導航:首頁 > 小學年級 > 小學五年級數奧題

小學五年級數奧題

發布時間:2020-12-08 08:53:41

Ⅰ 五年級奧數題及答案200道

五年級奧數題計算題
1、0.2008+2.008+20.08+200.8+2008
=0.2008×(1+10+100+1000+10000)
=0.2008×11110
=2230.888
2、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷……÷(2007÷2008)=1×3/2×4/3×5/4×6/5×……×2008/2007
=2008
3、1+1/3+1/6+1/10+……+1/2009×1004
=2×(1/2+1/6+1/12+1/20+……+1/2008×2009)
=2×(1-1/2+1/2-1/3+1/3-1/4+……+1/2008-1/2009)
=2×(1-1/2009)
=2×2008/2009
=4016/2009
4、2006個2006乘2007個2007再乘2008個2008的積的個位數是?
2006個2006的個位數字是6
2007個2007的個位數字是3
2008個2008的個位數字是6
6×3×6=108
所以2006個2006乘2007個2007再乘2008個2008的積的個位數字是8
5、325.24+425.24+625.24+925.24+525.24
=(300+400+600+900+500)+25.24×5
=2700+126.2
=2826.2
6、1/1×4+1/4×7+1/7×10+1/10×13+……+1/2005×2008
=(1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+……+1/2005-1/2008)÷3
=(1-1/2008)÷3
=2007/2008÷3
=669/2008

Ⅱ 50道小學五年級奧數題(有答案,行程問題)

行程問題
1、客貨兩車同時從甲乙兩站相對開出,客車每小時行54千米,貨車每小時行48千米,兩車相遇後又以原來的速度前進,到達對方站後立即返回,兩車再次相遇時客車比貨車多行了21.6千米。甲乙兩站相距多少千米?
答案:122.4千米。

2、甲乙兩地相距48千米,其中一部分是上坡路,其餘是下坡路。某人騎自行車從甲地到達乙地後沿原路返回,去時用了4小時12分,返回用了3小時48分。已知自行車上坡是每小時行10千米,求自行車下坡每小時行多少千米?
答案:下坡每小時行15千米。

3、南北兩鎮之間全是山路,某人上山每小時走2千米,下山時每小時走5千米,從南鎮到北鎮要走38小時,從北鎮到南鎮要走32小時,兩鎮之間的路程是多少千米?從南鎮到北鎮的上山路和下山路各是多少千米?
答案:下山路為40千米,上山路為60千米 。

4、甲每小時行12千米,乙每小時行8千米.某日甲從東村到西村,乙同時從西村到東村,以知乙到東村時,甲已先到西村5小時.求東西兩村的距離
甲乙的路程是一樣的,時間甲少5小時,設甲用t小時
可以得到
1. 12t=8(t+5)
t=10
所以距離=120千米

5、小明和小芳圍繞著一個池塘跑步,兩人從同一點出發,同向而行。小明:280米/分;小芳:220/分。8分後,小明追上小芳。這個池塘的一周有多少米?
280*8-220*8=480
這時候如果小明是第一次追上的話就是這樣多
這時候小明多跑一圈...

6、某人從甲地到乙地,先騎12小時摩托車,再騎9小時自行車正好到達.返回時,先騎21小時自行車,再騎8小時摩托車也正好到達.從甲地到乙地如果全騎摩托車需要多少時間?
摩托車的速度是xkm/h,自行車速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托車共需12+9/3=15小時

7、有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.

8、某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度.
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11

9、現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米.如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長.
快車長:18×12-10×12=96(米)
慢車長:18×9-10×9=72(米)

10、一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?
(1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)

11、小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表.小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒.已知兩電線桿之間的距離是100米.你能幫助小英和小敏算出火車的全長和時速嗎?
(1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)

12、一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒.求這列火車的速度與車身長各是多少米?
設火車車身長x米.根據題意,得
(530+X )÷40=(380+X )÷30
X=70
(530+X )÷40=600÷40=15(米/秒)

13、兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+160)÷(15+20)=8(秒).

14、某人步行的速度為每秒鍾2米.一列火車從後面開來,越過他用了10秒鍾.已知火車的長為90米,求列車的速度.
列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)

15、快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
1034÷(20-18)=91(秒)

16、快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
182÷(20-18)=91(秒)

17、一人以每分鍾120米的速度沿鐵路邊跑步.一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度.
288÷8-120÷60=36-2=34(米/秒)

18、一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
(600+200)÷10=80(秒)

19、小明上午8時騎自行車以每小時12千米的速度從A地到B地,小強上午8時40分騎自行車以每小時16千米的速度從B地到A地,兩人在A、B兩地的中點處相遇,A、B兩地間的路程是多少千米?
兩人在兩地間的路程的中點相遇,但小明比小強多行了40分鍾,如果兩人同時出發,相遇時,小明行的路程就比小強少12÷60×40=8(千米),就是當小強出發時,小明已經行了8千米,從8時40分起兩人到兩人相遇,由於小明每小時比小強少行16-12=4(千米),說明兩人相遇時間是8÷4=2(小時),那麼,A、B兩地間的路程是8+(12+16)×2=64(千米)。

20、甲、乙兩村相距3550米,小偉從甲村步行往乙村,出發5分鍾後,小強騎自行車從乙村前往甲村,經過10分鍾遇見小偉。小強騎車每分鍾行的比小偉步行每分鍾多160米,小偉每分鍾走多少米?
如果小強每分鍾少行160米,他行的速度就和小偉步行的速度相同,這樣小強10分鍾就少行了160×10=1600(米),小偉(5+10)分鍾和小強10分鍾一共行走的路程是3550-1600=1950(米),那麼小偉每分鍾走的路是1950÷(5+10+10)=78(米)。

21、客車從東城和貨車從西城同時開出,相向而行,客車每小時行44千米,貨車每小時行36千米,客車到西城比貨車到東城早2小時。兩車開出後多少小時在途中相遇?
當客車到西城時,貨車離東城還有2×36=72(千米),而貨車每小時行的比客車少44-36=8(千米),客車行東西城間的路程用的時間是72÷8=9(小時),因此東西城相距44×9=396(千米),兩車從出發到相遇用的時間是;396÷(44+36)=4.95(小時)

22、甲、乙二人同一天從北京出發沿同一條路騎車往廣州,甲每天行100千米,乙第一天行70千米,以後每天都比前一天多行3千米,直到追上甲,乙出發後第幾天追上甲?
開始時,乙一天行的比甲少100-70=30(千米),以後乙每天多行3千米,到與甲速相同要經過30÷3=10(天),即前10天,甲、乙之間的距離是逐天拉大的,第11天兩人速度相同,從第12天起,乙的速度開始比甲快,與甲的距離逐天拉近,所以,乙追上甲用的時間是:10×2+1=21(天)。

23、甲、乙兩地相距10千米,快、慢兩車都從甲地開往乙地,快車開出時,慢車已行了1.5千米,當快車到達乙地時,慢車距乙地還有1千米,那麼快車在距乙地多少千米處追上慢車?
慢車行了1.5千米,快車才開出,而快車到達乙地時,慢車距乙地還有1千米,就是在快車行10千米的時間里,比慢車多行的路程為1.5+1=2.5(千米)。快車每行1千米比慢車多2.5÷10=0.25(千米)。

24、甲、乙兩班進行越野行軍比賽,甲班以4.5千米/時的速度走了路程的一半,又以5.5千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以4.5千米/時的速度行進,另一半時間以5.5千米/時的速度行進。問:甲、乙兩班誰將獲勝?
快速行走的路程越長,所用時間越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程長,所以乙班獲勝。

25、輪船從A城到B城需行3天,而從B城到A城需行4天。從A城放一個無動力的木筏,它漂到B城需多少天?
輪船順流用3天,逆流用4天,說明輪船在靜水中行4-3=1(天),等於水流3+4=7(天),即船速是流速的7倍。所以輪船順流行3天的路程等於水流3+3×7=24(天)的路程,即木筏從A城漂到B城需24天。

26、小紅和小強同時從家裡出發相向而行。小紅每分走52米,小強每分走70米,二人在途中的A處相遇。若小紅提前4分出發,且速度不變,小強每分走90米,則兩人仍在A處相遇。小紅和小強兩人的家相距多少米?
因為小紅的速度不變,相遇地點不變,所以小紅兩次從出發到相遇的時間相同。也就是說,小強第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小強第二次走了14分,推知第一次走了18分,兩人的家相距
(52+70)×18=2196(米)。

27、小明和小軍分別從甲、乙兩地同時出發,相向而行。若兩人按原定速度前進,則4時相遇;若兩人各自都比原定速度多1千米/時,則3時相遇。甲、乙兩地相距多少千米?
每時多走1千米,兩人3時共多走6千米,這6千米相當於兩人按原定速度1時走的距離。所以甲、乙兩地相距6×4=24(千米)

28、甲、乙兩人沿400米環形跑道練習跑步,兩人同時從跑道的同一地點向相反方向跑去。相遇後甲比原來速度增加2米/秒,乙比原來速度減少2米/秒,結果都用24秒同時回到原地。求甲原來的速度。
因為相遇前後甲、乙兩人的速度和不變,相遇後兩人合跑一圈用24秒,所以相遇前兩人合跑一圈也用24秒,即24秒時兩人相遇。
設甲原來每秒跑x米,則相遇後每秒跑(x+2)米。因為甲在相遇前後各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

29、 甲、乙兩車分別沿公路從A,B兩站同時相向而行,已知甲車的速度是乙車的1.5倍,甲、乙兩車到達途中C站的時刻分別為5:00和16:00,兩車相遇是什麼時刻?
甲車到達C站時,乙車還需16-5=11(時)才能到達C站。乙車行11時的路程,兩車相遇需11÷(1+1.5)=4.4(時)=4時24分,所以相遇時刻是9∶24。

30、 一列快車和一列慢車相向而行,快車的車長是280米,慢車的車長是385米。坐在快車上的人看見慢車駛過的時間是11秒,那麼坐在慢車上的人看見快車駛過的時間是多少秒?
快車上的人看見慢車的速度與慢車上的人看見快車的速度相同,所以兩車的車長比等於兩車經過對方的時間比,故所求時間為11

31、甲、乙二人練習跑步,若甲讓乙先跑10米,則甲跑5秒可追上乙;若乙比甲先跑2秒,則甲跑4秒能追上乙。問:兩人每秒各跑多少米?
甲乙速度差為10/5=2
速度比為(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。

32、一隻野兔逃出80步後獵狗才追它,野兔跑 8步的路程獵狗只需跑3步,獵狗跑4步的時間兔子能跑9步。獵狗至少要跑多少步才能追上野兔?
狗跑12步的路程等於兔跑32步的路程,狗跑12步的時間等於兔跑27步的時間。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

33、甲、乙兩人在鐵路旁邊以同樣的速度沿鐵路方向相向而行,恰好有一列火車開來,整個火車經過甲身邊用了18秒,2分後又用15秒從乙身邊開過。問:
(1)火車速度是甲的速度的幾倍?
(2)火車經過乙身邊後,甲、乙二人還需要多少時間才能相遇?
(1)設火車速度為a米/秒,行人速度為b米/秒,則由火車的 是行人速度的11倍;
(2)從車尾經過甲到車尾經過乙,火車走了135秒,此段路程一人走需1350×11=1485(秒),因為甲已經走了135秒,所以剩下的路程兩人走還需(1485-135)÷2=675(秒)。

34、長江沿岸有A,B兩碼頭,已知客船從A到B每天航行500千米,從B到A每天航行400千米。如果客船在A,B兩碼頭間往返航行5次共用18天,那麼兩碼頭間的距離是多少千米?
800千米

35、客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
10秒.

———————————————答 案——————————————————————

一、填空題
120米
102米
17x米
20x米




1. 這題是「兩列車」的追及問題.在這里,「追及」就是第一列車的車頭追及第二列車的車尾,「離開」就是第一列車的車尾離開第二列車的車頭.畫線段圖如下:

設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.

2. 畫段圖如下:

90米

10x

設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11.

則快車長:18×12-10×12=96(米)

則慢車長:18×9-10×9=72(米)

4. (1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)

5. (1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
6. 設火車車身長x米,車身長y米.根據題意,得
①②

解得

7. 設火車車身長x米,甲、乙兩人每秒各走y米,火車每秒行z米.根據題意,列方程組,得
①②

①-②,得:

火車離開乙後兩人相遇時間為:
(秒) (分).

8. 解:從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+60)¸(15+20)=8(秒).

9. 這樣想:列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
答:列車的速度是每秒種11米.

10. 要求過幾分鍾甲、乙二人相遇,就必須求出甲、乙二人這時的距離與他們速度的關系,而與此相關聯的是火車的運動,只有通過火車的運動才能求出甲、乙二人的距離.火車的運行時間是已知的,因此必須求出其速度,至少應求出它和甲、乙二人的速度的比例關系.由於本問題較難,故分步詳解如下:
①求出火車速度 與甲、乙二人速度 的關系,設火車車長為l,則:
(i)火車開過甲身邊用8秒鍾,這個過程為追及問題:
故 ; (1)
(i i)火車開過乙身邊用7秒鍾,這個過程為相遇問題:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火車頭遇到甲處與火車遇到乙處之間的距離是:
.
③求火車頭遇到乙時甲、乙二人之間的距離.
火車頭遇甲後,又經過(8+5×60)秒後,火車頭才遇乙,所以,火車頭遇到乙時,甲、乙二人之間的距離為:
④求甲、乙二人過幾分鍾相遇?
(秒) (分鍾)
答:再過 分鍾甲乙二人相遇.

二、解答題
11. 1034÷(20-18)=91(秒)

12. 182÷(20-18)=91(秒)

13. 288÷8-120÷60=36-2=34(米/秒)
答:列車的速度是每秒34米.

14. (600+200)÷10=80(秒)
答:從車頭進入隧道到車尾離開隧道共需80秒.

平均數問題

1. 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?

2. 甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?

3. 已知八個連續奇數的和是144,求這八個連續奇數。

4. 甲種糖每千克8.8元,乙種糖每千克7.2元,用甲種糖5千克和多少乙種糖混合,才能使每千克糖的價錢為8.2元?

5. 食堂買來5隻羊,每次取出兩只合稱一次重量,得到十種不同的重量(千克):47、50、51、52、53、54、55、57、58、59.問這五隻羊各重多少千克?

等差數列

1、下面是按規律排列的一串數,問其中的第1995項是多少?

解答:2、5、8、11、14、……。 從規律看出:這是一個等差數列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984

2、在從1開始的自然數中,第100個不能被3除盡的數是多少?

解答:我們發現:1、2、3、4、5、6、7、……中,從1開始每三個數一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數,共有50×3=150,那麼第100個不能被3除盡的數就是150-1=149.

3、把1988表示成28個連續偶數的和,那麼其中最大的那個偶數是多少?

解答:28個偶數成14組,對稱的2個數是一組,即最小數和最大數是一組,每組和為: 1988÷14=142,最小數與最大數相差28-1=27個公差,即相差2×27=54, 這樣轉化為和差問題,最大數為(142+54)÷2=98。

4、在大於1000的整數中,找出所有被34除後商與余數相等的數,那麼這些數的和是多少?

解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數的和為35×(29+30+31+32+33)=5425

5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,並算出這若干張卡片上各數的和除以17的余數,再把這個余數寫在另一張黃色的卡片上放回盒內,經過若干次這樣的操作後,盒內還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數分別是19和97,求那張黃色卡片上所寫的數。

解答:因為每次若干個數,進行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設有2個數20和30,它們的和除以17得到黃卡片數為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數16,也就是說不管幾個數相加,總和除以17的余數不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數的和除以17的余數為0,而19+97=116,116÷17=6……14, 所以黃卡片的數是17-14=3。

6、下面的各算式是按規律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那麼其中第多少個算式的結果是1992?

解答:先找出規律: 每個式子由2個數相加,第一個數是1、2、3、4的循環,第二個數是從1開始的連續奇數。 因為1992是偶數,2個加數中第二個一定是奇數,所以第一個必為奇數,所以是1或3, 如果是1:那麼第二個數為1992-1=1991,1991是第(1991+1)÷2=996項,而數字1始終是奇數項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。

7、如圖,數表中的上、下兩行都是等差數列,那麼同一列中兩個數的差(大數減小數)最小是多少?

解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。

8、有19個算式:

那麼第19個等式左、右兩邊的結果是多少?

解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數? 各式用數分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數相加? 各式左邊用數分別為3、4、5、……、第19個應該是3+1×18=21個, 所以第19個式子結果是397+398+399+……+417=8547。

9、已知兩列數: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數中相同的項數共有多少對?

解答:易知第一個這樣的數為5,注意在第一個數列中,公差為3,第二個數列中公差為4,也就是說,第二對數減5即是3的倍數又是4的倍數,這樣所求轉換為求以5為首項,公差為12的等差數的項數,5、17、29、……, 由於第一個數列最大為2+(200-1)×3=599; 第二數列最大為5+(200-1)×4=801。新數列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續派相同人數的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那麼,這月由總廠派到分廠工作的工人共多少人?

解答:11月份有30天。 由題意可知,總廠人數每天在減少,最後為240人,且每天人數構成等差數列,由等差數列的性質可知,第一天和最後一天人數的總和相當於8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。

12、小明讀一本英語書,第一次讀時,第一天讀35頁,以後每天都比前一天多讀5頁,結果最後一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以後每天都比前一天多讀5頁,結果最後一天只需讀40頁就可以讀完,問這本書有多少頁?

解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調整如下: 第一方案:40、45、50、55、……35+35(第一天放到最後惶熘腥ィ?/P>第二方案:40、45、50、55、……(最後一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。

13、7個小隊共種樹100棵,各小隊種的查數都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?

解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫

Ⅲ 五年級下冊奧數題及答案

小學五年級奧數題——速算與巧算

在日常生活和解答數學問題時,經常要進行計算,在數學課里我們學習了一些簡便計算的方法,但如果善於觀察、勤於思考,計算中還能找到更多的巧妙的計算方法,不僅使你能算得好、算得快,還可以讓你變得聰明和機敏。

例1:計算:9.996+29.98+169.9+3999.5

解:算式中的加法看來無法用數學課中學過的簡算方法計算,但是,這幾個數每個數只要增加一點,就成為某個整十、整百或整千數,把這幾個數「湊整」以後,就容易計算了。當然要記住,「湊整」時增加了多少要減回去。

9.996+29.98+169.9+3999.5

=10+30+170+4000-(0.004+0.02+0.1+0.5)

=4210-0.624

=4209.376

例2:計算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

解:式子的數是從1開始,依次減少0.01,直到最後一個數是0.01,因此,式中共有100個數而式子中的運算都是兩個數相加接著減兩個數,再加兩個數,再減兩個數……這樣的順序排列的。

由於數的排列、運算的排列都很有規律,按照規律可以考慮每4個數為一組添上括弧,每組數的運算結果是否也有一定的規律?可以看到把每組數中第1個數減第3個數,第2個數減第4個數,各得0.02,合起來是0.04,那麼,每組數(即每個括弧)運算的結果都是0.04,整個算式100個數正好分成25組,它的結果就是25個0.04的和。

1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)

=0.04×25

=1

如果能夠靈活地運用數的交換的規律,也可以按下面的方法分組添上括弧計算:

1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)

=1

例3:計算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20

解:這個算式的數的排列像一個等差數列,但仔細觀察,它實際上由兩個等差數列組成,0.1+0.2+0.3+…+0.8+0.9是第一個等差數列,後面每一個數都比前一個數多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二個等差數列,後面每一個數都比前一個數多0.01,所以,應分為兩段按等差數列求和的方法來計算。

0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20

=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2

=4.5+1.65

=6.15

例4:計算:9.9×9.9+1.99

解:算式中的9.9×9.9兩個因數中一個因數擴大10倍,另一個因數縮小10倍,積不變,即這個乘法可變為99×0.99;1.99可以分成0.99+1的和,這樣變化以後,計算比較簡便。

9.9×9.9+1.99

=99×0.99+0.99+1

=(99+1)×0.99+1

=100

例5:計算:2.437×36.54+243.7×0.6346

解:雖然算式中的兩個乘法計算沒有相同的因數,但前一個乘法的2.437和後一個乘法的243.7兩個數的數字相同,只是小數點的位置不同,如果把其中一個乘法的兩個因數的小數點按相反方向移動同樣多位,使這兩個數變成相同的,就可以運用乘法分配律進行簡算了。

2.437×36.54+243.7×0.6346

=2.437×36.54+2.437×63.46

=2.437×(36.54+63.46)

=243.7

*例6:計算:1.1×1.2×1.3×1.4×1.5

解:算式中的幾個數雖然是一個等差數列,但算式不是求和,不能用等差數列求和的方法來計算這個算式的結果。

平時注意積累計算經驗的同學也許會注意到7、11和13這三個數連乘的積是1001,而一個三位數乘1001,只要把這個三位數連續寫兩遍就是它們的積,例如578×1001=578578,這一題參照這個方法計算,能巧妙地算出正確的得數。

1.1×1.2×1.3×1.4×1.5

=1.1×1.3×0.7×2×1.2×1.5

=1.001×3.6

=3.6036

計算下列各題並寫出簡算過程:

1.5.467+3.814+7.533+4.186

2.6.25×1.25×6.4

3.3.997+19.96+1.9998+199.7

4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99

5.199.9×19.98-199.8×19.97

6.23.75×3.987+6.013×92.07+6.832×39.87

*7.20042005×20052004-20042004×20052005

*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)

計算下列各題並寫出簡算過程:

1.6.734-1.536+3.266-4.464

2.0.8÷0.125

3.89.1+90.3+88.6+92.1+88.9+90.8

4.4.83×0.59+0.41×1.59-0.324×5.9

5.37.5×21.5×0.112+35.5×12.5×0.112

五年級下冊數奧試題

姓名 班級 得分
用簡便方法計算下面各題。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023

9.56×4.18-7.34×4.18-0.26×4.18

1、有123名小朋友,把他們分成12人一組或7人一組,恰好分完,而無剩餘。又知總的組數在15組左右。那麼,12人的多少組?7人的有多少組?

2、張妮5次考試的平均成績是88.5分,每次考試的滿分是100分,為了使平均成績盡快達到92分以上,那麼張妮要再考多少次滿分?

3、父親與三個兒子年齡和是108歲,若再過6年,父親的年齡正好等於三個兒子年齡的和。問父親現年多少歲?

4、加工一批零件,原計劃每天加工80個,正好按期完成任務。由於改進了生產技術,實際每天加工了100個,這樣,不僅提前4天完成加工任務,而且還多加工了100個。他們實際加工零件多少個?

5、一個水池能裝8噸水,水池裡裝有一個進水管和一個出水管,兩管齊開,20分鍾能把一池水放完。已知進水管每分鍾往池裡進水0.8噸,求出水管每分鍾放水多少噸?

6、將一根電線截成15段。一部分每段長8米,另一部分每段長5米。長8米的總長度比長5米的總長度多3米。這根鐵絲全長多少米?

7、把一條大魚分成魚頭、魚身、魚尾三部分,魚尾重4千克,魚頭的重量等於魚尾的重量加魚身一半的重量,而魚身的重量等於魚頭的重量加上魚尾的重量。這條大魚重多少千克?

8、體育室買回5個足球和4個籃球需要付287元,買2個足球和3個籃球需要付154元。那麼買一個足球、一個籃球各付多少元?

9、有5元的和10元的人民幣共14張,共100元。問5元幣和10元幣各多少張?

10、某人從A村翻過山頂到B村,共行30.5千米,用了7小時,他上山每小時行4千米,下山每小時行5千米。如果上下山速度不變,從B村沿原路返回A村,要用多少時間?

11、甲、乙兩人同時從A、B兩地相向而行,甲騎車每小時行16千米,乙騎摩托車每小時行65千米。甲離出發點62.4千米處與乙相遇。AB兩地相距多少千米?

12、烏龜與兔子賽跑,兔子每分鍾跑35千米,烏龜每分鍾爬10米,途中兔子睡了一覺,醒來時發現烏龜已經在自己前50米。問兔子還需要多少長時間才能追上烏龜?

13、在一個600米長的環形跑道上,兄妹兩人同時在同一起點都按順時針方向跑步,每隔12分鍾相遇一次。若兩人速度不變,還是在原出發點同時出發,哥哥改為按逆時針方向跑,則每隔4分鍾相遇一次。兩人跑一圈各要幾分鍾?

14、靜水中,甲乙兩船的速度分別是每小時20千米和16千米,兩船先後自某港順水開出,乙比甲早出發2小時,若水速是每小時行4千米,甲開出後幾小時追上乙?

15、一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的遂道需要30秒,這列火車的速度和本身長各是多少?

16、一個書架分上、下兩層,上層的書的本數是下層的4倍。從下層拿5本放入上層後,上層的本數正好是下層的5倍。原來下層有幾本書?

17、有1800千克的貨物,分裝在甲、乙、丙三輛車上。已知甲車裝的千克數正好是乙車的2倍,乙車比丙車多裝200千克。甲、乙、丙三輛車各
包含與排除
1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?

解:兩個小組共有(15+18)-10=23(人),

都不參加的有40-23=17(人)

答:有17人兩個小組都不參加。

--
2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?
解:45-29-10+3=9(人)
答:語文成績得滿分的有9人。

3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?
解:4的倍數有50/4商12個,6的倍數有50/6商8個,既是4又是6的倍數有50/12商4個。
4的倍數向後轉人數=12,6的倍數向後轉共8人,其中4人向後,4人從後轉回。
面向老師的人數=50-12=38(人)
答:現在面向老師的同學還有38名。

4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?
解:2的倍數有100/2商50個,3的倍數有100/3商33個,2和3人倍數有100/6商16個。
領2支的共准備(50—16)*2=68,領3支的共准備(33—16)*3=51,重復領的共准備16*(2+3)=80,其餘准備100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游藝會為該項活動准備的獎品鉛筆共有232支。

5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
解:3厘米的記號:180/3=60,最後到頭了不劃,60-1=59個
4厘米記號:180/4=45,45-1=44個,重復的記號:180/12=15,15-1=14個,所以繩子中間實際有記號59+44-14=89個。
剪89次,變成89+1=90段
答:繩子共被剪成了90段。

6、東河小學畫展上展出了許多幅畫,其中有16幅畫不是六年級的,有15幅畫不是五年級的。現知道五、六年級共有25幅畫,那麼其他年級的畫共有多少幅?
解:1,2,3,4,5年級共有16,1,2,3,4,6年級共有15,5,6年級共有25
所以總共有(16+15+25)/2=28(幅),1,2,3,4年級共有28-25=3(幅)
答:其他年級的畫共有3幅。

---
7、有若干卡片,每張卡片上寫著一個數,它是3的倍數或4的倍數,其中標有3的倍數的卡片佔2/3,標有4的倍數的卡片佔3/4,標有12的倍數的卡片有15張。那麼,這些卡片一共有多少張?
解:12的倍數有2/3+3/4-1=5/12,15/(5/12)=36(張)
答:這些卡片一共有36張。
--
--
8、在從1至1000的自然數中,既不能被5除盡,又不能被7除盡的數有多少個?
解:5的倍數有1000/5商200個,7的倍數有1000/7商142個,既是5又是7的倍數有1000/35商28個。5和7的倍數共有200+142-28=314個。
1000-314=686
答:既不能被5除盡,又不能被7除盡的數有686個。

---
9、五年級三班學生參加課外興趣小組,每人至少參加一項。其中有25人參加自然興趣小組,35人參加美術興趣小組,27人參加語文興趣小組,參加語文同時又參加美術興趣小組的有12人,參加自然同時又參加美術興趣小組的有8人,參加自然同時又參加語文興趣小組的有9人,語文、美術、自然3科興趣小組都參加的有4人。求這個班的學生人數。
解:25+35+27-(8+12+9)+4=62(人)
答:這個班的學生人數是62人。

-- --
10、如圖8-1,已知甲、乙、丙3個圓的面積均為30,甲與乙、乙與丙、甲與丙重合部分的面積分別為6,8,5,而3個圓覆蓋的總面積為73。求陰影部分的面積。
解:甲、乙、丙三者重合部分面積=73+(6+8+5)-3*30=2
陰影部分面積=73-(6+8+5)+2*2=58
答:陰影部分的面積是58。

________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:45:02

--
11、四年級一班有46名學生參加3項課外活動。其中有24人參加了數學小組,20人參加了語文小組,參加文藝小組的人數是既參加數學小組又參加文藝小組人數的3.5倍,又是3項活動都參加人數的7倍,既參加文藝小組也參加語文小組的人數相當於3項都參加的人數的2倍,既參加數學小組又參加語文小組的有10人。求參加文藝小組的人數。
解:設參加文藝小組的人數是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:參加文藝小組的人數是21人。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:45:43

--
12、圖書室有100本書,借閱圖書者需要在圖書上簽名。已知在100本書中有甲、乙、丙簽名的分別有33,44和55本,其中同時有甲、乙簽名的圖書為29本,同時有甲、丙簽名的圖書有25本,同時有乙、丙簽名的圖書有36本。問這批圖書中最少有多少本沒有被甲、乙、丙中的任何一人借閱過?
解:三個人一共看過的書的本數是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,當甲乙丙最大時,三人看過的書最多,因為甲、丙共同看過的書只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看過25本。
三人總共看過最多有42+25=67(本),都沒看過的書最少有100-67=33(本)
答:這批圖書中最少有33本沒有被甲、乙、丙中的任何一人借閱過。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:46:53

--
13、如圖8-2,5條同樣長的線段拼成了一個五角星。如果每條線段上恰有1994個點被染成紅色,那麼在這個五角星上紅色點最少有多少個?

解:五條線上右發有5*1994=9970個紅點,如果所有交叉點上都放一個紅點,則紅點最少,這五條線有10個交叉點,所以最少有9970-10=9960個紅點

答:在這個五角星上紅色點最少有9960個。

此主題相關圖片如下:

________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:47:12

--
14、甲、乙、丙同時給100盆花澆水。已知甲澆了78盆,乙澆了68盆,丙澆了58盆,那麼3人都澆過的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同澆過,丙有100-58=42沒澆過,所以3人都澆過的最少有46-42=4(盆)
答:3人都澆過的花最少有4盆。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:52:54

--
15、甲、乙、丙都在讀同一本故事書,書中有100個故事。每個人都從某一個故事開始,按順序往後讀。已知甲讀了75個故事,乙讀了60個故事,丙讀了52個故事。那麼甲、乙、丙3人共同讀過的故事最少有多少個?
解:乙和丙共同讀過的故事至少有60+52-100=12(個),甲無論從哪裡開始都必定要讀這12個故事。
答:甲、乙、丙3人共同讀過的故事最少有12個。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:53:43

--
15、甲、乙、丙都在讀同一本故事書,書中有100個故事。每個人都從某一個故事開始,按順序往後讀。已知甲讀了75個故事,乙讀了60個故事,丙讀了52個故事。那麼甲、乙、丙3人共同讀過的故事最少有多少個?
解:乙和丙共同讀過的故事至少有60+52-100=12(個),甲無論從哪裡開始都必定要讀這12個故事。
答:甲、乙、丙3人共同讀過的故事最少有12個。
________________________________________
-- 作者:cxcbz
-- 發布時間:2004-12-13 21:53:23

--
以下是引用abc在2004-12-12 15:42:17的發言:
8、在從1至1000的自然數中,既不能被5除盡,又不能被7除盡的數有多少個?

解:5的倍數有1000/5商200個,7的倍數有1000/7商142個,既是5又是7的倍數有1000/35商28個。5和7的倍數共有200+142-28=314個。

1000-314=686

答:既不能被5除盡,又不能被7除盡的數有686個。

題中的除盡應該是整除吧.
________________________________________
-- 作者:cxcbz
-- 發布時間:2004-12-13 21:56:00

--
以下是引用abc在2004-12-12 15:45:02的發言:
11、四年級一班有46名學生參加3項課外活動。其中有24人參加了數學小組,20人參加了語文小組,參加文藝小組的人數是既參加數學小組又參加文藝小組人數的3.5倍,又是3項活動都參加人數的7倍,既參加文藝小組也參加語文小組的人數相當於3項都參加的人數的2倍,既參加數學小組又參加語文小組的有10人。求參加文藝小組的人數。

解:設參加文藝小組的人數是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21

答:參加文藝小組的人數是21人。
1. 四年級三班訂閱《少年文摘》的有19人,訂閱《學與玩》的有24人,兩種都訂的有13人。問訂閱《
少年文摘》或《學與玩》的有多少人?
2. 幼兒園有58人學鋼琴,43人學畫畫,37人既學鋼琴又學畫畫,問只學鋼琴和只學畫畫的分別有多少
人?
3. 1至100的自然數中:
(1)是2的倍數又是3的倍數的數有多少個?
(2)是2的倍數或是3的倍數的數有多少個?
(3)是2的倍數但不是3的倍數的數有多少個?
4. 某班數學、英語期中考試的成績統計如下:英語得100分的有12人,數學得100分的有10人,兩門功
課都得100分的有3人,兩門功課都未得100分的有26人。這個班共有學生多少人?
5. 全班50人,會騎車的有32人,會滑旱冰的有21人,兩樣都會的有8人,求兩樣都不會的有多少人?
6. 一個班有學生42人,參加體育隊的有30人,參加文藝隊的有25人,並且每人至少參加一個隊。這個
班兩隊都參加的有多少人?
【試題答案】
1. 四年級三班訂閱《少年文摘》的有19人,訂閱《學與玩》的有24人,兩種都訂的有13人。問訂閱《少年文摘》
或《學與玩》的有多少人?
19 + 24—13 = 30(人)
答:訂閱《少年文摘》或《學與玩》的有30人。
2. 幼兒園有58人學鋼琴,43人學畫畫,37人既學鋼琴又學畫畫,問只學鋼琴和只學畫畫的分別有多少
人?
只學鋼琴人數:58—37 = 21(人)
只學畫畫人數:43—37 = 6(人)
3. 1至100的自然數中:
(1)是2的倍數又是3的倍數的數有多少個?
既是3的倍數又是2的倍數,一定是6的倍數
100÷6 = 16……4
所以,既是2的倍數又是3的倍數有16個
(2)是2的倍數或是3的倍數的數有多少個?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(個)
所以,是2的倍數或是3的倍數的數有67個。
(3)是2的倍數但不是3的倍數的數有多少個?
50—16 = 34(個)
答:是2的倍數但不是3的倍數的數有34個。
4. 某班數學、英語期中考試的成績統計如下:英語得100分的有12人,數學得100分的有10人,兩門功
課都得100分的有3人,兩門功課都未得100分的有26人。這個班共有學生多少人?
12 + 10—3 + 26 = 45(人)
答:這個班共有學生45人。
5. 全班50人,會騎車的有32人,會滑旱冰的有21人,兩樣都會的有8人,求兩樣都不會的有多少人?
50—(30 + 21—8)= 7(人)
答:兩樣都不會的有7人。
6. 一個班有學生42人,參加體育隊的有30人,參加文藝隊的有25人,並且每人至少參加一個隊。這個
班兩隊都參加的有多少人?
30 + 25—42 = 13(人)
答:這個班兩隊都參加的有13人。
某班同學參加升學考試,得滿分的人數如下:數學20人,語文20人,英語20人,數學、英語兩科滿分者8人,數學、語文兩科滿分者7人,語文、英語兩科滿分者9人,三科都沒得滿分者3人.問這個班最多多少人?最少多少人?
分析與解 如圖6,數學、語文、英語得滿分的同學都包含在這個班中,設這個班有y人,用長方形表示.A、B、C分別表示數學、語文、英語得滿分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.

由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我們考察如何求y的最大值與最小值。
由y=39+x可知,當x取最大值時,y也取最大值;當x取最小值時,y也取最小值x是數學、語文、英語三科都得滿分的人數,因而他們中的人數一定不超過兩科得滿分的人數,即x≤7,x≤8且x≤9,由此我們得到x≤7.另一方面數學得滿分的同學有可能語文都沒得滿分,也就是說沒有三科都得滿分的同學,故x≥0,故0≤x≤7。
當x取最大值7時,y有最大值39+7=46,當x取最小值0時,y有最小值39+0=39。
答:這個班最多有46人,最少有39人。
題1、營業員把一張5元的人民幣和一張5角的人民幣換成了28張票面為1元和1角的人民幣,求換來的這兩種人民幣各多少張?

題2、有一元,二元,五元的人民幣共50張,總面值為116元,已知一元的比二元的多2張,問三種面值的人民幣各多少張?

題3、有3元,5元和7元的電影票400張,一共價值1920元,其中7元和5元的張數相等,三種價格的電影票各多少張?

題4、用大、小兩種汽車運貨,每輛大汽車裝18箱,每輛小汽車裝12箱,現在有18車貨,價值3024元,若每箱便宜2元,則這批貨價值2520元,問:大、小汽車各有多少輛?

題5、一輛卡車運礦石,晴天每天可運20次,雨天每天可運12次,它一共運了112次,平均每天運14次,這幾天中有幾天是雨天?

題6、運來一批西瓜,准備分兩類賣,大的每千克0.4元,小的每千克0.3元,這樣賣這批西瓜共值290元,如果每千克西瓜降價0.05元,這批西瓜只能賣250元,問:有多少千克大西瓜?

題7、甲、乙二人投飛鏢比賽,規定每中一次記10分,脫靶每次倒扣6分,兩人各投10次,共得152分,其中甲比乙多得16分,問:兩人各中多少次?

題8、某次數學競賽共有20條題目,每答對一題得5分,錯了一題不僅不得分,而且還要倒扣2分,這次競賽小明得了86分,問:他答對了幾道題?
1.解:設有1元的x張,1角的(28-x)張
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3張,一角的25張。

2.解:設1元的有x張,2元的(x-2)張,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20張,2元18張,5元12張。

3.解:設有7元和5元各x張,3元的(400-2x)張
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160張,7元、5元各120張。

4.解:貨物總數:(3024-2520)÷2=252(箱)
設有大汽車x輛,小汽車(18-x)輛
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽車6輛,小汽車12輛。

5.解:天數=112÷14=8天
設有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。

6.解:西瓜數:(290-250)÷0.05=800千克
設有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。

7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
設甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
設乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。

8.解:設他答對x道題
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答對了18題。

Ⅳ 小學五年級奧數題

我個人認為缺少一個條件,貨車的速度呢?
LS的回答太幼稚了。。。。

18/3-1*2=4(個)4*3=12(小時)56*18=1008(公里)1008/12=84(公里)
84*12+1008=2006(公里)

答:這段路的長度是2006公里。

Ⅳ 五年級奧數題15道 有答案 有講解

簡便計算(4題)
2.34×11-117×0.22
=(2.34×50)×(÷50)-117×0.22
=117×0.22-117×0.22
=0

19.99×19.98-19.97×19.96
=19.99×(19.97+0.01)-19.97×19.96
=19.97×0.03+0.1999
=0.799

199.199×198-198.198×199
=199.199×198-198.198×(198+1)
=199.199-198.198×198-198.198
=198.198-198.198
=0

18.9×178.178+0.49-17.8×17.8×189.189
=(17.8+1.1)×178.178+0.49-17.8×17.8×189.189
=17.8×(178.178-17.8×189.189)+1.1×178.178+0.49
=-56771.07436+195.9958+0.49
=-56574.58856

求x(3題)
1. x/(1-15%)=17
x=17*85%=289/20

2. 9又1/4-50%x=9
x=1/4/50%=1/2

3. 5/8+3/8x=2
x=(2-5/8)/(3/8)=11/3

應用題 (15題)
1.有一些糖,每人分5塊多10塊;如果現有的人數增加到原人數的1.5倍,那麼每人4塊就少2塊.問這些糖共有多少塊?

【分析與解】 方法一:設開始共有x人,兩種分法的糖總數不變,有5x+10=4×1.5x-2,解得x=12,所以這些糖共有12×5+10=70塊.
方法二:人數增加1.5倍後,每人分4塊,相當於原來的人數,每人分1.5×4=6塊.
有這些糖,每人分5塊多10塊,每人分6塊少2塊,所以開始總人數為(10+2)÷(6-5)=12人,那麼共有糖12×5+10=70塊.

2.甲、乙兩個小朋友各有一袋糖,每袋糖不到20粒.如果甲給乙一定數量的糖後,甲的糖就是乙的糖粒數的2倍;如果乙給甲同樣數量的糖後,甲的糖就是乙的糖粒數的3倍.那麼,甲、乙兩個小朋友共有糖多少粒?
【分析與解】 由題意知糖的總數應該是3的倍數,還是4的倍數.即為12的倍數,因為兩袋糖每袋都不超過20粒,所以總數不超過40粒.於是糖的總數只可能為12、24或36粒.
如果糖的總數為12的奇數倍,那麼「乙給甲同樣數量的糖後」,甲的糖為12÷(3+1)×3=9的奇數倍.那麼在甲給乙兩倍「同樣的數量糖」後,甲的糖為12÷(2+1)×2=8的奇數倍.
也就是說一個奇數加上一個偶數等於偶數,顯然不可能.所以糖的總數不能為12的奇數倍.
那麼甲、乙兩個小朋友共有的糖只能為12的偶數倍,即為24粒.

3.甲班有42名學生,乙班有48名學生.已知在某次數學考試中按百分制評卷,評卷結果各班的數學總成績相同,各班的平均成績都是整數,並且平均成績都高於80分.那麼甲班的平均成績比乙班高多少分?

【分析與解】 方法一:因為每班的平均成績都是整數,且兩班的總成績相等,所以總成績既是42的倍數,又是48的倍數,所以為[42,48]=336的倍數.
因為乙班的平均成績高於80分,所以總成績應高於48×80=3840分.
又因為是按百分制評卷,所以甲班的平均成績不會超過100分,那麼總成績應不高於42×100=4200分.
在3840~4200之間且是336的倍數的數只有4032.所以兩個班的總分均為4032分.
那麼甲班的平均分為4032÷42=96分,乙班的平均分為4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.

方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因為7、8互質,所以甲班的平均分為某數的8倍,乙班的平均分為某數的7倍,又因為兩個班的平均分均超過80分,不高於100分,所以這個數只能為12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.

4.某鄉水電站按戶收取電費,具體規定是:如果每月用電不超過24度,就按每度9分錢收費;如果超過24度,超出的部分按每度2角錢收費.已知在某月中,甲家比乙家多交了電費9角6分錢(用電按整度計算),問甲、乙兩家各交了多少電費?

【分析與解】 如果甲、乙兩家用電均超過24度,那麼他們兩家的電費差應是2角錢的整數倍;
如果甲、乙兩家用電均不超過24度,那麼他們兩家的電費差應是9分錢的整數倍.
現在9角6分既不是2角錢的整數倍,又不是9分錢的整數倍,所以甲家的用電超過了24度,乙家的用電不超過24度.
設甲家用了24+x度電,乙家用了24-y度電,有20x+9y=96,得x=3,y=4.
即甲家用了27度電,乙家用了20度電,那麼乙家應交電費20×9=180分=1元8角,則甲家交了180+96=276分=2元7角6分.
即甲、乙兩家各交電費2元7角6分,1元8角.
5.一小、二小兩校春遊的人數都是10的整數倍,出行時兩校人員不合乘一輛車,且每輛車盡量坐滿.現在知道,若兩校都租用有14個座位的旅遊車,則兩校共需租用這種車72輛;若兩校都租用19個座位的旅遊車,則二小要比一小多租用這種車7輛.問兩校參加這次春遊的人數各是多少?
【分析與解】 設二小春遊人數為m,一小春遊人數為n.由已知乘19座麵包車二小比一小多租用7輛.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知兩校共需租用14座麵包車72輛,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同時已知m與n都是10的倍數,於是有
, 解得 , 另外四組因為解得m、n不是10的倍數.
經檢驗只有 滿足.
所以,一小參加春遊430人,二小參加春遊570人.

6.某遊客在10時15分由碼頭劃出一條小船,他欲在不遲於13時回到碼頭.河水的流速為每小時1.4千米,小船在靜水中的速度為每小時3千米,他每劃30分鍾就休息15分鍾,中途不改變方向,並在某次休息後往回劃.那麼他最多能劃離碼頭多遠?
【分析與解】 從10時15分出發,不遲於13時必須返回,所以最多可劃行2小時45分,即165分鍾.165=4×30+3×15,最多可劃4個30分鍾,休息3個15分鍾.
順流速度為3+1.4=4.4千米/4,時;所以順流半小時劃行路程為4.4×0.5=2.2千米;
逆流速度為3-1.4=1.6千米/4,時;所以逆流半小時劃行路程為1.6×0.5=0.8千米.
休息15分鍾,則船順流漂行的路程為1.4×0.25=0.35千米.
第一種情況:當開始順流時,至少劃行半小時,行駛2.2千米,而在休息的3個時問內船又順流漂行0.35×3=1.05千米的路程,所以逆流返回時需劃行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小時=121.875分鍾.即最少需30+15×3+121.875=196.875分鍾>165分鍾,來不及按時還船.不滿足.
第二種情況:當開始逆流時,每逆流半小時,則行駛0.8千米,則3次逆流後,行駛了0.8×3=2.4千米,船在遊客休息時順流漂行了1.05千米,所以回劃時只用劃行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小時≈18.41分鍾.共需3×30+3×15+18.41=153.41分鍾<165分鍾,滿足.
於是,只有第二種情況滿足,此時最遠的路程為休息了2次後第3次逆流所至的地點,為0.8×3-0.35×2=1.7千米.
所以,他最多能劃離碼頭1.7千米.
7. 機械廠計劃生產一批機床,原計劃每天生產40台,可在預定的時間內完成任務,實際每天生產48台,結果提前4天完成任務,求這批機床有多少台?

48×[40×4÷(48-40)]=960(台)

8. 某印刷廠計劃用24天裝訂一批書,每天裝訂12000本,實際提前4天完成了任務,實際比原計劃每天多裝訂多少本?
12000×24÷(24-4)-12000=2400(本)

9. 甲、乙兩磚廠,甲廠原存磚87500塊,乙廠比甲廠多存磚4500塊,某日甲廠賣出25000塊,乙廠比甲廠少賣出3000塊,這時哪廠存磚多?多多少塊?
甲廠存磚:87500-25000=62500(塊)
乙廠存磚:(87500+4500)-(25000-3000)=70000(塊)
∴ 乙廠存磚多,多 70000-62500=7500(塊)
10. 一筐蘋果連筐共重45千克,賣出一半後,剩下的蘋果連筐共重24千克,求原來有蘋果多少千克?
(45-24)×2=42(千克)
11.小明上午8時騎自行車以每小時12千米的速度從A地到B地,小強上午8時40分騎自行車以每小時16千米的速度從B地到A地,兩人在A、B兩地的中點處相遇,A、B兩地間的路程是多少千米?

解:這是一個相向而行相遇求路程的問題。但兩人不是同時出發,如果能轉換成同時出發,並且求出行多少小時相遇,就可以用數學課學的方法解答。

兩人在兩地間的路程的中點相遇,但小明比小強多行了40分鍾,如果兩人同時出發,相遇時,小明行的路程就比小強少12÷60×40=8(千米),就是當小強出發時,小明已經行了8千米,從8時40分起兩人到兩人相遇,由於小明每小時比小強少行16-12=4(千米),說明兩人相遇時間是8÷4=2(小時),那麼,A、B兩地間的路程是8+(12+16)×2=64(千米)。

答:A、B兩地間的路程是64千米。

12:甲、乙兩村相距3550米,小偉從甲村步行往乙村,出發5分鍾後,小強騎自行車從乙村前往甲村,經過10分鍾遇見小偉。小強騎車每分鍾行的比小偉步行每分鍾多160米,小偉每分鍾走多少米?

解:如果小強每分鍾少行160米,他行的速度就和小偉步行的速度相同,這樣小強10分鍾就少行了160×10=1600(米),小偉(5+10)分鍾和小強10分鍾一共行走的路程是3550-1600=1950(米),那麼小偉每分鍾走的路是1950÷(5+10+10)=78(米)。

答:小偉每分鍾走78米。

13:客車從東城和貨車從西城同時開出,相向而行,客車每小時行44千米,貨車每小時行36千米,客車到西城比貨車到東城早2小時。兩車開出後多少小時在途中相遇?

解:當客車到西城時,貨車離東城還有2×36=72(千米),而貨車每小時行的比客車少44-36=8(千米),客車行東西城間的路程用的時間是72÷8=9(小時),因此東西城相距44×9=396(千米),兩車從出發到相遇用的時間是;396÷(44+36)=4.95(小時)

答:兩車開出後4.95小時在途中相遇。

14:甲、乙二人同一天從北京出發沿同一條路騎車往廣州,甲每天行100千米,乙第一天行70千米,以後每天都比前一天多行3千米,直到追上甲,乙出發後第幾天追上甲?

解:二人同時、同地出發同向而行,但開始時,乙比甲行得慢,當乙的速度增加到與甲相同前,兩人間的距離越拉越大,當乙的速度超過甲時,兩人間的距離又越來越近,直到乙追上甲。

開始時,乙一天行的比甲少100-70=30(千米),以後乙每天多行3千米,到與甲速相同要經過30÷3=10(天),即前10天,甲、乙之間的距離是逐天拉大的,第11天兩人速度相同,從第12天起,乙的速度開始比甲快,與甲的距離逐天拉近,所以,乙追上甲用的時間是:10×2+1=21(天)。

答:乙出發後第21天追上甲。

15:甲、乙兩地相距10千米,快、慢兩車都從甲地開往乙地,快車開出時,慢車已行了1.5千米,當快車到達乙地時,慢車距乙地還有1千米,那麼快車在距乙地多少千米處追上慢車?

解:慢車行了1.5千米,快車才開出,而快車到達乙地時,慢車距乙地還有1千米,就是在快車行10千米的時間里,比慢車多行的路程為1.5+1=2.5(千米)。快車每行1千米比慢車多2.5÷10=0.25(千米)。

Ⅵ 五年級上冊奧數計算題及答案,在線等。

1. 765×213÷27+765×327÷27

2.(9999+9997+…+9001)-(1+3+…+999)

3.19981999×19991998-19981998×19991999

1. 765×213÷27+765×327÷27

解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300

2. (9999+9997+…+9001)-(1+3+…+999)

解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)

=9000+9000+…….+9000 (500個9000)

=4500000

3.19981999×19991998-19981998×19991999

解:(19981998+1)×19991998-19981998×19991999

=19981998×19991998-19981998×19991999+19991998

=19991998-19981998

=10000

4計算:20×20-19×19+18×18-17×17+…+2×2-1×1

答案:

原式=(20+19)(20-19)+(18+17)(18-17)+…+(2+1)(2-1)

=20+19+18+17+…+2+1

=210

5計算1994.5×79+0.24×790+7.9×31

解答:原式=1994.5×79+2.4×79+79×3.1
=(1994.5+2.4+3.1)×79
=2000×79
=158000
6計算:38765432-3876542×3876544
解答:本題一看好大的數字,肯定有絕招,我們發現
3876542=3876543-1
3876544=3876543+1
原式=38765432-(3876543-1)×(3876543+1)
=38765432-(38765432-1)
=1
7計算2010×2009-2009×2008+2008×2007-2007×2006+…+2×1
解答:原式=2009×(2010-2008)+2007×(2008-2006)+…+3×(4-2)+2×1
=(2009+2007+…+3+1)×2
=1010025×2
=2020050

一、輕松填一填:

1.1~20的自然數中,奇數有個,偶數有個,質數有個,合數有個。

2.327至少加上,才是2的倍數,至少減去,才是5的倍數。

3.在15、18、20、30、45這五個數中,是3的倍數是。有因數

5的數是,既是3的倍數,又是5的倍數有。

4.在三位數4□2的「 □ 」中分別填上、、和後組成的數、都是3的倍數。

5.兩個完全一樣的三角形,拼成一個面積是8.2平方厘米的平行四邊形,其中一個三角形的面積是平方厘米。

6.一個平行四邊形面積是38平方厘米,底是9.5厘米,高是。

7.把3噸煤平均分成3堆,每堆煤重噸,每堆煤是3噸煤的。

8.3/4的分數單位是,再加上個這樣的單位就是最小的質數。

9.3620平方厘米=()平方分米=()平方米

0.15公頃=()平方米500米=()千米

10.自然數a和b,當a()b時,b/a是真分數,當a()b時,b/a是假分數,當a()b時,b/a=1。

11、一個數的倍數的個數是,其中最小的是。

二、判斷。

1.三角形的面積等於平行四邊形面積的一半。

2.兩個連續奇數的積一定是合數。

3.一個數的倍數總比這個數的因數大。

4.5是因數,15是倍數。

5.在獻愛心活動中,笑笑捐了自己零花錢的1/5,淘氣捐了自己零花錢的3/5, 淘氣捐的錢比笑笑多。

6、假分數都比1大。

三、選擇。

1.既是2的倍數,又是5的倍數的最大三位數是

A、999 B、995 C、990 D、950

2.一個質數

A、沒有因數B、只有一個因數 C、只有2個因數 D、有3個因數

3.下面各組數中,三個連續自然數都是合數的是

A、14、15、16 B、7、8、9 C、13、15、16

4.分數的分母與除法算式中的除數

A、可以是任何數B、不能是0C、可以是0

5.一個梯形的上底、下底都不變,高擴大為原來的2倍,它的面積

A、不變 B、擴大為原來的2倍C、縮小為原來的4倍

四、計算。

1、直接寫出得數。

4.1×0.5=7.6×2.5×4= 2.88÷0.4=

1.35÷5= 7a-0.2a+a=2.5-1.37=

2、解方程。

2X+3X=50 m-0.85m=3

7(X-1)=6.3 3X+7X+2.6=74

五、生活中的數學。

1、五(2)班學生在為災區獻愛心活動中捐書129本,其中男生捐書78本,剩下的是女生捐的。男生捐書的本數佔全班捐書總數的幾分之幾?女生捐書的本數佔全班捐書總數的幾分之幾?

2、甲、乙兩地相距460千米,客車與貨車同時從甲、乙兩地出發,相向而行,客車每小時行60千米,貨車每小時行55千米。

(1)經過多久兩車可能相遇?(用方程解)

(2)相遇時客車比貨車多行多少千米?

3、小明家的菜地是梯形的,上底是6米,下底是10米,高12米,如果每平方米收西紅柿7千克,這塊菜地可以收西紅柿多少千克?

4、一批零件平均分給3個,5個,7個師傅做都剩1個,這批零件在100—110個之間。請問這批零件有多少個?

5、甲5小時行24千米,乙7小時行32千米。他們兩人誰的速度快?

6、同學們去游覽自然風景區,門票如下:學生票每人30元,成人票每人60人,團體20人以上(含20人)每人40元;有40名學生和5位教師。

怎樣購票最省錢,共需多少元?

一、每空1分,共28分。

1、10,10,8,11; 2、1,7; 3、15,18,30,45;

15,20,30,45;15,30,45; 4、0,3,6,9;

5、4.1平方厘米;6、4厘米; 7、1,1/3;

8、1/4,5;9、36.2,0.362,1500,0.5;10、>,<,=;

11、有限的,它本身;

二、判斷:每題2分,共12分。

1、 ×2、√ 3、×4× 5、× 6、×

三、每題2分,共10分。

1、 C 2、C 3、 A4、 B 5、 B

四、計算:共18分

1、每題1分,共6分。

2.05;76;7.2;0.27;7.8a;1.13;;

3、每題3分,共12分。

X=10;X= 20 ; X=1.9;X=4.8

六、生活中的數學:1、3、4、5、6每題6分,2題7分;共26分。

1、26/43,17/43; 2、4小時,20千米;3、672千克; 4、106個;

5、甲的速度快

6、買40張學生票,5張成人票;共1500元

Ⅶ 小學五年級奧數題及答案25道!!

奧賽專題 -- 稱球問題
〔專題介紹〕稱球問題是一類傳統的趣味數學問題,它鍛煉著一代又一代人的智力,歷久不衰。下面幾道稱球趣題,請你先仔細考慮一番,然後再閱讀解答,想來你一定會有所收獲。
〔經典例題〕例1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。
例2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論。如B<C,仿照B>C的情況也可得出結論。
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論。
(3)若A<B,類似於A>B的情況,可分析得出結論。

練習 有12個外表上一樣的球,其中只有一個是次品,用天平只稱三次,你能找出次品嗎?

奧賽專題 -- 雞兔同籠問題
[專題介紹]雞兔同籠問題是指在應用題中給出了雞和兔子的總頭數和總腿數,求雞和兔子各有多少只的一類問題。雞兔同籠問題在解答過程中用到假設的思路,可以假設都是兔子,這樣總腿數就比實際腿數要多,多出來的腿數就是把雞當兔子多算的,因此再除以一隻雞比一隻兔子少的腿數就可以求得雞有多少只。也可以假設成都是雞,這樣就可以求得兔有多少只。
[經典例題]例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18。
解:①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻。
[總結]:先假設它們全是兔.於是根據雞兔的總只數就可以算出在假設下共有幾只腳,把這樣得到的腳數與題中給出的腳數相比較,看相差多少.每差2隻腳就說明有一隻雞;將所差的腳數除以2,就可以算出共有多少只雞.我們稱這種解題方法為假設法.概括起來,解雞兔同籠問題的基本關系式是:
雞數=(每隻兔腳數× 兔總數- 實際腳數)÷(每隻兔子腳數-每隻雞的腳數)
兔數=雞兔總數-雞數
當然,也可以先假設全是雞。
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:雞與兔分別有80隻和20隻。
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解。
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人。
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人。
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人)。
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人。
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船。
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
解:①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.

參考資料:小數專業網
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間。根據數量關系式,我們知道要想求通過時間,就要知道路程和速度。路程是用橋長加上車長。火車的速度是已知條件。
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾。

2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與解答:這是一道求車速的過橋問題。我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件。可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出。
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米。

3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與解答:火車過山洞和火車過橋的思路是一樣的。火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋。這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程。
總路程:
山洞長: (米)
答:這個山洞長60米。

和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確。
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和。看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度。
甲乙飛機的速度分別每小時行800千米、400千米。
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書。根據條件需要先求出哥哥剩下多少本課外書。如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量。
(1)兄弟倆共有課外書的數量是20+25=45。
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3。
(3)哥哥剩下的課外書的本數是45÷3=15。
(4)哥哥給弟弟課外書的本數是25-15=10。
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸。根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍。於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸。最後就可求出甲庫原來存糧多少噸。
甲庫原存糧130噸,乙庫原存糧40噸。

列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組。
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底。

奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數。
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數。
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數)。因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數)。
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數。
例如:8+4=12,8-4=4等。
兩個奇數的和或差也是偶數。
例如:9+3=12,9-3=6等。
奇數與偶數的和或差是奇數。
例如:9+4=13,9-4=5等。
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數。
性質2 奇數與奇數的積是奇數。

偶數與整數的積是偶數。

性質3 任何一個奇數一定不等於任何一個偶數。
1. 有5張撲克牌,畫面向上。小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下。要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次。
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下。而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數。
所以無論他翻動多少次,都不能使5張牌畫面都向下。
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒。那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒。所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子。
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個。否則甲盒子中的黑子數不變。也就是說,李平每次從甲盒子拿出的黑子數都是偶數。由於181是奇數,奇數減偶數等於奇數。所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子。

奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論。如B<C,仿照B>C的情況也可得出結論。
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論。
(3)若A<B,類似於A>B的情況,可分析得出結論。
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日。為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月。如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日。
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數。這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數。而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」。我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數。換句話說,4個自然數分成3類,至少有兩個是同一類。既然是同一類,那麼這兩個數被3除的余數就一定相同。所以,任意4個自然數,至少有2個自然數的差是3的倍數。
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的。
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙。拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走。如果再補進2隻,又可取得第3雙。所以,至少要取6+2+2=10隻襪子,就一定會配成3雙。
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手。
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球。
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球。
故總共至少應取出10+5=15個球,才能符合要求。
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路。
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元。這時他的存摺上還剩1250元。他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推)。由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」。綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量。解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算。
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了。哥哥看弟弟挑得太多,就拿來一半給自己。弟弟覺得自己能行,又
從哥哥那裡拿來一半。哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊。問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊。只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊。
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾。
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算。
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18。
解:①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻。
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:雞與兔分別有80隻和20隻。
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解。
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人。
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人。
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人)。
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人。
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船。

Ⅷ 小學五年級奧數題,及答案

1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?

2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?

3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?

4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?

5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
五年級試題三答案

1,因為10人2組都參加,所以只參加數學的5人,只參加航模的8人,加上那10人就是23人,40-23=17,2個小組都不參加的17人

2,同理,數學滿分10人,2科都滿分的3人,於是只是數學滿分的7人,45-7-29=9,這個就是語文滿分的人(如果說只是語文滿分的則需要減去3)

3,50÷4取整12,50÷6取整8,但是要注意,報4倍數的同時可能是6的倍數,所以還要算出4和6的公倍數,有50÷12(4和6的最小公倍數)=4(取整),所以,應該是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),還是算出2和3的公倍數100÷6=16(取整),然後找出即沒不被2整除,也不被3整除的數的個數100-50-33+16=28,所以,准備鉛筆為50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2個劃線劃在一起,也就是要算出他們的公倍數,180÷3÷4=15,所以應該為60+45-15=90

閱讀全文

與小學五年級數奧題相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99