㈠ 案例分析: 小明是小學四年級的學生,最近在數學課上學習單位換算,但比較吃力
個人意見:
小明方面:是興趣、關注點和不合作的問題,不是智力問題。「一見父母吵架,就趁機去玩手機。」這一事實可以證明。
父母方面:父親態度粗暴當然不對,但可以理解。他一開始並沒有粗暴,也想了辦法。但母親當著兒子的面公然攻擊父親,給孩子提供了逃避的機會,給不合作充當了保護傘。這一點很危險!作為天底下最最親密的父母對子女身上的問題所持的態度是截然相反的。一個四年級的孩子是很難分辨誰對誰錯的,如此一來,久而久之他會變得誰的話都不聽了。後果會很嚴重!
建議:父母教孩子思想上一定要統一,決不能公開對抗。一方做得不妥,另一方事後再提醒,以後注意。不僅如此,事後,你還得向孩子解釋一下父親過激行為的苦心。讓孩子理解父母的迫切心情。只有思想上的高度統一,行為上的高度一致,才能教育出合格的子女。
希望幫到你。
㈡ 小學四年級數學角度怎麼量
量角器 或者用三角板拼出來(僅限於45º.90º.30º.15º.60º.75º.120º.105º.135º)
㈢ 小學四年級數學。求問號中的角是多少度用拖式列出來
180-40-(180-60)=180-40-120=20
㈣ 小學四年級數學角度問題習題
小學角度問題實在是不好把握分寸,初中會系統的學習,高中會深入的學習,大學會更加深入的研究。
㈤ 小學四年級數學大全
require.async(['wkcommon:widget/ui/lib/sio/sio.js'], function(sio) { var url = 'https://cpro.static.com/cpro/ui/c.js'; sio.callByBrowser( url, function () { BAIDU_CLB_fillSlotAsync('u2845605','cpro_u2845605'); } ); });
(2)體積=長×寬×高 V=a×b×h 5:三角形
S:面積 a:底 h:高 面積=底×高÷2 S=a×h÷2 三角形高=面積×2÷底 三角形底=面積×2÷高 6:平行四邊形
S:面積 a:底 h:高 面積=底×高 S=a×h 7:梯形
S:面積 a:上底 b:下底 h:高 面積=(上底+下底)×高÷2 S=(a+b)× h÷2 ▲8:圓形
S:面積 C:周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ ▲9:圓柱體
v:體積 h:高 s:底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 ▲10: 圓錐體
V:體積 h:高 S:底面積 r:底面半徑 體積=底面積×高÷3 V=S底面積×h×1/3 總數÷總份數=平均數 ▲和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 ▲和倍問題 和 差倍問題 和÷(倍數-1)=小數 小數×倍數=大數(或者 和-小數=大數) 差÷(倍數-1)=小數 小數×倍數=大數(或 小數+差=大數) ▲倍數和因數
0是自然數。在自然數中,最小的偶數是0,最小的奇數是1。 一個數的最小倍數和它的最大因數相等。
一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。 一個數最小的因數是1,最大的因數是它本身。一個數因數的個數是有限的。 什麼是偶數?是2倍數的數叫做偶數。(能被2整除的數是偶數) 什麼是奇數?不是2倍數的數叫做奇數。(不能被2整除的數是奇數) 2的倍數,個位上的數是2、4、6、8和0。2的倍數都是雙數。
5的倍數,個位上的數是5和0。個位上是0的既是2的倍數,又是5的倍數。 3的倍數,它各位上數的和一定是3的倍數。
注意:4的倍數一定是2的倍數,2的倍數不一定是4的倍數。
什麼是素數(或質數)?只有1和它本身兩個因數,叫做素數(或質數)。 什麼是合數?除了1和它本身還有別的因數,叫做合數。 注意:1的因子只有1個(是1)。1既不是素數,也不是合數。最小的素數是2,最小的合數4。沒有最大的素數和合數。
小學四年級數學下冊一些定義、定律、計算公式和法則
var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;
▲一、四則混和運算
四則混合運算的順序:在四則混合運算中,只有加減或只有乘除的運算,就從左至右依此計算;如果既有加減法又有乘除法,就要先算乘除,後算加減;如果有括弧,就要先算括弧裡面的,再算括弧外面的;如果既有小括弧,又有中括弧,就先算小括弧裡面的,再算中括弧裡面的,最後算括弧外面的。 二、乘除法的關系和運算律 乘除法的關系:
一個因子=積÷另一個因子
已知兩個因數的積與其中的一個因數,求另一個因數,用除法。
除數=被除數÷商 被除數=商×除數 除法是乘法的逆運算 0不能作除數 在有餘數的除法里,被除數與商、除數、余數之間的關系: 被除數=商×除數+余數 除數=(被除數-余數)÷商 商=(被除數-余數)÷除數
一個整數除以另一個不為0的整數,商是整數,沒有餘數,我們就說一個數能被另一個數整除。如:6÷2=3,就是6能被2整除,或者說2能整出6。
乘法交換律:兩個因數相乘,交換因數的位置,積不變,這就是乘法交換律。如果用a,b表示兩個數,乘法交換律可以表示為:a×b=b×a
乘法結合律:三個數相乘,先乘前兩個數或者先乘後兩個數,乘積不變,這就叫乘法結合律。如果用a,b,c表示3個數,乘法結合律可以表示為:
(a ×b)×c=a×(b×c)
乘法分配律:兩個數的和與一個數相乘,可以先把兩個數與這個數分別相乘,再將兩個積相加,結果不變,這叫做乘法分配律。如果用如果用a,b,c表示3個數,乘法分配律可以表示為:(a+b) ×c= a ×c+ b×c
簡便計算的方法很多:如,利用上面的運算定律,可以使計算簡便,還可以用湊整法,分解法,一個數連續減兩個數,等於這個數減兩個數的和,等都可以使計算簡便。在簡便計算時,要根據實際情況具體分析,該用什麼方法才能使計算簡便,就用什麼方法,要靈活運用。
因子與積的變化規律:
一個因子不變,另一個因子擴大(或縮小)幾倍,積也擴大(或縮小)相同的倍數。 一個因子擴大(或縮小)幾倍,另一個因子也擴大(或縮小)幾倍,積就擴大(或縮小)兩個因子擴大(或縮小)的倍數之積。
如果一個因子擴大幾倍,另一個因子縮小相同的倍數,積不變。 三、小數的意義和性質
小數的意義:像0.7,0.45,0.025,0.107„„這樣,用來表示十分之幾、百分之幾、千分之幾„„的數,叫做小數。小數的計數單位有0.1,0.01,0.001„„每相鄰兩個計數單位間的進率是「10」。
小數的讀法:整數部分按照整數的讀法來讀,小數部分從左到右順次讀出每一個數位上的數。
小數的性質:在小數的末尾添上「0」或去掉「0」,小數的大小不變。這叫做小數的性質。
小數大小的比較:兩個小數比大小,整數部分大的那個就大,整數部分相同,十分位元元上的數較大的那個就大,整數部分相同,十分位元元也相同,百分位上的數較大的那個數就大„„以此類推。
㈥ 小學四年級數學數角的時候,用不用算平角和周角
樓主您好!已下是解答:
不用,在小學沒學這么深,就連初中都不數平角和周角。自己了解一下也可以。
有不明白的再問
㈦ 小學四年級數學,如圖,求三角形的角
∠1加∠2等於180,因為它們組成平角,所以∠3就等於220-180=40度,又∠1等於∠3等於40度,這個等量代換,所以∠2就是220-40-40=140度
㈧ 小學四年級生活中的數學知識
1、加法:把兩個數合並成一個數的運算。
2、減法:已知兩個數的和與其中一個加數,求另一個加數的運算。
3、乘法:求相同加數和的簡便計算。
4、除法:已知兩個因數的積和其中一個因數,求另一個因數的運算。
小數四則運算的運算順序和整數四則運算順序相同。
分數四則運算的運算順序和整數四則運算順序相同。
㈨ 數學四年級小知識
小學四年級數學知識點歸納
四年級上冊
知識點概括總結
1.大數的認識:
(1)億以內的數的認識:
十萬:10個一萬;
一百萬:10個十萬;
一千萬:10個一百萬;
一億:10個一千萬;
2.數級:數級是為便於人們記讀阿拉伯數的一種識讀方法,在位值制(數位順序)的基礎上,以三位或四位分級的原則,把數讀,寫出來。通常在阿拉伯數的書寫上,以小數點或者空格作為各個數級的標識,從右向左把數分開。
3.數級分類
(1)四位分級法
即以四位數為一個數級的分級方法。我國讀數的習慣,就是按這種方法讀的。 如:萬(數字後面4個0)、億(數字後面8個0)、兆(數字後面12個0,這是中法計數)……。這些級分別叫做個級,萬級,億級……。
(2)三位分級法
即以三位數為一個數級的分級方法。這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字後面3個0、百萬,數字後面6個0、十億,數字後面9個0……。
4.數位:數位是指寫數時,把數字並列排成橫列,一個數字佔有一個位置,這些位置,都叫做數位。從右端算起,第一位是「個位」,第二位是「十位」,第三位是「百位」,第四位是「千位」,第五位是「萬位」,等等。這就說明計數單位和數位的概念是不同的。
5.數的產生:阿拉伯數字的由來:古代印度人創造了阿拉伯數字後,大約到了公元7世紀的時候,這些數字傳到了阿拉伯地區。到13世紀時,義大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。後來,這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以後,這些數字又從歐洲傳到世界各國。
阿拉伯數字傳入我國,大約是13到14世紀。由於我國古代有一種數字叫「籌碼」,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。
㈩ 小學四年級數學定義是什麼
數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
(10)小學四年級數學角度擴展閱讀:
一、發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。
古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká)。
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」)。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
二、嚴謹性
數學語言亦對初學者而言感到困難.如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學里有著特別的意思。
數學術語亦包括如同胚及可積性等專有名詞,但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性,數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。
嚴謹是數學證明中很重要且基本的一部分。數學家希望他們的定理以系統化的推理依著公理被推論下去.這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或「證明」,而這情形在歷史上曾出現過許多的例子。
在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹,牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理。
數學家們則持續地在爭論電腦輔助證明的嚴謹度.當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹。