一年級上冊
第一單元數一數
第二單元比一比:1、比多少2、比長短3、比高矮
第三單元 1-5的認識和加減法:
1、1-5的認識2、比大小3、幾和第幾4、2-5的分與合
5、加法 6、減法7、0的認識和加減法
第四單元認識物體和圖形:1、長方體、正方體、圓柱、球2、長方體、正方形、三角形、圓
第五單元分類
第六單元 6-10的認識和加減法:1、6和7的認識2、6、7的分與合3、和是6、7的加法與6、7減幾4、解決問題5、8、9的知識6、8、9的分與合7、和是8、9的加法和8、9減幾8、解決問題9、10的認識10、和是10的加法與10減幾11、填()12、連加連減13、加減混合14、整理和復習(一)15、整理和復習(二)
第七單元 11-20各數的認識:1、數數、讀數2、寫數3、10或十幾加幾和相應的減法
第八單元認識鍾表
第九單元 20以內的進位加法:1、9加幾2、解決問題3、8、7、6加幾4、解決問題5、5、4、3、2加幾6、整理和復習
第十單元總復習:1、20以內的數2、20以內的加法、10以內的加減法3、認識圖形4、認識鍾表
一年級下冊
第一單元位置:1、 位置(1)2、位置(2)
第二單元 20以內的退位減法:1 、十幾減92、 十幾減83、 十幾減74 、十幾減6、5、4、3、2
第三單元圖形的拼組:1 、圖形的拼組(1)2 、圖形的拼組(2)
第四單元 100以內數的認識:1、 數數、數的組成2、 讀數、寫數3、 數的順序、比較數的大小4、 整十數加一位數、相應的減法
第五單元認識人民幣:1、 認識人民幣2、 簡單的計算
第六單元 100以內的加法和減法(一):1、 整十數加和減整十數2、 兩位數加一位數和整十數
3、 兩位數減一位數和整十數
第七單元認識時間:1、 認識時間(1)2、 認識時間(2)3、單元測試題
第八單元找規律:1、 找規律(1)2、 找規律(2)
第九單元統計:1、統計2、單元測試題
第十單元總復習:1、 總復習(1)2、 總復習(2)
二年級上冊
第一單元長度單位:1、認識厘米和米2、認識線段
第二單元 100以內的加法和減法(二):1、兩位數加兩位數(不進位加)2、兩位數加兩位數(進位加)3、兩位數減兩位數(不退位減)4、兩位數減兩位數(退位減)5、兩位數加、減兩位數的應用題 6、連加7、連減8、加減混合9、加、減法估算
第三單元角的初步認識:1、角的特點2、直角的認識3、單元測試題
第四單元表內乘法(一):1、乘法的初步認識2、5的乘法口訣3、1、3、4的乘法口訣4、乘加乘減5、6的乘法口訣
第五單元觀察物體
第六單元表內乘法(二):1、7的乘法口訣2、倍數3、8的乘法口訣4、9的乘法口訣
第七單元統計
第八單元數學廣角:1、數的組合 2、數的排除
第九單元總復習:1、1、00以內的加法和減法2、表內乘法3、米和厘米,角和直角4、觀察物體5、統計6、綜合練習(一)7、綜合練習(二)
二年級下冊
第一單元解決問題:1、 解決問題(1)2、解決問題(2)3、解決問題(3)
第二單元表內除法(一):1、 平均分2、 除法3、 用2-6的乘法口訣求商(1)4、 用2-6的乘法口訣求商(2)
第三單元圖形與變換:1、 銳角和鈍角2、 平移和旋轉
第四單元表內除法(二):1、 用7、8、9的乘法口訣求商2、 解決問題(1)3、解決問題(2)
第五單元萬以內數的認識:1 、1000以內數的認識2、 10000以內數的認識3、近似數4、 整百、整千數加減法
第六單元克和千克
第七單元萬以內的加法和減法(一):1、 兩位數加兩位數2、 兩位數減兩位數3、 幾百幾十數的加減法4、 估算
第八單元統計:1、 統計表2、 統計圖
第九單元找規律
第十單元總復習:1、 總復習(1)2、 總復習(2)
三年級上冊
第一單元測量:1、1 毫米、分米的認識2、千米的認識3、噸的認識
第二單元萬以內的加法和減法:1、 加法2、 減法3、 加減法的驗算
第三單元四邊形:1、 四邊形2、 平行四邊形3、 周長4、長方形和正方形的周長5、 估計
第四單元有餘數的除法
第五單元時、分、秒:1、 秒的認識2、 時間的計算3、單元測試題
第六單元多位數乘一位數:1、 口算乘法2、 筆算乘法
第七單元分數的初步認識:1、 幾分之一2、 幾分之幾3、 分數的簡單計算
第八單元數學廣角:1、 搭配問題2、 可能性
第九單元總復習
三年級下冊
第一單元位置與方向
第二單元除數是一位數的除法:1、 口算除法2、 筆算除法(1)3、筆算除法(2)4、 筆算除法(3)
第三單元統計:1、 簡單的數據統計2、 平均數
第四單元年、月、日:1、 年、月、日2、 24小時計時法
第五單元兩位數乘兩位數:1、 口算乘法2、 筆算乘法(1)3、筆算乘法(2)
第六單元面積:1、 面積和面積單位2、 長方形、正方形面積的計算3、 面積單位間的進率4、 公頃、平方千米
第七單元小數的初步認識:1、 認識小數2、 簡單的小數加減法
第八單元解決問題
第九單元數學廣角
第十單元總復習
四年級上冊
第一單元大數的認識:1、億以內數的認識(一)2、億以內數的認識(二)3、億以上數的認識(一)
3、億以上數的認識(二)4、用計算器計算5、億以上數的認識綜合練習題
第二單元角的度量:1、直線射線和角(一)2、直線射線和角(二)
第三單元三位數乘兩位數:1、口算乘法2、筆算乘法(一)3、筆算乘法(二)4、筆算乘法(三)
第四單元平行四邊形和梯形:1、垂直與平行(一)2、垂直與平行(二)3、平行四邊形
第五單元除數是兩位數的除法:1、除數是兩位數的除法(一)2、除數是兩位數的除法(二)3、除數是兩位數的除法(三)4、整理和復習(一)5、整理和復習(二)
第六單元統計:1、統計(一)2、統計(二)3、統計(三)
第七單元數學廣角:1、合理安排(一)2、合理安排(二)
第八單元總復習:1、總復習——多位數的認識(一)2、總復習——多位數的認識(二)3、總復習——空間與圖形(一)4、總復習——空間與圖形(二)5、總復習——統計圖(一)6、總復習——統計圖(二)
四年級下冊
第一單元四則運算:1、 不含括弧的四則運算(1)2、不含括弧的四則運算(2)3、含括弧的四則運算4、 有關0的運算
第二單元位置與方向:1、 位置與方向(1)2、 位置與方向(2)3、位置與方向(3)
第三單元運算定律與簡便計算:1、 加法交換律2、 加法結合律3、 乘法交換律和結合律4、 乘法分配律5、 減法的運算性質6、除法的運算性質7、 乘法的簡便計算
第四單元小數的意義和性質:1、 小數的意義2、 小數的讀法3、 小數的寫法4、小數的性質5、 小數的大小比較6、小數點移動7、 生活中的小數8、 求一個小數的近似數
第五單元三角形:1、 三角形的特性(1)2、 三角形的特性(2)3、三角形的分類4、 三角形的內角和5、 圖形的拼組
第六單元小數的加法和減法:1、 小數的加法和減法(1)2、 小數的加法和減法(2)3、小數的加法和減法(3)
第七單元統計
第八單元數學廣角:1、 數學廣角(1)2、 數學廣角(2)3、數學廣角(3)
第九單元總復習
五年級上冊
第一單元小數乘法:1、小數乘整數2、小數乘小數3、積的近似值4、連乘、乘加、乘減5、整數乘法運算定理推廣到小數
第二單元小數除法:1、小數以整數2、一個數除以小數3、商的近似值4、循環小數5、連除、除加、除減6、解決問題
第三單元觀察物體
第四單元簡易方程:1、用字母表示數2、解簡易方程3、列方程解應用題4、列方程稍復雜應用題
第五單元多邊形的面積:1、平行四邊行的面積2、三角形面積的計算3、梯形面積的計算4、組合圖形的面積
第六單元統計與可能性
第七單元數學廣角
第八單元總復習:1、小數的乘除法2、簡易方程3、多邊形的面積4、觀察物體5、可能性6、解決問題
五年級下冊
第一單元圖形的變換
第二單元因數與倍數:1、因數與倍數2、2、5、3的倍數的特徵3、質數和合數
第三單元長方體和正方體:1、長方體和正方體的認識2、長方體和正方體的表面積(一)3、長方體和正方體的表面積(二)4、長方體和正方體的體積(一) 5、長方體和正方體的體積(二)6、長方體和正方體的體積(三)7、長方體和正方體的體積(四)8、長方體和正方體的體積(五)
第四單元分數的意義和性質:1、分數的意義(一)2、分數的意義(二)3、真分數和假分數4、分數的基本性質5、約分(一)6、約分(二) 7、通分(一)8、通分(二)9、分數和小數的互化10、整理和復習
第五單元分數的加法和減法:1、同分母分數加、減法2、異分母分數加、減法(一)3、異分母分數加、減法(二)4、分數加減混合運算(一)5、分數加減混合運算(二)
第六單元統計
第七單元數學廣角
第八單元總復習:1、因數與倍數2、分數的意義和性質3、分數的加法和減法4、圖形的變換
六年級上冊
第一單元分數乘法:1、分數乘法的意義和計演算法則2、 分數乘法應用題3、 倒數的認識
第二單元分數除法:1、 分數除法的意義和計演算法則2、 分數除法應用題3、 比
第三單元分數、小數四則混合運算和應用題:1、分數、小數四則混合運算2、分數應用題
第四單元圓:1、 圓的認識2、 圓的周長和面積3、 扇形4、軸對稱圖形
第五單元百分數:1、 百分數的意義和寫法2、 百分數和分數、小數的互化3、 百分數應用題4、 納稅5、利息
六年級下冊
第一單元比例:1、 比例的意義和基本性質2、 正比例和反比例的意義3、 比例的應用
第二單元圓柱、圓錐和球:1、 圓柱2、 圓錐 3、 球
第三單元簡單的統計(二):1、 統計表2、 統計圖
第四單元整理和復習:1、 數和數的運算2、 代數初步知識3、 應用題4、量的計量5、幾何初步知識6、 簡單的統計
❷ 新人教版一年級數學 上冊目錄
第一單元 數一數,第二單元 比一比:第三單元 1-5的認識和加減法:第四單元 認識物體和圖形: 第五單元 分類:第六單元 6-10的認識和加減法:第七單元 11-20各數的認識: 第八單元 認識鍾表:第九單元 20以內的進位加法: 第十單元總復習:
❸ 人教版小學一年級數學上冊需要哪些教具
教具應該具備:
實物:小棒、各種形狀卡紙(三角形、圓、正方形、五角專星……),根據教材用屬的大小、多少、上中下、前後左右等……的實物、圖形卡片。
所媒體:一套與教材配套的課件,數數歌,創設情景用的動畫、mp3兒歌。
量具:三角板一副、1米直尺一把、天平一台。
一年級小學生以形象思維為主,所以要有充足的教具,並合理使用,通過形象的演示讓學生建立數的概念,多與少、大與小、輕與重、方位……概念。
❹ 【人教版】高中數學教材總目錄
總目錄如下:
必修一
第一章 集合
1.集合的含義與表示
2.集合的基本關系
3.集合的基本運算
3.1交集與並集
3.2全集與補集
第二章 函數
1.生活中的變數關系
2.對函數的進一步認識
2.1函數的概念
2.2函數的表示方法
2.3映射
3.函數的單調性
4.二次函數性質的再研究
4.1二次函數的圖像
4.2二次函數的性質
5.簡單的冪函數
第二章 指數函數與對數函數
1.正指數函數
2.指數擴充及其運算性質
2.1指數概念的擴充
2.2指數運算是性質
3.指數函數
3.1指數函數的概念
3.2指數函數 的圖像和性質
3.3指數函數的圖像和性質
4.對數
4.1對數及其運算
4.2換底公式
5.對數函數
5.1對數函數的概念
5.2 的圖像和性質
5.3對數函數的圖像和性質
6.指數函數、冪函數、對數函數增長的比較
第四章 函數的應用
1.函數和方程
1.1利用函數性質判定方程解的存在
1.2利用二分法求方程的近似解
2.實際問題的函數建模
2.1實際問題的函數刻畫
2.2用函數模型解決實際問題
2.3函數建模案例
必修二
第一章 立體幾何初步
1.簡單幾何體
1.1簡單旋轉體
1.2簡單多面體
2.直觀圖
3.三視圖
3.1簡單組合體的三視圖
3.2由三視圖還原成實物圖
4.空間圖形的基本關系與公理
4.1空間圖形基本關系的認識
4.2空間圖形的公理
5.平行關系
5.1平行關系的判定
5.2平行關系的性質
6.垂直關系
6.1垂直關系的判定
6.2垂直關系的性質
7.簡單幾何體的面積和體積
7.1簡單幾何體的側面積
7.2稜柱、棱錐、稜台和圓柱、圓錐、圓台的體積
7.3球的表面積和體積
第二章 解析幾何初步
1.直線和直線的方程
1.1直線的傾斜角和斜率
1.2直線的方程
1.3兩條直線的位置關系
1.4兩條直線的交點
1.5平面直接坐標系中的距離公式
2.圓和圓的方程
2.1圓的標准方程
2.2圓的一般方程
2.3直線與圓、圓與圓的位置關系
3.空間直角坐標系
3.1空間直接坐標系的建立
3.2空間直角坐標系中點的坐標
3.3空間兩點間的距離公式
必修三
第一章 統計
1.從普查到抽樣
2.抽樣方法
2.1簡單隨機抽樣
2.2分層抽樣與系統抽樣
3.統計圖表
4.數據的數字特徵
4.1平均數、中位數、眾數、極差、方差
4.2標准差
5.用樣本估計總體
5.1估計總體的分布
5.2估計總體的數字特徵
6.統計活動:結婚年齡的變化
7.相關性
8.最小二乘估計
第二章 演算法初步
1.演算法的基本思想
1.1演算法案例分析
1.2排序問題與演算法的多樣性
2.演算法框圖的基本結構及設計
2.1順序結構與選擇結構
2.2變數與賦值
2.3循環結構
3.幾種基本語句
3.1條件語句
3.2 循環語句
第三章 概率
1.隨機事件的概率
1.1頻率與概率
1.2生活中的概率
2.古典概型
2.1古典概型的特徵和概率計算公式
2.2建立概率模型
2.3互斥事件
3.模擬方法——概率的應用
必修四
第一章 三角函數
1.周期現象
2.角的概念的推廣
3.弧度制
4.正弦函數和餘弦函數的定義與誘導公式
4.1任意角的正弦函數、餘弦函數的定義
4.2單位圓與周期性
4.3單位圓與誘導公式
5.正弦函數的性質與圖像
5.1從單位圓看正弦函數的性質
5.2正弦函數的圖像
5.3正弦函數的性質
6.餘弦函數的圖像和性質
6.1餘弦函數的圖像
6.2餘弦函數的性質
7.正切函數
7.1正切函數的定義
7.2正切函數的圖像和性質
7.3正切函數的誘導公式
8.函數的圖像
9.三角函數的簡單應用
第二章 平面向量
1.從位移、速度、力到向量
1.1位移、速度和力
1.2向量的概念
2.從位移的合成到向量的加法
2.1向量的加法
2.2向量的減法
3.從速度的倍數到數乘向量
3.1數乘向量
3.2平面向量基本定理
4.平面向量的坐標
4.1平面向量的坐標表示
4.2平面向量線性運算的坐標表示
4.3向量平行的坐標表示
5.從力做的功到向量的數量積
6.平面向量數量積的坐標表示
7.向量應用舉例
7.1點到直線的距離公式
7.2向量的應用舉例
第三章 三角恆等變形
1.同角三角函數的基本關系
2.兩角和與差的三角函數
2.1兩角差的餘弦函數
2.2兩角和與差的正弦、餘弦函數
2.3兩角和與差的正切函數
3.二倍角的三角函數
必修五
第一章 數列
1.數列
1.1數列的概念
1.2數列的函數特性
2.等差數列
2.1等差數列
2.2等差數列的前n項和
3.等比數列
3.1等比數列
3.2等比數列的前n項和
4.數列在日常經濟生活中的應用
第二章 解三角形
1.正弦定理與餘弦定理
1.1正弦定理
1.2餘弦定理
2.三角形中的幾何計算
3.解三角形的實際應用舉例
第三章 不等式
1.不等關系
1.1不等關系
1.2不等關系與不等式
2.一元二次不等式
2.1一元二次不等式的解法
2.2一元二次不等式的應用
3.基本不等式
3.1基本不等式
3.2基本不等式與最大(小)值
4.簡單線性規劃
4.1二元一次不等式(組)與平面區域
4.2簡單線性規劃
4.3簡單線性規劃的應用
選修2-1
第一章 常用邏輯用語
1.命題
2.充分條件與必要條件
2.1充分條件
2.2必要條件
2.3充要條件
3.全稱量詞與存在量詞
3.1全稱量詞與全稱命題
3.2存在量詞與特稱命題
3.3全稱命題與特稱命題的否定
4.邏輯連結詞「且」「或」「非」
4.1邏輯連結詞「且」
4.2邏輯連結詞「或」
4.3邏輯連結詞「非」
第二章 空間向量與立體幾何
1.從平面向量到空間向量
2.空間向量的運算
3.向量的坐標表示和空間向量基本定理
3.1空間向量的標准正交分解與坐標表示
3.2空間向量基本定理
3.3空間向量運算的坐標表示
4.用向量討論垂直與平行
5.夾角的計算
5.1直線間的夾角
5.2平面間的夾角
5.3直線與平面的夾角
6.距離的計算
第三章圓錐曲線與方程
1.橢圓
1.1橢圓及其標准方程
1.2橢圓的簡單性質
2.拋物線
2.1拋物線及其標准方程
2.2拋物線的簡單性質
3.雙曲線
3.1雙曲線及其標准方程
3.2雙曲線的簡單性質
4.曲線與方程
4.1 曲線與方程
4.2圓錐曲線的共同特徵
4.3直線與圓錐曲線的交點
選修2-2
第一章 推理與證明
1.歸納與類比
1.1歸納推理
1.2類比推理
2.綜合法與分析法
2.1綜合法
2.2分析法
3.反證法
4.數學歸納法
第二章 變化率與導數
1.變化的快慢與變化率
2.導數的概念及其幾何意義
2.1導數的概念
2.2導數的幾何意義
3.計算導數
4.導數的四則運演算法則
4.1導數的加法與減法法則
4.2導數的乘法與除法法則
5.簡單復合函數的求導法則
第三章 導數的應用
1.函數的單調性與極值
1.1導數與函數的單調性
1.2函數的極值
2.導數在實際問題中的應用
2.1實際問題中導數的意義
2.2最大值、最小值問題
第四章 定積分
1.定積分的概念
1.1定積分的背景——面積和路程問題
1.2定積分
2.微積分基本定理
3.定積分的簡單應用
3.1平面圖形的面積
3.2簡單幾何體的體積
第五章 數系的擴充與復數的引入
1.數系的擴充與復數的引入
1.1數的概念的擴展
1.2復數的有關概念
2.復數的四則運算
2.1復數的加法與減法
2.2復數的乘法與除法
人教版即由人民教育出版社出版,簡稱為人教版。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身。