部分的數位是無限的小數叫做無限小數。 例如 4.33 …… 3.1415926 …… 無限不循環小數一個數的小數部分數字排列無規律且位數無限這樣的小數叫做無限不循環小數。 例如∏ 循環小數一個數的小數部分有一個數字或者幾個數字依次不斷重復出現這個數叫做循環小數。 例如 3.555 …… 0.0333 …… 12.109109 …… 一個循環小數的小數部分依次不斷重復出現的數字叫做這個循環小數的循環節。 例如 3.99 ……的循環節是「 9 」 0.5454 ……的循環節是「 54 」 。 純循環小數循環節從小數部分第一位開始的叫做純循環小數。 例如 3.111 …… 0.5656 …… 混循環小數循環節不是從小數部分第一位開始的叫做混循環小數。 3.1222 …… 0.03333 …… 寫循環小數的時候為了簡便小數的循環部分只需寫出一個循環節並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字就只在它的上面點一個點。例如 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。 三分數
1 分數的意義 把單位「1」平均分成若干份表示這樣的一份或者幾份的數叫做分數。 在分數里中間的橫線叫做分數線分數線下面的數叫做分母表示把單位「1」平均分成多少份分數線下面的數叫做分子表示有這樣的多少份。 把單位「1」平均分成若干份表示其中的一份的數叫做分數單位。 2 分數的分類 真分數分子比分母小的分數叫做真分數。真分數小於1。 假分數分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。 帶分數假分數可以寫成整數與真分數合成的數通常叫做帶分數。 3 約分和通分 把一個分數化成同它相等但是分子、分母都比較小的分數 叫做約分。 分子分母是互質數的分數叫做最簡分數。 把異分母分數分別化成和原來分數相等的同分母分數叫做通分。 四百分數 1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。 運算定律 1. 加法交換律 兩個數相加交換加數的位置它們的和不變即a+b=b+a 。 2. 加法結合律 三個數相加先把前兩個數相加再加上第三個數或者先把後兩個數相加再和第一個數相加它們的和不變即a+b)+c=a+(b+c) 。 3. 乘法交換律 兩個數相乘交換因數的位置它們的積不變即a×b=b×a。 4. 乘法結合律 三個數相乘先把前兩個數相乘再乘以第三個數或者先把後兩個數相乘再和第一個數相乘它們的積不變即(a×b)×c=a×(b×c) 。 5. 乘法分配律 兩個數的和與一個數相乘可以把兩個加數分別與這個數相乘再把兩個積相加即(a+b)×c=a×c+b×c 。 6. 減法的性質 從一個數里連續減去幾個數可以從這個數里減去所有減數的和差不變即a-b-c=a-(b+c) 。
3. 小學一到六年級所有數學公式
小學數學公式大全
一、小學數學幾何形體周長 面積 體積計算公式
長方形的周長=(長+寬)× C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a×a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr^2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr^2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
二、單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分
1分=60秒 1時=3600秒
三、數量關系計算公式方面
1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
四、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
五、特殊問題
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數+1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
(2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
(3)如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題
(1)一般公式:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾
1÷單位時間能完成的幾分之幾=工作時間
4. 六年級下冊所有數學公式
1、三角形的面積=底×高÷2 公式 S= a×h÷2
2、正方形的面積=邊長×邊長 公式 S= a×a
3、長方形的面積=長×寬 公式 S= a×b
4、平行四邊形的面積=底×高 公式 S= a×h
5、梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
6、長方體的體積=長×寬×高 公式:V=abh
7、長方體的體積=底面積×高 公式:V=abh
8、圓的周長=直徑×π 公式:L=πd=2πr
9、圓的面積=2半徑×π 公式:S=πr2
10、圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
11、圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式S=ch+2s=ch+2πr2
12、圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
體(容)積單位換算
1、1立方米=1000立方分米
2、1立方分米=1000立方厘米
3、1立方分米=1升
4、1立方厘米=1毫升
5、1立方米=1000升
數學公式是人們在研究自然界物與物之間時發現的一些聯系,並通過一定的方式表達出來的一種表達方法。是表徵自然界不同事物之數量之間的或等或不等的聯系,它確切的反映了事物內部和外部的關系,是我們從一種事物到達另一種事物的依據,使我們更好的理解事物的本質和內涵。
5. 小學六年級數學公式大全
一.用字母表示運算定律或性質
加法交換律: a+b=b+a 加法結合律: (a+b)+c=a+(b+c)
乘法交換律: ab=ba 乘法結合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
二.幾何圖形計算公式
(1)周長:即圍繞物體一周的長度。
①長方形周長=(長+寬)×2 C=(a+b)×2 ②正方形周長=邊長×4 C=4a
③圓的周長=圓周率×直徑 =圓周率×半徑×2 C=πd C =2πr
(2)面積:即物體的表面或封閉圖形的大小
①長方形的面積=長×寬 S=ab ②正方形的面積=邊長×邊長 S=a•a=a2
③平行四邊形的面積=底×高 S=ah ④三角形的面積=底×高÷2 S=ah÷2
⑤梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圓的面積=圓周率×半徑S=πr2
⑦直徑d=2r 半徑=直徑÷2 r= d÷2 ⑧環形面積=外圓面積-內圓面積S環=S外-S內
【相互聯系】 平面圖形的面積公式是以長方形面積計算公式為基礎的。如兩個完全相同的三角形、梯形可拼成一個平行四邊形。圓拼成長方形的長時1/2C,寬是R.
(3)表面積:立體圖形的所有面的面積之和叫做它的表面積
①長方體的表面積=(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
②正方體的表面積=棱長×棱長×6 S=a×a×6 =6a2
③圓柱體的側面積=底面周長×高 S=Ch =2πrh
④圓柱體的表面積=側面積+底面積×2 S= Ch+2πr2 = 2πrh+2πr2
注意:圓柱的底面周長與高相等時側面展開是正方形,C=h 2πr=h
(4)體積:物體所佔空間的大小叫體積
①長方體的體積=長×寬×高 V=abh ②正方體的體積=棱長×棱長×棱長 V=a×a×a=a3
③圓柱的體積=底面積×高V=sh=πr2h ④圓錐的體積=底面積×高÷3 V=1/3sh= 1/3πr2h
【相互聯系】長方體、正方體和圓柱體的體積公式可統一成:V=sh即底面積×高.。
等體積等底的長、正、圓柱體和圓錐體,圓錐高是長方體、正方體、圓柱體高的3倍。
三.數量關系式
1每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4 工效×工時=工作總量 工作總量÷工效=工時 工作總量÷工時=工效
5、 加數+加數=和 和-一個加數=另一個加數
6、 被減數-減數=差 被減數-差=減數 差+減數=被減數
7、 因數×因數=積 積÷一個因數=另一個因數
8、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 被除數=除數×商+余數
注意:0.3÷0.2=1 。。。0.1 除數與被除數同時擴大100倍,商不變,余數也擴大100倍。
9 平均數=總數÷總份數 平均速度=總路程÷總時間
10.相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間 一個人的速度=相遇路程÷相遇時間-另一個人的速度
11.平均速度問題 平均速度=總路程÷(順流時間+逆流時間)注意: 折(往)返=路程×2
12.濃度問題: 溶質(葯)+溶劑(水)=溶液(葯水) 溶質(葯)÷溶液(葯水)=濃度
溶液(葯水)×濃度=溶質(葯) 溶質(葯)÷濃度=溶液(葯水)
13.折扣問題: 折扣=現價÷原價 (折扣<1) 現價=原價×折扣 原價=現價÷折扣
利息=本金×年利率×時間(年) =本金×月利率×時間(月)
14比例尺=圖上距離÷實際距離 實際距離=圖上距離÷比例尺 圖上距離=實際距離×比例尺
稅後利息=本金×利率×時間×(1-5%)
15追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
易錯題:1、周長和面積不相等。 2、圓的面積與半徑不成比例。 3、增加和擴大、縮小與減少的區別 4、地磚塊數與面積的計算。 5、時間的進率60,平方米與公頃的進率是10000 6、一種立體圖形轉化為另一種立體圖形,體積不變。 7、填空、應用題要注意單位的統一(易錯);要求保留時,無要求用什麼法,要結合實際用「四捨五入」還是「進一法」。 8、計算表面積時結合實際求哪些面。 9、 車輪、壓路機前進的距離就是周長×轉數。 10、數的改寫用小數點表示,再添單位;精確到(保留時)看下一位並用「四捨五入」法表示,再添單位。 11、等底等高的三角形是平行四邊形面積的一半;等底等高的圓柱體積是圓錐的3倍。 12、路程一定,速度和時間成反比。如A、B同走一段路時間比是5:4,A、B的速度比是4:5。(工作總量類似)。 13、看到高和垂線想到直角(符號)。 14、兩點之間直線最短,點線之間垂線段最短;繞一點旋轉就是以這點為頂點,作與這個點相關的兩條邊的垂線,定出另兩個點。旋轉時逆時針是向左。 15、確定方向要注意觀測點。 16、計算時要留意跟整數相差一點的數.如9.9 ;10.1。 17、應用題分析時注意抓共同量或不變數分析。如實際與計劃中的總量,男生轉入人數時的女生人數;同一面積中換不同邊長的地磚。 18、兩個圓的面積比是半徑比的平方倍;圖形面積擴大的倍數是邊長擴大的平方倍。
6. 小學數學一到六年級公式大全
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 ?=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
不同地方教材可能不一樣,這個應該比較全面了
小學教學沒有必要死記公式,重在理解
7. 小學一六年級所有數學公式
公式表達式
圓的標准方程 (x-a)^2+(y-b)^2=r^2 註:(a,b)是圓心坐標
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:△=D^2+E^2-4F>0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c' *h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4π*r2
圓柱側面積 S=c*h=2π*h 圓錐側面積 S=1/2*c*l=π*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=π*r2h
圖形周長 面積 體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)]
(海倫秦九韶公式) (p= (a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
直徑=2 r
圓的周長=πd= 2πr
圓的面積= πr^2
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
柱體體積=底面積×高
平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a S=a2
長方形 a和b-邊長 C=2(a+b) S=ab
三角形 a,b,c-三邊長 其中s=(a+b+c)/2 S=ah/2
h-a邊上的高 =ab/2×sinC
s-周長的一半 =[s(s-a)(s-b)(s-c)]1/2
A,B,C-內角 =a^2sinBsinC/(2sinA
8. 小學六年級所有數學公式
^圓的標准方程
(x-a)^2+(y-b)^2=r^2
註:(a,b)是圓心坐標
圓的一般方程
x^2+y^2+Dx+Ey+F=0
註:△=D^2+E^2-4F>0
拋物線標准方程
y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
直稜柱側面積
S=c*h
斜稜柱側面積
S=c'
*h
正棱錐側面積
S=1/2c*h'
正稜台側面積
S=1/2(c+c')h'
圓台側面積
S=1/2(c+c')l=pi(R+r)l
球的表面積
S=4π*r2
圓柱側面積
S=c*h=2π*h
圓錐側面積
S=1/2*c*l=π*r*l
弧長公式
l=a*r
a是圓心角的弧度數r
>0
扇形面積公式
s=1/2*l*r
錐體體積公式
V=1/3*S*H
圓錐體體積公式
V=1/3*pi*r2h
斜稜柱體積
V=S'L
註:其中,S'是直截面面積,
L是側棱長
柱體體積公式
V=s*h
圓柱體
V=π*r2h
圖形周長
面積
體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=
√[p(p
-
a)(p
-
b)(p
-
c)]
(海倫秦九韶公式)
(p=
(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
直徑=2
r
圓的周長=πd=
2πr
圓的面積=
πr^2
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積
=長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
柱體體積=底面積×高
平面圖形
名稱
符號
周長C和面積S
正方形
a—邊長
C=4a
S=a2
長方形
a和b-邊長
C=2(a+b)
S=ab
三角形
a,b,c-三邊長
其中s=(a+b+c)/2
S=ah/2
h-a邊上的高
=ab/2×sinC
s-周長的一半
=[s(s-a)(s-b)(s-c)]1/2
A,B,C-內角
=a^2sinBsinC/(2sinA
9. 六年級數學公式大全
一.用字母表示運算定律或性質
加法交換律: a+b=b+a 加法結合律: (a+b)+c=a+(b+c)
乘法交換律: ab=ba 乘法結合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
二.幾何圖形計算公式
(1)周長:即圍繞物體一周的長度。
①長方形周長=(長+寬)×2 C=(a+b)×2 ②正方形周長=邊長×4 C=4a
③圓的周長=圓周率×直徑 =圓周率×半徑×2 C=πd C =2πr
(2)面積:即物體的表面或封閉圖形的大小
①長方形的面積=長×寬 S=ab ②正方形的面積=邊長×邊長 S=a•a=a2
③平行四邊形的面積=底×高 S=ah ④三角形的面積=底×高÷2 S=ah÷2
⑤梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圓的面積=圓周率×半徑S=πr2
⑦直徑d=2r 半徑=直徑÷2 r= d÷2 ⑧環形面積=外圓面積-內圓面積S環=S外-S內
【相互聯系】 平面圖形的面積公式是以長方形面積計算公式為基礎的。如兩個完全相同的三角形、梯形可拼成一個平行四邊形。圓拼成長方形的長時1/2C,寬是R.
(3)表面積:立體圖形的所有面的面積之和叫做它的表面積
①長方體的表面積=(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
②正方體的表面積=棱長×棱長×6 S=a×a×6 =6a2
③圓柱體的側面積=底面周長×高 S=Ch =2πrh
④圓柱體的表面積=側面積+底面積×2 S= Ch+2πr2 = 2πrh+2πr2
注意:圓柱的底面周長與高相等時側面展開是正方形,C=h 2πr=h
(4)體積:物體所佔空間的大小叫體積
①長方體的體積=長×寬×高 V=abh ②正方體的體積=棱長×棱長×棱長 V=a×a×a=a3
③圓柱的體積=底面積×高V=sh=πr2h ④圓錐的體積=底面積×高÷3 V=1/3sh= 1/3πr2h
【相互聯系】長方體、正方體和圓柱體的體積公式可統一成:V=sh即底面積×高.。
等體積等底的長、正、圓柱體和圓錐體,圓錐高是長方體、正方體、圓柱體高的3倍。
三.數量關系式
1每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4 工效×工時=工作總量 工作總量÷工效=工時 工作總量÷工時=工效
5、 加數+加數=和 和-一個加數=另一個加數
6、 被減數-減數=差 被減數-差=減數 差+減數=被減數
7、 因數×因數=積 積÷一個因數=另一個因數
8、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 被除數=除數×商+余數
注意:0.3÷0.2=1 。。。0.1 除數與被除數同時擴大100倍,商不變,余數也擴大100倍。
9 平均數=總數÷總份數 平均速度=總路程÷總時間
10.相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間 一個人的速度=相遇路程÷相遇時間-另一個人的速度
11.平均速度問題 平均速度=總路程÷(順流時間+逆流時間)注意: 折(往)返=路程×2
12.濃度問題: 溶質(葯)+溶劑(水)=溶液(葯水) 溶質(葯)÷溶液(葯水)=濃度
溶液(葯水)×濃度=溶質(葯) 溶質(葯)÷濃度=溶液(葯水)
13.折扣問題: 折扣=現價÷原價 (折扣<1) 現價=原價×折扣 原價=現價÷折扣
利息=本金×年利率×時間(年) =本金×月利率×時間(月)
14比例尺=圖上距離÷實際距離 實際距離=圖上距離÷比例尺 圖上距離=實際距離×比例尺
稅後利息=本金×利率×時間×(1-5%)
15追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
易錯題:1、周長和面積不相等。 2、圓的面積與半徑不成比例。 3、增加和擴大、縮小與減少的區別 4、地磚塊數與面積的計算。 5、時間的進率60,平方米與公頃的進率是10000 6、一種立體圖形轉化為另一種立體圖形,體積不變。 7、填空、應用題要注意單位的統一(易錯);要求保留時,無要求用什麼法,要結合實際用「四捨五入」還是「進一法」。 8、計算表面積時結合實際求哪些面。 9、 車輪、壓路機前進的距離就是周長×轉數。 10、數的改寫用小數點表示,再添單位;精確到(保留時)看下一位並用「四捨五入」法表示,再添單位。 11、等底等高的三角形是平行四邊形面積的一半;等底等高的圓柱體積是圓錐的3倍。 12、路程一定,速度和時間成反比。如A、B同走一段路時間比是5:4,A、B的速度比是4:5。(工作總量類似)。 13、看到高和垂線想到直角(符號)。 14、兩點之間直線最短,點線之間垂線段最短;繞一點旋轉就是以這點為頂點,作與這個點相關的兩條邊的垂線,定出另兩個點。旋轉時逆時針是向左。 15、確定方向要注意觀測點。 16、計算時要留意跟整數相差一點的數.如9.9 ;10.1。 17、應用題分析時注意抓共同量或不變數分析。如實際與計劃中的總量,男生轉入人數時的女生人數;同一面積中換不同邊長的地磚。 18、兩個圓的面積比是半徑比的平方倍;圖形面積擴大的倍數是邊長擴大的平方倍。
希望能解決您的問題。