Ⅰ 小學六年級數學畢業總復習 應注意的幾個問題
一、復習目標:
1、系統地整理知識。實踐表明,學生對數學知識的掌握在很大程度上取決於復習中的系統整理。個別學生知識比較零碎,知識之間的聯系與結構理解不好,系統的整理就顯得非常必要。
2、全面鞏固所學知識。畢業復習的本身是一種重新學習的過程,是對所學知識從掌握水平達到熟練掌握水平。 經過精講多練的環節,讓學生對所學知識更透徹、更熟悉。
3、查漏補缺,結合我校六年級學生學情實際,學生在知識的理解和掌握程度上不可避免地存在某些問題,特別是我班學生的計算能力相對欠缺。所以,畢業復習的再學習過程要彌補知識上掌握的缺陷以及靈活應用的能力。
4、進一步提高解決問題的能力。進一步提高學生的計算、初步的邏輯思維、空間觀念和解決實際問題的能力。讓學生在復習中應充分體現從「學會」到「會學」的轉化。
二、應注意的問題:
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
復習題的選用盡量考慮學生的基礎水平,對於「易錯題」要讓學生積極思考,積極學懂、理解。
任何錯誤都是有原因的,任何馬虎也是有原因,不要讓學生犯相同,幫助學生養成良好的學習習慣。特別是作圖習慣。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
積極為學優生提供思維創新題,引導學生進行數學思考,發展數學潛能。
3、要根據學生的問題和疑惑,既要全面學到知識,又要掌握復習知識的深淺程度。在掌握了各部分基礎知識以後,加強對知識的靈活運用,設計習題要貼近生活。
4、要切實做好畢業生心理素質的培養,加強中下生,特別是學困生的學業成績的提高,全面提高教學質量。針對中下生進行系統、有序、有針對性的指導。
5、要抓好課堂教學效率,激發學生學習興趣,既要落實綜合訓練,又要減輕學生學業負擔,實現「輕負擔、高效率」。
6、對試卷答題能力的培養:審題能力(要求讀全,讀清、讀細。)分析能力(易錯知識點,數量關系,應用多種手段分析的能力),計算能力。
Ⅱ 小學六年級數學總復習資料(九) 〖量與計量〗
5.4.5米裡面有( 100 )個45毫米,分米的5倍是(4.5 )米。 6.把1米長的線段平均分成100份,每份長( 1 )厘米。 7.25分米是1米的( 2.5倍 ),1.8噸的 是( 1800 )千克。 9.有15升水,如果用一隻容量為700毫升的量杯來量水,能量( 21 )杯,還余( 300 )毫升。 10.一根繩子長3米,剪去6分米,剩下的繩子是剪去的繩子的( 4 )倍。 11.一根圓鋼,長1米2分米,把它鋸成8厘米長的小段共可鋸成( 15 )段,要鋸( 14)次 。 12.一張長方形紙片長8厘米,寬6厘米,把它剪成一個最大的正方形,剪去部分的面積是( 12 平方厘米)。 四、選擇 1. 下面公歷年份中,不是閏年的是(D ) A.1992 B.1996 C.2000 D.1900 2. 380200米=( C) A. 38千米2米 B. 380千米2米 C. 380千米200米 D.38千米200米 3. 晚上9時用24小時記時法寫作( D) A. 19∶00 B. 9∶00 C. 17∶00 D. 21∶00 4. 求一段圓柱形木材有多少立方米,是求它的( C) A. 側面積 B. 底面積 C. 體積 D. 表面積 5. 1987年2月1日是星期日,這年的6月1日是星期( C) A. 六 B. 日 C. 一 D. 二 五、單位換算 1、 8.2噸=( 8200 )千克 1.25平方米=( 125 )平方分米 4小時=( 240 )分 2.5升=( 2500 )毫升 4.06千米=(40600 )分米 3.8公頃=(38000)平方米 1/100米=(1 )厘米 3立方分米=(300 )立方厘米 2、 4080克=( 4.08 )千克 120米=( 0.12 )千米 3分=( 0.03)元 150秒=( 2.5)分 180000平方米=(18 )公頃 350立方厘米=(3.5 )立方分米 1650毫升=( 1.65 )升 1010千克=( 1.01)噸 3、 4小時15分=( 4.25 )小時 7千米70米=( 7.07 )千米 1平方米2平方分米=( 1.02)平方米 4分米5厘米=( 4.5)分米=(45 )厘米 4.15小時=(4)小時(9)分 2.07千米=(2)千米(70 )米 7.05升=(7 )升( 50 )毫升 1.3噸=( 1)噸( 300 )千克 4、 3.4小時=(3 )小時( 24)分8.5噸=( 8)噸(500 )千克 3.02立方米=(3 )立方米( 20)立方分米 50.06公頃=( 50)公頃( 600)平方米 0.32米=( 3)分米(2 )厘米 2.3升=( 2)升( 300)毫升 4.05平方米=( 4)平方米( 5)平方分米 78分=(1 )小時( 18)分 5、 4.15立方米=(4150)立方分米=(4)立方米( 150 )立方分米 3小時20分=(3.33333 )小時=( 200)分 40千克60克=( 40.06)千克=( 40060)克 198厘米=(19.8 )分米=( 1.98)米
六、應用題
1、18-7-2.25=8.75小時
2、250*120=30000平方米=3公頃
3、0.2*250=50毫克
0.6*3*7=12.6毫克
50/12.6=3.968≈4療程
Ⅲ 小學六年級數學總復習資料
(三)分數四則運算
1. 分數加法:
分數加法的意義與整數加法的意義相同。 是把兩個數合並成一個數的運算。
2. 分數減法:
分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。
3. 分數乘法:
分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
4. 乘積是1的兩個數叫做互為倒數。
5. 分數除法:
分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
(四)運算定律
1. 加法交換律:
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2. 加法結合律:
三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4. 乘法結合律:
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質:
從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
6. 除數是整數的小數除法計演算法則:
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
2 復合應用題
(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。
d答案:根據計算的結果,先口答,逐步過渡到筆答。
( 3 ) 解答加法應用題:
a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
(4 ) 解答減法應用題:
a求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。
-b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。
(5 ) 解答乘法應用題:
a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
( 6) 解答除法應用題:
a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d已知一個數的幾倍是多少,求這個數的應用題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
3典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數 大數-差=小數
(和-差)÷2=小數 和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數 標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。
(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)
-
(二)分數和百分數的應用
1 分數加減法應用題:
分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本相同,所不同的只是在已知數或未知數中含有分數。
2分數乘法應用題:
是指已知一個數,求它的幾分之幾是多少的應用題。
特徵:已知單位「1」的量和分率,求與分率所對應的實際數量。
解題關鍵:准確判斷單位「1」的量。找准要求問題所對應的分率,然後根據一個數乘分數的意義正確列式。
3 分數除法應用題:
求一個數是另一個數的幾分之幾(或百分之幾)是多少。
特徵:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾。「一個數」是比較量,「另一個數」是標准量。求分率或百分率,也就是求他們的倍數關系。
Ⅳ 小學六年級數學總復習資料公式
畢業班小學數學總復習資料(一)
一、常用的數量關系式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
二、小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長 )
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
三、常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
時間單位換算
1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
Ⅳ 小學六年級數學總復習資料有哪些
一、軸對稱圖形
1、只有1條對稱軸的圖形是(等腰三角形、等腰梯形、半圓)
有2條對稱軸的圖形是(長方形)
有3條對稱軸的圖形是(等邊三角形)
有4條對稱軸的圖形是(正方形)
有無數條對稱軸的圖形是(圓、圓環)
2、圓的對稱軸的圖形是(直徑所在的直線)
3、對稱軸是直線
4、圓是(平面圖形、曲線、軸對稱)圖形。
二、在同圓或等圓里(必不可少的前提),直徑是半徑的2倍,半徑是直徑的一半。
d=2r r=d÷2
三、在同圓或等圓里(必不可少的前提),直徑都相等、半徑都相等。
四、圓心確定圓的位置、半徑確定圓的大小。圓規兩腳之間的距離是圓的半徑。
五、圓的周長
1、圍成圓曲線的長度叫做圓的周長。
2、圓的周長除以直徑的商,(周長和直徑的比值),叫做圓周率,它是一個固定不變的數,和圓的大小無關。π>3.14。圓的周長大約是直徑的3.14倍。
3、c圓=πd c圓=2πr
4、長方形的周長=(長+寬)×2 =(a+b)×2
正方形的周長=邊長×4=4a
5、長度和周長單位有:km m dm cm mm
6、已知周長求直徑 d=C÷π
已知周長求半徑 r=C÷π÷2
7、3.14×(1――9)
六、半圓的周長
C半圓=d+πd÷2 C半圓=2r+πr
七、圓的面積
1、把圓平均分成若干份,可以拼成一個平行四邊形或長方形。
2、S圓=πr2=π(d÷2)2
3、S長方形=長×寬=ab
S正方形=邊長×邊長=a2
S平行四邊形=底×高=ah
S三角形=底×高÷2=ah÷2
S梯形=(上底+下底 )×高÷2=(a+b)×h÷2
S半圓=πr2÷2
S圓環=S大圓-S小圓=π(R2-r2)
4、面積和表面積單位有:平方千米 公頃 平方米 平方分米 平方厘米
1平方千米=100公頃 1公頃=10000平方米
5、如果長方形的周長=正方形的周長=圓的周長,那麼它們當中圓的面積最大。
6、(11――19)2
八、半徑擴大n倍,直徑擴大n倍,周長擴大n倍,面積擴大n2倍。
第二單元
1. 一、
1、是、等於、相當於,意思相同。
2、幾成=幾折
1. 二、求提高了、降低了、增加了、減少了、節約了、多了、少了百分之幾,都是用:甲÷乙
2. 三、小數、分數和百分數的互化
1. 四、解答分數應用題的一般步驟
1. 找單位「1」
2. 判斷單位「1」是已知的還是未知的
3. 如果單位「1」已知的,用乘法計算:單位「1」×對應分率
4. 如果單位「1」未知的,用除法計算:已知量÷對應分率=單位「1」;另外,也可以用方程。
5、減數=被減數-差 除數=被除數÷商
五、常見的數量關系
1、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
2、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
3、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
4、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
六、方程
1、含有未知數的等式叫做方程。
2、解方程就是「唱反調」
七、利息=本金×利率×時間
第三單元
圖形變換和圖案設計時,會用到:軸對稱、平移和旋轉。
1. 軸對稱
2. 平移:關注是上下平移還是左右平移,尤其是平移了多少格
3. 旋轉:關注是順時針還是逆時針方向旋轉,關注旋轉的角度是多少度
4. 運算定律:
加法交換律和性質
a+b=b+a
加法結合律
a+b+c=a+(b+c) 25+37+63=25+(37+63)
乘法交換律
a×b×c=a×c×b 25×9×4=25×4×9
乘法結合律
a×b×c=(a×c)×b 128×3×8=(125×8) ×3
乘法分配律
兩個數的和與一個數相乘,可以把這兩個加數分別和這個數相乘,再把兩個級相加。
a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25
2.37×99
=2.37× (100-1 )
=2.37×100-2.37×1
減法的運算性質
a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)
第四單元
1. 兩個數相除又叫做這兩個數的比。其中,比號前面的數是比的前項,比號後面的數是比的後項,前項÷後項=比值
2. 比和除法、分數的關系
a÷b=a :b= (b≠0,除數、分母和後項不能為0)
例如:15÷25=( ):( )==( )%=( )(填小數)=( )折=( )成
再如:甲數和乙數的比是4:3,甲數是乙數的( / ),乙數是甲數的( / ),甲數是乙數的( )%,乙數是甲數的( )%,甲數比乙數多( )%,乙數比甲數少( )%。
(提示:甲數=4 乙數=3)
3. 化簡比
化簡比就是把一個比化成最簡單的整數比。也就是:前項和後項都是整數,並且前項和後項只能有公因數1。
4. 注意:比值是一個數,而化簡比結果是一個比。
例如::0.75化成最簡單的整數比是( ),比值是( )。
5. 比的應用
重點關註:類似已知長方形的周長是28厘米,長和寬的比是4:3,求長方形的長、寬或面積。
6. 三角形三個內角度數的比是1:2:3或1:1:2,這個三角形是(直角)三角形。
7. 質量單位:噸 千克 克
8. 容積單位:升 毫升
9. 體積單位:立方米 立方分米 立方厘米
1升=1立方分米 1毫升=1立方厘米
10、人民幣單位:元 角 分
11、大於0的數叫做正數,小於0的數叫做負數。正數和負數可以用來表示具有相反意義的量。0既不是正數也不是負數。
12、正數和負數可以抵消,比如:+5和-5能完全抵消;-8和+3抵消後得-5。
13、統計圖有:(復式)條形統計圖、(復式)折線統計圖、扇形統計圖。
14、條形統計圖:很容易看出各種數量的多少。
15、折線統計圖:不但可以看出數量的多少,而且能夠表示數量的增減變化。
16、扇形統計圖:能呈現各部分與總數的百分比。
(1) 平面圖形知識;(2)平面圖形的周長和面積;(3)立體圖形的認識;(4)立體圖形的表面積和體積。
(1) 平面圖形知識
①直線、射線、線段的特點、聯系與區別。
②角的特徵、角的分類、角的度量方法。
③垂直與平行。
④三角形的特徵,分類(按邊分、按角分)。
⑤四邊形。每類圖形的特徵,特殊與一般的關系。
⑥圓與扇形。圓的特徵、直徑、半徑的特點,扇形與圓的關系。
⑦軸對稱圖形。(能畫出學過的軸對稱圖形的對稱軸)
要求:①掌握特徵、建立聯系,讓學生感受到點到線,線到面、面到體的聯系。
②能根據圖形特徵進行合理的判斷、選擇。
(2) 平面圖形的周長和面積
①理解周長與面積概念。
②掌握每種圖形的周長與面積計算公式及推導過程。
③能應用公式靈活解決問題。
①長方體、正方體、圓柱、圓錐的特徵。
②長、正方體的關系。
(3) 立體圖形的表面積和體積
②會求長方體、正方體、圓柱的表面積和體積;圓錐的體積。
③建立這四種立體圖形體積計算的聯系。
④加強體積與表面積的區別、體積與容積的區別的對比訓練。
建議:幾何初步知識這部分內容,知識容量比較大,復習時要讓學生真正參與到學習中來,提高學習效率,教師就要設計一些具有思考性,挑戰性、綜合性強的問題激發學生積極思考,調動學生的積極性,充分發揮學生的主體作用,讓他們在探究的過程中進一步理解、鞏固所學的知識,體驗成功的快樂,掌握學習的方法。
如:平面圖形面積知識網路圖由學生獨立完成(獨立思考、查閱資料、尋求幫助);長方體、正方體表面積可讓學生自帶磁帶盒,設計包裝方案——
切忌:面面俱到,不停講解,不斷提問,大量練習,只求結果,不重過程。
6、簡單的統計
復習要點及要求:
(1) 平均數:理解平均數的意義;掌握求平均數的方法;能應用平均數解決實際問題。
(2) 統計表、統計圖:了解統計表、圖的種類,特點,製作方法,會分析統計圖表。