⑴ 小學五年級數學實踐小論文
那是星期六的一天下午,我嚷著要吃西瓜,媽媽爽快地答應了。於是我和奶奶就去買西瓜。
走進菜市場,我一眼就瞅住了一個西瓜堆兒。這里的西瓜是紅瓤的,又大又圓,看著就讓人垂涎三尺。奶奶說:「給我挑個熟的!」那個小販在西瓜上敲了敲,說:「包熟!」於是放在電子秤上說:「一斤十塊半,3.6斤,17元8角。」奶奶說:「什麼?17元8角,這么貴?不買了不買了!」小販急了,說:「別,別,別,你去其它地方買就不貴嗎?我這兒可是全市最便宜的了,我這兒一斤十塊半,人家一斤半十五塊五了!」奶奶數學本來就不好,被小販這么一說便糊塗了,我當時也在想:一斤十塊半,也就是1斤10.5元,單價是:10.5÷1=10.5元,而一斤半十五塊五,也就是1.5斤15.5元,它的單價是:15.5÷1.5,我沒細算,想想可能應該比10.5多,但是卻犯了個致命的錯誤。
算錯就會犯錯,我向奶奶使了個眼色,示意讓她買,於是奶奶說:「價格能少一點嗎?」「不能、不能,本能就比人家便宜,再少,我就虧大了,乾脆別賣了。」看著小販的「真誠」的態度,奶奶於是付了錢,拎著裝好西瓜的袋子就走了。
回到家,我把這件事告訴給媽媽。媽媽聽了之後又問了一遍價錢。我說:「小販說他這兒一斤十塊半,別人那一斤半十五塊五。」媽媽哭笑不得,問:「你怎麼知道別人那兒貴呢?你再好好的算算」。「因為這兒是10.5÷1=10.5,而別人那兒是15.5÷1.5,反正他這兒便宜」我理直氣壯。媽媽說:「你呀,太馬虎了,15.5÷1.5=10.333……,誰便宜呀!」
通過這件事,我知道了數學在我們日常生活中運用十分廣泛,學好數學十分重要,另外還要記住:「不要利用數學騙人,也不能不懂數學而被人騙!」
⑵ 小學五年級下學期的數學小論文
「十一」期間,許多商場都在打折,趁著這個好時機,我和爸爸媽媽一起去了「萬霖」商場。
在二樓,我們看中了一套西服,它的標價是五百二十元,售貨員說:「現在正趕上『十一』,您可以選擇打八折或者滿二百返一百六十,兩種都差不多。」
真的差不多嗎?我腦子產生了這樣一個疑問。如果選擇打八折,那麼就要花520×0.8=416(元)。而要是滿兩百返一百六十呢。我們要先付520元,之後會拿到160×2=320(元)的返券,那我們實際就花了520-320=200(元)。416和200比起來,當然第二種比較好。
可是拿到返券之後呢?再買320元的東西又可以返160元,而這160元的返券離200元只差200-160=40(元),你要是填上這40元買東西,就又可以返160元。你難道不心動嗎?可如果真這樣做,你就掉入一個無底洞,花200返160,花200返160……你永遠也花不完剩下的錢。
商家為了賺錢可真是「費盡心機」啊!
⑶ 小學五年級數學論文怎麼寫
《容易忽略的答案》
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千米」這個條件中所說的「離」字,沒說是還沒到中點,還是超過了中點。如果是沒到中點離中點18千米的話,列式就是前面的那一種,如果是超過中點18千米的話,列式應該就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正確答案應該是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。兩個答案,也就是說王星的答案加上小英的答案才是全面的。
在日常學習中,往往有許多數學題目的答案是多個的,容易在練習或考試中被忽略,這就需要我們認真審題,喚醒生活經驗,仔細推敲,全面正確理解題意。否則就容易忽略了另外的答案,犯以偏概全的錯誤。
⑷ 小學五年級下冊數學論文(300字左右)
問問你的小學數學老師吧,他會告訴你的
⑸ 小學五年級數學小論文
認識了小學五年級勾股定理知識和勾股定理知識的常見運用,想必很多同學會去深入學習。本站用戶整理了五年級數學小論文:勾股定理,歡迎閱讀。
五年級數學小論文:勾股定理
1、證明一個三角形是直角三角形
2、用於直角三角形中的相關計算
3、有利於你記住餘弦定理,它是餘弦定理的一種特殊情況。中國最早的一部數學著作—— 周髀算經 的開頭,記載著一段周公向商高請教數學知識的對話:
周公問:「我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能得到關於天地得到數據呢?」
商高回答說:「數的產生來源於對方和圓這些形體餓認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的呵。」
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要懂得數學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等於斜邊的平方
用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯於公元前550年首先發現的。其實,我國古代得到人民對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那麼周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現在數學界把它稱為勾股定理,應該是非常恰當的。
在稍後一點的 九章算術一書 中,勾股定理得到了更加規范的一般性表達。書中的 勾股章 說;「把勾和股分別自乘,然後把它們的積加起來,再進行開方,便可以得到弦。」把這段話列成算式,即為:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形兩直角邊分別為a,b,斜邊為c,那麼a^平方+b^平方=c^平方;即直角三角形兩直角邊的平方和等於斜邊的平方。
如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是四,斜邊就是33+4。
⑹ 小學生五年紀關於數學的論文1000字
數學小論文大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。有趣的雞兔同籠,古怪的數學黑洞,在這之中我發現了一些奇妙的數學規律。記得我有一次在做奧數題的時候遇到了一道方程題18X=20。當我用20除以18時發現得數是1.111……,是一個純循環小數。後來我寫了分數九分之十。寫完答案之後,我看著這道題的答案時,我就猜測:當被除數是整十數時,如果用這個數減去其十位上的數字,然後再用原來的數除以減得的數,得數就是1.1111……或分數中的九分之十。當想到這時,我有些猶豫:這個猜測准不準確呢,不會有錯吧?我半信半疑的帶著這個疑問,開始用其他數來進行驗算:用30先減去十位上的3等於27,再用30除以27。這時我發現得數還真是1.111……和九分之十。後來我又分別用70和60來證明我的說法是否正確,果真我的想法是正確的,改成事實證明我的想法是正確的。在此之後,我又繼續用這種規律來驗算整百位的題,又發現得出來的數是1.0101……或九十九分之一百,依照這種規律,那麼整千位的數就可以得出1.001001……和九百九十九分之一千,整萬位就可以得出1.00010001……或九千九百九十九分之一萬……在這奇妙的數學王國里,只要我們不斷努力探索和發現,就能發現不少有趣的同時不為我們熟悉的數學問題。猜想驗證的方法是人類探索未知的一種重要方法,很多科學規律的發現,都是先有猜想,而後被不斷的驗證、再猜想、再驗證才被認識。猜想驗證也是一種重要的數學思想方法。我們應當在聽老師講課時注意向老師學習該種思維方法,同時,還應該在平常的生活中嘗試自我探索。
⑺ 一篇小學五年級的數學小論文,急呀!!
千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千米」這個條件中所說的「離」字,沒說是還沒到中點,還是超過了中點。如果是沒到中點離中點18千米的話,列式就是前面的那一種,如果是超過中點18千米的話,列式應該就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正確答案應該是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。兩個答案,也就是說王星的答案加上小英的答案才是全面的。 <BR>在日常學習中,往往有許多數學題目的答案是多個的,容易在練習或考試中被忽略,這就需要我們認真審題,喚醒生活經驗,仔細推敲,全面正確理解題意。否則就容易忽略了另外的答案,犯以偏概全的錯誤。 大家一定從小就開始奇怪了,0到底是怎麼來的呢?關於0的起源,有以下幾種觀點。①、古巴比倫的0的符號是用空位來表示的,例如要表示一百零一,古巴比倫寫作1。1②、在古印度數學中,發現0的最早記載是公元876年,歐洲許多數學家都同意這一觀點。公元6世紀,印度人就開始用「?」,後來變成了一個圓圈。到了公元九世紀就固定成了今天的「0」。③、0的故鄉在中國。我國最早的詩歌總集《詩經》中就有0的記載,只不過當時0的意思是「暴風雨末了的小雨滴」。在我國遠古時代的結繩記數法中,0是在對「有」的否定中出現的,意思是「沒有」。總之,有關0的起源還沒有一個定論。 但是無論如何,0自從一出現就具有非常旺盛的生命力,現在,它廣泛應用於社會的各個領域。 在課堂上,常聽老師說,0就是沒有的意思,你有0元錢,就代表沒有錢;你有0支筆,就代表你沒有筆。在這樣的情況下,溫度表上的0度就代表著沒有溫度嗎?答案肯定是否定的。純凈的冰水混合物的溫度就是0度。 想一想我們四年級學的素數與合數吧!老師是這樣解釋的「自然數可以分成3類:1、素數與合數,一個自然數只有一和它本身兩個因數的數是素數,因數大於3個就是合數,1單獨為一種。」那0也是自然數,它是最小的自然數,0到底是質數還是合數呢?這個誰也說不清楚。 我還有一個關於0的問題,自然數也可以分成奇數與偶數,能被2整除的數就是合數,反之就是奇數。0是奇數還是偶數呢?看上去像偶數,但又說不準,到底是什麼數誰也不清楚。 0還有許多奇妙有趣的事就在我們身邊呢,大家一起來發現吧!
麻煩採納,謝謝!
⑻ 小學五年級數學論文怎麼寫
小學五年級數學論文怎麼寫?
解題思路:應用題中關鍵詞為平均一般都是使用除法,使用倍數一般都是使用乘法,比誰多或者比誰少一般都是使用加減法,根據關鍵詞進行應用列式
解題過程:
應用提主要看關鍵詞進行列式
⑼ 要一篇數學小論文500字五年級
數學小論文
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。