『壹』 小學三年級所要求做的數學小報,怎麼做
1.搜集數學小故事
2.數學小常識(比如說:知道腳的長度可以知道身高等)
3.數學題(照做三年級出)
4.數學漫畫(如果你畫工好的話)
最重要的是要圖文並茂
『貳』 小學三年級數學報題目
單獨看這個題,兩班分分6個,單獨甲班分10個,說明這個數起碼是6,10的公倍數。嘗試算和10的最小公倍數,得數為30.驗證得,若此蘋果共有30個,可得甲班有3人乙班有2人,所以只分給乙班每人分15個。
驗證6和10的第二個公倍數60,可得甲班有6人乙班有4人。乙班分的蘋果仍舊為15個。
經驗證此題答案為15.我再想想和你說個更容易理解的方法。
剛網路了下,把人家的給你說說
(一)特殊值法
由題意知,蘋果總數一定是6和10的公倍數,我們不妨設有30個蘋果。由條件可知,甲、乙二班共有30÷6=5(人),甲班有:30÷10=3(人),乙班有5-3=2(人),所以只分給乙,每人得:30÷2=15(個)
(二)比例法
因為蘋果總數一定,由題意可知,6×(甲+乙)=10甲,化簡:2甲=3乙,甲、乙兩班的人數比是3:2,分得蘋果數之比應是2:3,所以只分給乙班,每人分得:10×3/2=15(個)
(三)利用聯想
我們把這一題粗看一遍,覺得無從下手,因為甲、乙兩班人數未知,蘋果總數也未知,題里已有三個未知量,如何求第四個未知量,乙班每人得幾個?但是我們把這題仔細看一遍,就會覺得它與某些題目極為相似。
一項工程甲乙兩隊合修6天可以修完,如果甲隊單獨修10天修完,如果乙隊單獨修幾天修完?
這兩題雖然形式不同,但本質上是一樣的,我們運用簡捷的解法:
1÷(1/6-1/10)=15
『叄』 三年級下冊數學小報的內容有哪些
三年級數學手抄報文字內容
登錄文庫APP,新用戶立得新人禮包打開APP
小學三年級數學手抄報內容
共享文檔2020-04-182頁
小學三年級數學手抄報內容
【快速記住公式的六個方法】
記憶是知識的倉庫,學過的知識記得牢,積累的知識就豐富,而豐富知識的積累將為創造型人才的培養奠定堅實的基礎。怎樣才能提高學生記憶數學知識點的效果呢?下面培優教育的老師介紹幾種方法:
1、歸類記憶法
就是根據識記材料的性質、特徵及其內在聯系,進行歸納分類,以便幫助學生記憶大量的知識。比如,學完計量單位後,可以把學過的所有內容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜復雜的事物系統化、條理化,易於記憶。
2、歌訣記憶法
就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便於記憶。比如,量角的方法,就可編出這樣幾句歌訣:「量角器放角上,中心對准頂點,零線對著一邊,另一邊看度數。採用這種方法來記憶,學生不僅喜歡記,而且記得牢。
3、規律記憶法
即根據事物的內在聯系,找出規律性的東西來進行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法。化法和聚法是互逆聯系,即高級單位的數值×進率=低級單位的數值,低級單位的數值÷進率=高級單位的數值。掌握了這兩條規律,化聚問題就迎刃而解了。
4、列表記憶法
就是把某些容易混淆的識記材料列成表格,達到記憶之目的。這種方法具有明顯性、直觀性和對比性。比如,要識記質數、質因數、互質數這三個概念的區別,就可列成表來幫助學生記憶。
5、重點記憶法
隨著年齡的增長,所學的數學知識也越來越多,學生要想全面記住,既浪費時間且記憶效果不佳。因此,要讓學生學會記憶重點內容,學生在記住了重點內容的基礎上,再通過推導、聯想等方法便可記住其他內容了。比如,學習常見的數量關系:工作效率×工作時間=工作量。工作量÷工作效率=工作時間;工作量+工作時間=工作效率。這三者關系中只要記住了第一個數量關系,後面兩個數量關系就可根據乘法和除法的關系推導出來。這樣就減輕了學生記憶的負擔,提高了記憶的效率。
6、聯想記憶法
就是通過一件熟悉的事物想到與它有聯系的另一件事物來進行記憶。
【兩只羊的描述】
草地上有兩只羊,在藝術家、生物學家、物理學家、數學家看來卻有不同的感受與理解,下面是他們的的描述。
藝術家:「藍天、碧水、綠草、白羊,美哉自然。」
生物學家:「雄雌一對,生生不息。」
物理學家:「大羊靜卧,小羊漫步。」
數學家:「1+1=2。」
感悟:
從故事中不同職業的人對兩只羊的描述,我們感受到藝術家對自然美的關注,生物學家對生命的關注,物理學家對運動與靜止的關注,而數學家從色彩、性別、狀態中抽象出數量關系:1+1=2,這是數學高度抽象性的體現。
在數學教學中,學生的數學學習要經歷具體—表象—抽象的過程,教學時要在直觀物體和抽象概念之間構建橋梁,從而引導學生把握事物最主要、最本質的數學屬性。
抽象有一個學生經歷的過程,而不是直接告訴學生抽象的結果。數學抽象本身又是一個不斷提高的過程,這一過程永無止境。
【燒水的問題】
有好事者提出這樣一個問題:「假如你面前有煤氣灶、水龍頭、水壺和火柴,你想燒些水應當怎樣去做?」
被提問者答道:「在壺中放上水,點燃煤氣,再把水壺放到煤氣灶上。」
提問者肯定了這一回答,接著追問:「如其他條件不變,只是水壺中已有了足夠的水,那你又應當怎樣去做?」
這時被提問者很有信心地答道:「點燃煤氣,再把水壺放到煤氣灶上。」
但是提問者說:「物理學家通常都這么做,而數學家們則會倒去壺中的水,並聲稱已把後一問題轉化成先前的問題。」
感悟:
數學家「倒去壺中的水」似乎是多此一舉,故事的編創者不是要我們去「倒去壺中的水」,而是引導我們感悟數學家獨特的思維方式──轉化。
學習數學不是問題解決方案的累積記憶,而是要學會把未知的問題轉化成已知的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化成具體的問題。數學的轉化思想簡化了我們的思維狀態,提升了我們的思維品質。轉化不是就事論事、一事一策,而是發掘出問題中最本質的內核和原型,再把新問題轉化成與已經能夠解決的問題。
『肆』 三年級小學數學報
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
『伍』 做三年級的數學報需要什麼內容
(1)數學小故事
1.祖沖之在數學上的傑出成就,是關於圓周率的計算。秦漢以前,人們以"徑一周三"作為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在7.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
2.高斯,德國著名數學家,並有「數學王子」的美譽。小時候高斯家裡很窮,且他父親不認為學問有何用,但高斯依舊喜歡看書,話說在小時候,冬天吃完飯後他父親就會要他上床睡覺,以節省燃油,但當他上床睡覺時,他會將蕪菁的內部挖空,裡面塞入棉布卷,當成燈來使用,以繼續讀書,高斯有一個很出名的故事:用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
3.華羅庚,1930年的一天,清華大學數學系主任熊慶來,坐在辦公室里看一本《科學》雜志。看著看著,不禁拍案叫絕:「這個華羅庚是哪國留學生?」「他是在哪個大學教書的?」最後還是一位江蘇籍的教員慢吞吞地說:「我弟弟有個同鄉叫華羅庚,他只念過初中。熊慶來驚奇不已,將華羅庚請到清華大學來。
從此,華羅庚就成為清華大學數學系助理員。第二年,他的論文開始在國外著名的數學雜志陸續發表。幾年之後,華羅庚被保送到英國劍橋大學留學。他提出的理論被數學界命名為「華氏定理」。
(2)數學小笑話
《職業特點》三位科學家由倫敦去蘇格蘭參加會議,越過邊境不久,發現了一隻黑羊。
「真有意思,」天文學家談論道,「蘇格蘭的羊都是黑的。」
「這種推斷並不可靠,」物理學家應道,「我們只能得出這樣的結論:在蘇格蘭有一些羊是黑色的。」
邏輯學家馬上接著說:「我們真正把握的只不過是:在蘇格蘭至少有一個地方有至少一隻黑羊。」
《生死人數》英國詩人捷尼遜寫過一首詩,其中幾行是這樣寫的:「每分鍾都有一個人在死亡,每分鍾都有一個人在誕生……」
有個數學家讀後去信質疑,信上說:「尊敬的閣下,讀罷大作,令人一快,但有幾行不合邏輯,實難苟同。根據您的演算法,每分鍾生死人數相抵,地球上的人數是永恆不變的。但您也知道,事實上地球上的人口是不斷地在增長。確切地說,每分鍾相對地有1.6749人在誕生,這與您在詩中提供的數字出入甚多。為了符合實際,如果您不反對,我建議您使用7/6這個分數,即將詩句改為:「每分鍾都有一個人死亡,每分鍾都有一又六分之一人在誕生......」
《數學家談戀愛》數學家同女朋友在公園漫步。女朋友問他:「我滿臉雀斑,你真的不介意?」
數學家溫柔地回答:「絕對不!我生來最愛跟小數點打交道。」
《誰最吝嗇》「你說,世界上誰最吝嗇?」
「當然是數學家。」
「為什麼?」
「他們是毫釐必爭呀!」
《統計學家》有個從未管過自己孩子的統計學家,在一個星期六下午妻子要外出買東西時,勉強答應照看一下4個年幼好動的孩子。當妻子回家時,他交給妻子一張紙條,上寫:
「擦眼淚11次;系鞋帶15次;給每個孩子吹玩具氣球各5次,每個氣球的平均壽命10秒鍾;警告孩子不要橫穿馬路26次;孩子堅持要穿過馬路26次;我還想再過這樣的星期六0次。」
「那您就趕快結婚吧。」
「可是恰恰與願望相反,植物學和礦物學的業余愛好使我終生只能是單身漢了。」
(3)趣味數學題
1、兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?
答案
每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰?馮•諾伊曼(JohnvonNeumann,1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。
馮•諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道
2、有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下。「我得向上游劃行幾英里,」他自言自語道,「這里的魚兒不願上鉤!」
正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫並沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才發覺這一點。於是他立即掉轉船頭,向下游劃去,終於追上了他那頂在水中漂流的草帽。
在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這並不是他相對於河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對於河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對於河岸的速度為每小時8英里。
如果漁夫是在下午2時丟失草帽的,那麼他找回草帽是在什麼時候?
答案
由於河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在移動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差別。
既然漁夫離開草帽後劃行了5英里,那麼,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對於河水來說,他總共劃行了10英里。漁夫相對於河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。於是,他在下午4時找回了他那頂落水的草帽。
這種情況同計算地球表面上物體的速度和距離的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它表面上的一切物體產生同樣的效應,因此對於絕大多數速度和距離的問題,地球的這種運動可以完全不予考慮.
3、一架飛機從A城飛往B城,然後返回A城。在無風的情況下,它整個往返飛行的平均地速(相對於地面的速度)為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續的大風。如果在飛機往返飛行的整個過程中發動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響?
懷特先生論證道:「這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。」「這似乎言之有理,」布朗先生表示贊同,「但是,假如風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!」你能解釋這似乎矛盾的現象嗎?
答案
懷特先生說,這股風在一個方向上給飛機速度的增加量等於在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發生影響,這就錯了。
懷特先生的失誤在於:他沒有考慮飛機分別在這兩種速度下所用的時間。
逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因而往返飛行的平均地速要低於無風時的情況。
風越大,平均地速降低得越厲害。當風速等於或超過飛機的速度時,往返飛行的平均地速變為零,因為飛機不能往回飛了。
4、《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下:令有雉(雞)兔同籠,上有三十五頭,下有九十四足。
問雄、兔各幾何?
原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。
設x為雉數,y為兔數,則有
x+y=b,2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根據這組公式很容易得出原題的答案:兔12隻,雉22隻。
『陸』 三年級數學小報資料。
20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.
伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。
阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。
高斯非常聰明,老師在課堂上出了一道算術題,要學生們計算出前100個自然數相加之和,一般的同學採取逐個相加的辦法計算得頭昏腦脹,而高斯幾乎不加思索就算出了答案。他是注意到這個算術級數的規律,100+1=101,99+2=101……共50對數,答案是5050
就這些了
『柒』 小學三年級數學小報怎麼做
趣味數學題
1、口袋裡有同樣大小和同樣質地的紅、黃、藍三種顏色的小球各10個。一次最少摸出個球,才能保證至少有4個顏色相同?
2、1、 教室的鑰匙被弄丟了,笑笑、淘氣、青青三位小朋友每人說了一句話:
笑笑說:我沒有說謊。
淘氣說:笑笑在說謊。
青青說:淘氣和笑笑都在說謊。
聰明的小朋友,你知道他們中間誰一定在說謊嗎?
3、一塊長20厘米、寬16厘米的長方形紙片,按圖所示的方法,1層、2層、3層地擺下去,共要擺100層。擺好後圖形的周長是多少?
4、有50個同學去公園劃船,每條大船可以坐6人,租金10元;每條船小船可以坐4人,租金8元。那麼多種不同的租船方案中哪一種方案最省錢?
5、A、B、C、D、E五人參加乒乓球比賽,每兩人都要賽一場,並且只賽一場,規定勝者得2分,負者不得分,已知比賽結果如下:(1)A與E並列第一名;(2)B是第三名;(3)C與D並列第四名,那麼B得多少分?
6、15個同學排成一列橫隊,從左邊數起,小林是第11個;從右邊數起,小剛是第10個。小林與小剛之間隔幾個同學?
7、黑母雞下1個蛋歇2天,白母雞下1個蛋歇1天,兩只雞共下10個蛋,最少需要多少天?
8、一筐蘿卜共重56千克,先賣出一半蘿卜,再賣出剩下的一半,這時連筐共重17千克,問原來這筐蘿卜重多少千克?筐重多少千克?
9、小強、小亮和小軍練習投籃球,一共投了150次,共有64次沒投進。已知小強和小亮一共投進了48次,小亮和小軍一共投進了69次,小亮投進了多少次?
10、把3、6、9、12、15、18、21、24、27填在合適的方格里,使每橫行、豎行、斜行的三個數相加都得45。
11、雞和兔共有100隻,兔的腳數比雞的腳數多28隻,問,雞、兔各幾只?
12、甲、乙兩隊共有96人,如果從甲隊調8人到乙隊,乙隊再給丙隊36人,那麼甲隊人數就是乙隊的2倍,甲、乙兩隊原來各有多少人?
13、在1、2、3、……、132這些數中,數字「1」共出現了多少次?
14、小明一家三口人,媽媽比爸爸小2歲,今年全家人的年齡加起來剛好是70歲,而7年前,全家人的年齡加起來剛好是50歲。現在,小明家每個人的年齡各是多少歲?
15、學校第一次買了4個籃球和5個足球,共用去520元;第二次買了同樣的5個籃球和4個足球,共用去533元。籃球和足球的單價各是多少元?
『捌』 三年級數學小報
數學手抄小報與數學教學
多年來,我在小學中高年級學生中進行了學辦數學手抄小報的嘗試,將數學教學與辦報活動有機結合,取得了一定的成效。下面談談我的具體做法和體會。
一、正確引導,以報促學
為了豐富學生的課餘生活,當我宣布要學生每個月辦出一張數學手抄小報時,學生既感興趣又無從下手,這時我趁機專門給學生上了一節數學手抄小報指導課,講清辦數學手抄小報的目的和要求、注意事項、怎樣辦等,讓學生有個大概眉目。為了給學生提供更具體的指導,我特別編制了數學手抄小報內容、形式、版面要求提示表(略)各一份,供學生辦報時參照。
在指導學生辦數學手抄小報的過程中,我注意做到以下幾個「結合」。
1.個人努力與團體協作相結合。
讓學生辦數學手抄小報,一般要求通過個人努力來完成,但是不排除三五人協作和小組的幫與帶,以便充分發揮團體協作的優勢。
2.學習數學與反映思想相結合。
學生辦數學手抄小報所用的稿件,除了選摘外,還要求學生自撰、徵集。學生在辦數學手抄小報時,我並不刻意要求他們一律用數學內容,凡是與學習數學有關的內容都可以採用。例如,介紹一個學習數學的經驗或教訓、反映學習上的疑難和困惑、記一堂有趣的數學活動課。這樣一來,學生既學到了數學知識,又反映了思想狀況,有利於教和學。
3.開展活動與美化環境相結合。
學生交來的數學手抄小報,我每期都要組織學生或品嘗、閱讀,或提出修改建議,或評選優秀作品,或交流辦報經驗。與此同時,我還有意組織學生開展「手抄報評比」「優秀作品欣賞」「優秀作品展」等活動。學生在活動中增長了見識,培養了興趣,提高了學習數學的自主性和自覺性,而且這一期又一期、一張又一張圖文並茂的、迷人的數學手抄小報在展覽的同時裝飾了教室,美化了校園。學生從中可以受到潛移默化的思想情感熏陶和審美教育。
4.長期堅持與精神鼓勵相結合。
任何事物的發展和提高都不是一朝一夕所能辦到的,辦數學手抄小報也不例外,它是在長期堅持的情況下,逐漸產生效果和提高辦報水平的。如有的學生對辦報開始很不感興趣,馬虎了事,這時我及時給予鼓勵和督促,久而久之,他們也能辦出張像樣的數學手抄小報來,並且在學習態度上發生了奇跡般的變化。有的學生甚至在排版、繪圖、書寫等方面很有創意。
二、長期實踐,體會深刻
經過一段時間的嘗試和訓練,我感到學生在辦報的過程中,增長了見識,活躍了思維,端正了學習態度,增強了綜合素質。全班大多數學生的數學作業做得規范整潔了,不少學生對數學產生了濃厚的興趣,有的學生經常向我詢問辦報時遇到的一些數學難題。特別是有一次,我在講「0能被任何自然數整除」這道判斷題是對的時,有個學生對它提出了質疑:「假如這道題是對的,也就是說0是任何自然數的倍數,任何自然數是0的約數。而課本上講一個數最小的倍數是它本身,最大的約數也是它本身。0比任何自然數都小,不可能是自然數的倍數。任何自然數都比0大,不可能是0的約數。所以我認為這道題是錯的。」我當時便表揚了這個學生敢於質疑,並做了解釋:「這道題應該是對的,這是整除的含義所規定的,課本上的兩個結論是有前提的,是在自然數范圍內討論得到的。」課後我詢問這個學生為什麼能提出這樣的見解,這個學生說:「辦數學手抄小報時曾經看到過這種想法。」我暗暗吃驚的同時,驚喜辦報帶給學生的間接效應。
總之,堅持辦數學手抄小報,無論是對學生數學意識的形成,還是數學學習方法的改進;無論是對數學知識的掌握,還是數學能力的提高;無論是對學生競爭意識的培養,還是團結協作意識的形成,都有其獨特的功能和作用。經過多年的實踐,我深深地體會到,指導學生辦數學手抄小報有以下幾點好處。
1.有利於學生綜合素質的提高。
數學手抄小報是以學生為主體,或「獨立創業」 或「團體協助」而創作出來的能反映思想教育、數學教育和美育的綜合藝術。學生必須具備多種文化知識和能力才能辦出一張張圖文並茂的並能獲得大家好評的小報。堅持辦數學手抄小報,既培養了學生的動手操作能力、審美能力、思維能力和創新能力等,又使得學生在美術、寫作、書法等方面的技能有了明顯的進步。
2.有利於非智力因素的培養和形成,從而促進課堂教學。
(1)激發學生學習數學的興趣,增強求知慾,配合數學教學。
學生在辦報過程中,不斷積累數學知識,豐富想像力,促使學生對數學產生濃厚的興趣。這些都將有力地促進數學教學,使學生輕松地掌握數學知識。
(2)促進課外閱讀,形成優良學風。
學生為了辦出一張張迷人的數學手抄小報,必須廣采博聞,進行大量的文字摘抄、圖畫剪貼和文章的寫作。他們常常廢寢忘食地查閱、聚精會神地選擇、 一絲不苟地謄抄、認真負責地校對……這些都標志著優良學風的初步形成。
(3)促進團結友愛,形成優良班風。
在辦報過程中,學生之間的幫與帶、學習與協作,可以促進學生相互了解,加深友誼。隨著時間的推移,班級逐漸達到內部的和諧,形成強烈的班集體意識。
(4)培養良好的學習習慣,促進數學學習。
辦數學手抄小報是一項認真細致的工作。從打格子、收集材料、篩選材料到編輯、排版、繪圖、謄抄等一系列工作都要求學生要認真仔細、書寫整潔、自覺檢查、嚴格要求、克服困難。而這些良好的學習習慣的養成,都會轉移到對數學的學習上去。
3.有利於陶冶情操,美化生活。
一張好的數學手抄小報不僅能使人增長數學知識、陶冶情操,而且能給人一種美的藝術享受。(胡德勇) 轉載於《人教網》
你有列印機嗎?
如果有
就從網上下一些數學題目或一些數學家資料或關於數學的所有東西比如說:腦筋急轉彎之類的反正有圖片就加圖片弄得好看點就是了!
沒有
就從網上把文字抄下來字不行就叫老爸老媽抄(一定要用銀光筆哦這樣才漂亮)圖片沒有就畫下來其他同上(如果有)