導航:首頁 > 小學年級 > 小學五年級奧數內容

小學五年級奧數內容

發布時間:2020-12-02 09:12:41

小學五年級奧數題,及答案

小民以每分鍾50米的速度從家走到學校,則遲到8分,他這樣走了2分後,改用60米/分的速度前進,結果早到5分鍾.小民家裡學校多遠?
設他走了X分鍾
50X(x+8)=60x(x-5)+2x50
50x+400 =60x-200
x=60
50x(60+8)=3400米
在一次植樹活動中,兩個小組植樹總數相同,均為100多棵。兩組人數不等,一組一人植樹5棵,其餘植樹13棵,二組一人植樹4棵,其餘10棵。兩組共多少人?
根據題意,
每組種樹的數量,除以13餘5;除以10餘4;
中國剩餘定理問題。。。。

算術方法:
能被13整除,且除以10餘4的最小數,為:13×8=104
能被10整除,且除以13餘5的最小數,為:10×7=70
104+70=174
滿足除以13餘5;除以10餘4;且為100多的數,就是174
兩班各種了174棵
一組有:(174-5)÷13+1=14人
二組有:(174-4)÷10+1=18人
兩組一共:14+18=32人

代數解法:
設一組x人,二組y人;x,y均為正整數
100<5+13(x-1)<200
100<4+10(y-1)<200

100<13x-8<200
100<10y-6<200

108<13x<208
106<10y<206

9≤x≤17
11≤x≤20

5+13(x-1)=4+10(y-1)
13x-8=10y-6
y=(13x-2)/10
y是整數,那麼13x的個位數字為2
x的個位數字為4
滿足要求的數為x=14
y=(13×14-2)/10=18
兩組一共:14+18=32人

⑵ 小學五年級奧數題庫及答案

(1)兩個數的和應是47.9,小明計算是不小心把一個加數的小數點向右移動了一位,這樣加得的和是212.6。這兩個數原來各是多少?
已解決問題 收藏 小學五年級數學題標簽:小學,小學 五年,數學題 兩個數的和應是47.9,小明計算是不小心把一個加數的小數點向右移動了一位,這樣加得的和是212.6。這兩個數原來各是多少?
要分析和算式
匿名 回答:5 人氣:6 解決時間:2009-08-12 11:47 檢舉 小數點向右移動一位,原來的數就擴大10倍,比原來多了9倍.
(212.6-47.9)÷ 9
=164.7÷ 9
=18.3
47.9-18.3=29.6
答:數原來各是18.3、29.6。

(2)某商品編號是一個三位數.現有五個三位數:873\765\123\364\925.其中每一個數與商品編號恰好在同一個數位上有一個相同數字,這個商品的編號是多少?
(3)一次考試滿分100分,5位同學的平均分是90分,且各人得分是不相同的整數,已知得分最少的人得了75分.那麼,第三名同學至少得了多少分?
90× 5=450
450-75=375
375-100-99=176
176-87=89
答:第三名同學至少得了89分.(第一名同學得了100分,第二名同學得了99分,第四名同學得了87分第五名同學得了75分)

⑶ 小學五年級奧數題

8、王,張,劉三位小朋友共有郵票150張,現在他們交換郵票:王給劉12枚,劉給張18枚,張給王20枚.這樣,三人的郵票張數相等,請問,王原有郵票( )張,劉原有郵票( )張,張原有郵票( )張.
9,有3個箱子,如果兩箱兩箱的去稱它們的重量,分別是166千克,172千克和170千克.問其中最重的箱子重( )千克.
10,某人到快餐店打暑期工,一個月(30天計)報酬為800元和發給帽,鞋和工作服一套.她由於另有原因,只工作了20天,得到500元,(勞保用品不用交回),請算算勞保用品應值( )元.
11,一副撲克牌(除去大,小鬼王),有4種花色,每種花色都有13張牌.現在把撲克牌洗勻,那麼至少要從中抽出( )張牌,才能保證有4張牌是同一花色.
12,學校買來101個乒乓球,67個乒乓球拍和33個乒乓網.如果把這三種物品平均分給每個班,這三種物品剩下的數量相同.學校應有( )個班.
13,小東做了一個長方體模型,表面積是160平方厘米,這個長方體恰好能分割成兩個完全一樣的正方體.那麼,
(1)其中一個正方體的體積是( ) 。
(2)原來這個長方體的體積是( ) 。
14、有一場球比賽,售出50元,80元,100元的門票共800張,收入56000元.其中80元的門票和100元的門票售出的張數正好相同.請回答:售出50元門票( )張;售出80元門票( )張;售出100元門票( )張。
15、小芳和小英在春節臨時集市賣工藝品,小芳的工藝品比小英多100個,可是全部賣出後的收入都是750元,如果小芳的工藝品按小英的價格出售,則可增加收款0.2倍,小芳的工藝品每個賣( )元。

⑷ 小學五年級奧數題,及答案

1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?

2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?

3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?

4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?

5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
五年級試題三答案

1,因為10人2組都參加,所以只參加數學的5人,只參加航模的8人,加上那10人就是23人,40-23=17,2個小組都不參加的17人

2,同理,數學滿分10人,2科都滿分的3人,於是只是數學滿分的7人,45-7-29=9,這個就是語文滿分的人(如果說只是語文滿分的則需要減去3)

3,50÷4取整12,50÷6取整8,但是要注意,報4倍數的同時可能是6的倍數,所以還要算出4和6的公倍數,有50÷12(4和6的最小公倍數)=4(取整),所以,應該是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),還是算出2和3的公倍數100÷6=16(取整),然後找出即沒不被2整除,也不被3整除的數的個數100-50-33+16=28,所以,准備鉛筆為50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2個劃線劃在一起,也就是要算出他們的公倍數,180÷3÷4=15,所以應該為60+45-15=90

⑸ 小學五年級奧數教些什麼內容啊

高思學校競賽數學導引·五年
http://proct.dangdang.com/proct.aspx?proct_id=21019222
第1講 分數計算與比較大小(計算問題第9講)
第2講 整除(數論問題第1講)
第3講 質數與合數(數論問題第2講)
第4講 包含與排除(計數問題第6講)
第5講 行程問題四(應用題第16講)
第6講 幾何計數(計數問題第7講)
第7講 約數與倍數(數論問題第3講)
第8講 分數與循環小數(計算問題第10講)
第9講 比較與估算(計算問題第11講)
第10講 數字謎綜合一(數字謎問題第9講)
第11講 和羞倍分問題(應用題第17講)
第12講 應用題拓展(應用題第18講)
第13講 計算綜合一(計算問題第12講)
第14講 直線形計算二(幾何問題第6講)
第15講 圓與扇形(幾何問題第7講)
第16講 余數(數論問題第4講)
第17講 工程問題(應用題第19講)
第18講 牛吃草問題與鍾表問題(應用題第20講)
第19講 直線形計算三(幾何問題第8講)
第20講 行程問題五(應用題第21講)
第21講 數字問題(數字謎問題第10講)
第22講 計數綜合二(計數問題第8講)
第23講 構造論證一(組合問題第7講)
第24講 抽屜原理二(組合問題第8講)

⑹ 小學五年級奧數 學什麼

小學奧數:五復年級 目錄

第一學期制
第1講 小數的計算技巧
第2講 直線型的行程問題
第3講 環形路的行程問題
第4講 比和比例
第5講 圖解法與表解法
第6講 一元一次方程的解法
第7講 列方程解應用題
第8講 三角形的等積變換
第9講 利用割補求面積
第10講 利用方程求面積
第11講 博弈問題
第12講 統籌與規劃
第13講 從反面考慮問題
第14講 換個角度想一想
第15講 同中存異
第16講 異中求同
第一學期期末測試
第二學期
第1講 長方體、正方體的表面積與體積
第2講 長方體、正方體的切拼與塗色
第3講 發揮空間想像力
第4講 數的整除
第5講 質數、合數和分解質因數
第6講 奇數和偶數
第7講 公約數與公倍數
第8講 輾轉相除法
第9講 余數問題
第10講 分數的拆分與巧算
第11講 分數大小的比較
第12講 推理問題
第13講 枚舉與篩選
第14講 規律與歸納
第15講 構造法與對應法
第16講 整體思考與分類討論
第二學期期末測試

⑺ 小學五年級奧數題及答案25道!!

奧賽專題 -- 稱球問題
〔專題介紹〕稱球問題是一類傳統的趣味數學問題,它鍛煉著一代又一代人的智力,歷久不衰。下面幾道稱球趣題,請你先仔細考慮一番,然後再閱讀解答,想來你一定會有所收獲。
〔經典例題〕例1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。
例2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論。如B<C,仿照B>C的情況也可得出結論。
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論。
(3)若A<B,類似於A>B的情況,可分析得出結論。

練習 有12個外表上一樣的球,其中只有一個是次品,用天平只稱三次,你能找出次品嗎?

奧賽專題 -- 雞兔同籠問題
[專題介紹]雞兔同籠問題是指在應用題中給出了雞和兔子的總頭數和總腿數,求雞和兔子各有多少只的一類問題。雞兔同籠問題在解答過程中用到假設的思路,可以假設都是兔子,這樣總腿數就比實際腿數要多,多出來的腿數就是把雞當兔子多算的,因此再除以一隻雞比一隻兔子少的腿數就可以求得雞有多少只。也可以假設成都是雞,這樣就可以求得兔有多少只。
[經典例題]例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18。
解:①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻。
[總結]:先假設它們全是兔.於是根據雞兔的總只數就可以算出在假設下共有幾只腳,把這樣得到的腳數與題中給出的腳數相比較,看相差多少.每差2隻腳就說明有一隻雞;將所差的腳數除以2,就可以算出共有多少只雞.我們稱這種解題方法為假設法.概括起來,解雞兔同籠問題的基本關系式是:
雞數=(每隻兔腳數× 兔總數- 實際腳數)÷(每隻兔子腳數-每隻雞的腳數)
兔數=雞兔總數-雞數
當然,也可以先假設全是雞。
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:雞與兔分別有80隻和20隻。
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解。
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人。
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人。
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人)。
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人。
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船。
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
解:①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.

參考資料:小數專業網
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間。根據數量關系式,我們知道要想求通過時間,就要知道路程和速度。路程是用橋長加上車長。火車的速度是已知條件。
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾。

2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與解答:這是一道求車速的過橋問題。我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件。可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出。
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米。

3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與解答:火車過山洞和火車過橋的思路是一樣的。火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋。這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程。
總路程:
山洞長: (米)
答:這個山洞長60米。

和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確。
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和。看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度。
甲乙飛機的速度分別每小時行800千米、400千米。
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書。根據條件需要先求出哥哥剩下多少本課外書。如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量。
(1)兄弟倆共有課外書的數量是20+25=45。
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3。
(3)哥哥剩下的課外書的本數是45÷3=15。
(4)哥哥給弟弟課外書的本數是25-15=10。
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸。根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍。於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸。最後就可求出甲庫原來存糧多少噸。
甲庫原存糧130噸,乙庫原存糧40噸。

列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組。
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底。

奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數。
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數。
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數)。因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數)。
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數。
例如:8+4=12,8-4=4等。
兩個奇數的和或差也是偶數。
例如:9+3=12,9-3=6等。
奇數與偶數的和或差是奇數。
例如:9+4=13,9-4=5等。
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數。
性質2 奇數與奇數的積是奇數。

偶數與整數的積是偶數。

性質3 任何一個奇數一定不等於任何一個偶數。
1. 有5張撲克牌,畫面向上。小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下。要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次。
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下。而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數。
所以無論他翻動多少次,都不能使5張牌畫面都向下。
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒。那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒。所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子。
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個。否則甲盒子中的黑子數不變。也就是說,李平每次從甲盒子拿出的黑子數都是偶數。由於181是奇數,奇數減偶數等於奇數。所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子。

奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論。如B<C,仿照B>C的情況也可得出結論。
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論。
(3)若A<B,類似於A>B的情況,可分析得出結論。
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日。為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月。如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日。
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數。這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數。而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」。我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數。換句話說,4個自然數分成3類,至少有兩個是同一類。既然是同一類,那麼這兩個數被3除的余數就一定相同。所以,任意4個自然數,至少有2個自然數的差是3的倍數。
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的。
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙。拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走。如果再補進2隻,又可取得第3雙。所以,至少要取6+2+2=10隻襪子,就一定會配成3雙。
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手。
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球。
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球。
故總共至少應取出10+5=15個球,才能符合要求。
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路。
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元。這時他的存摺上還剩1250元。他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推)。由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」。綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量。解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算。
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了。哥哥看弟弟挑得太多,就拿來一半給自己。弟弟覺得自己能行,又
從哥哥那裡拿來一半。哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊。問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊。只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊。
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾。
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算。
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18。
解:①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻。
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:雞與兔分別有80隻和20隻。
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解。
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人。
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人。
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人)。
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人。
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船。

⑻ 小學五年級奧數題30道

1、有數組{1,2,3,4},{2,4,6,8},{3,6,9,12},……那麼第100個數組的四個數的和是( )。

2、一個兩位數除351,余數是21,這個兩位數最小是( )。

3、2008除以7的余數是( )


4、在1、2、3……499、500中,數字2在一共出現了( )次。

5、甲乙丙三人到銀行儲蓄,如果甲給乙200元,則甲乙錢數同樣多,如果乙給丙150元,丙就比乙多300元,甲和乙哪個人存款多?( ),多存( )元。

6、食堂有大米和麵粉共351袋,如果大米增加20袋,麵粉減少50袋,那麼大米的袋數比麵粉的袋數的3倍還多1袋,原來大米有( )袋,麵粉有( )袋。

7、279是甲乙丙丁四個數的和,如果甲減少2,乙增加2,丙除以2,丁乘以2後,則四個數都相等,那麼甲是( ),乙是( ),丙是( ),丁是( )。

8、兄弟倆比年齡,哥哥說:「當我是你今年歲數的那一年,你剛5歲。」弟弟說:「當我長到你今年的歲數時,你就17歲了。」哥哥今年( )歲,弟弟今年( )歲。

9、甲對乙說:「我的年齡是你的3倍。」乙對甲說:「我5年後的年齡和你11年前的年齡一樣。」甲今年( )歲,乙今年( )歲。

10、A、B兩地相距21千米,上午9時甲、乙分別從A、B兩地出發,相向而行,甲到達B地後立即返回,乙到達A地後立即返回,中午12時他們第二次相遇。此時甲走的路程比乙走的路程多9千米。甲每小時走( )千米。

11、一隻汽船所帶的燃料,最多用6小時,去時順流每小時行15千米,回來是逆流每小時行12千米,這只汽船最多行出 ( )千米就需往回開。

12、一條輪船在兩碼頭間航行,順水航行需4小時,逆水航行需5小時,水速是每小時5千米 ,這條船在靜水中每小時行( )千米。

13、一座鐵路橋全長1200米,一列火車開過大橋需要75秒,火車開過路旁的電線桿只需15秒,那麼火車全長是( )米。

14、某列車通過250米長的隧道用25秒,通過210米的鐵橋用23秒,該列車與另一列長320米,速度為每小時行64.8千米的火車錯車時需要( )秒。

15、蝸牛從一個枯井網上爬,白天向上爬110厘米,夜裡向下滑40厘米,若要第五天的白天爬到井口,這口井至少深( )厘米。

16、周老師給學是發練習本,每人分7本還多出7本,如果每人多發2本,就有一個同學分不到,那麼一共有( )個同學,( )個練習本。

17、王飛以每小時40千米的速度行了240千米,按原路返回時每小時行60千米,王飛往返的平均速度是每小時行( )千米。

18、松鼠媽媽采松子,晴天每天可采24個,雨天每天可采16個,他一連幾天一共采了168個松子,平均每天采21個,這幾天當中一共有( )天晴天。

19、用10張同樣長的紙條接成一條長31厘米的紙帶,如果每個接頭都重疊1厘米,那麼每張紙條長( )厘米。

20、有一牧區長滿牧草,牧草每天勻速生長。這個牧

區的草可供27頭牛吃6周,或供23頭牛吃9周,那麼可供21頭牛吃( )周。

21、20個隊參加乒乓球團體賽,如果進行循環賽,需要比賽( )場。

22、「IMO」是國際數學奧林匹克競賽的縮寫,把這三個字母寫成三種不同的顏色,現有五種不同的顏色,按上述要求可以寫出( )中不同顏色搭配的「IMO」。

23、在一次運動會中,甲班參加田賽的有15人,參加徑賽的有12人,參加田賽又參加徑賽的有7人,沒有參加比賽的有21人,那麼甲班共有( )人。

24、一個口袋裡有四種不同顏色的小球,每次摸出2個,要保證有10次所摸的結果是一樣的,至少要摸( )次。

25. 某項工作用原來擁有的機器可以在規定時間內完成,如果增加2台,則只需要規定時間的7/8;如果減少2台,就要推遲2/3小時完成,問如果用一台機器去完成需要多少時間?
A: 54小時
B: 56小時
C: 55小時
D: 57小時

26. 一件工作,甲、乙兩人合作36天完成,乙、丙合作45天完成,甲、丙合作要60天完

成。問甲獨做需要多少天?
C: 90
A: 85
B: 80
D: 95
27. 一件工作,甲做1.5小時完成全部工作的1/4後,再由乙做0.5小時完成餘下工作的1/3,剩下的工作由丙做1.5小時完成。如果三個人合作,需要多少時間?
A: 1小時
C: 1.1小時
B: 1.2小時
D: 1.5小時
28. 甲乙兩管同時打開,9小時能灌滿水池。現在先打開甲,10小時後打開乙,再經過3小時就灌滿了水池。已知甲管比乙管每分鍾多注入0.6立方米的水,問這個水池的容積是多少?
A: 26立方米
B: 27立方米
C: 25立方米
D: 30立方米
29. 一項工程,乙的工作效率是甲的1/3,丙的工作效率是乙的3/4。現在每天都是兩個人合作,結果甲共做了4天,乙共做了3天,丙共做了3天,終於完成了工作。問:
(1)甲、乙合作了多少天?
(2)甲一人單獨完成這項工程需要多少天?

A: 2天,5.75天
B: 2.5天,5.75天
C: 2天,5.5天
D: 3天,5.75天
30. 一項工程,甲隊做2天,乙隊做5天,共完成了工程的4/15;甲隊做5天,乙隊做2天,共完成了工程的19/60。問甲、乙單獨做,完成這項工程各需要多少天?
A: 甲30天,乙30天
B: 甲25天,乙30天
C: 甲20天,乙25天
D: 甲20天,乙30天1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
AN:10秒.
2 計算1234+2341+3412+4123=?
AN:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
AN:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
AN:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
AN:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
AN:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
AN:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 AN: 48
9 100條直線最多能把平面分為幾個部分?
AN:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
AN:8天
11 100以內所有能被2或3或5或7整除的自然數個數
AN:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
AN:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
AN:1005
14 求360的全部約數個數. AN: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. AN :10輛.
16 約數共有8個的最小自然數為____. AN:24
17求所有除4餘一的兩位數和 AN;1210
18 把一筆獎金分給甲乙兩個組,平均每人得6元.如果只分給甲組每人得10元,只分給乙每人得___元.
AN:15元.
19有一個工廠春遊,有若干輛車,每車乘65人,有15人不能去,每車多乘5人,餘一輛車.車___輛,共____人
AN:17,1120
20 AB兩市學生乘車參觀C地,每車可乘36人,AB兩市學員坐滿若乾颱車後,來自A的學生中餘下的11人與來自B的餘下若幹人坐滿了一輛車.在C地,來自A地和來自B地的學生兩兩合影留念,每個膠卷只能拍36張相片.那麼全部拍完後相機中殘余膠卷能拍____張照片.
AN:13張.
21 36A+4/24A+3是否為最簡分數?
AN:是
22 一個長方體體積為374,其長.寬.高均為質數,其表面積為___
23 求1246與624的最大公約數. AN:2
24 小茜買了椰子和芒果,共用43元,椰子每斤7元,芒果每斤5元,她買了椰子和芒果斤數都是整數.那麼他買了椰子和芒果共___斤
AN:7
25 100隻雞啄100粒米 大雞啄3粒米,中雞啄2粒,小雞啄1/3 粒,那麼小雞共____只. AN:60或63或66或69或72或75(答案必須完整)
26 2002全部約數和是___ AN:33

⑼ 小學五年級奧數題56道

A找規律填空46分(每格2分)

(1)160、145、130、( )、100、( )

(2)2、6、18、54、( )、( )、1458

(3)15、4、13、4、11、4、( )、( )

(4)8、15、10、13、12、11、( )、( )

(5)1、6、7、12、13、18、19、( )、( )

(6)2、3、5、8、12、( )、( )、( )

(7)1、3、6、8、16、18、( )、( )、76、78

(8)1頭豬換2隻羊,1隻羊換2隻兔子,1頭豬換( )只兔子。

(9)1個蘋果=2個橘子,1個橘子=8顆糖

1個蘋果可以換( )顆糖

2個蘋果可以換( )顆糖

3個橘子可以換( )顆糖

16顆糖可以換( )個橘子

B應用題54分(1-4題每題4分,5-6題5分,7-10題7分)

1 小紅炒蛋需要做7項工作:敲蛋(1分)、攪蛋(3分)、切蔥(2分)、洗鍋(2分)、燒熱鍋(2分)、燒油(4分)、炒蛋(4分),小紅完成這些工作需要18分鍾,問你覺得最合理的安排需要多少時間 ?說說你安排的思路?

2 小王給個人燒水沏茶,洗水壺要2分鍾,燒開水要17分鍾,洗茶壺要1分鍾,洗茶杯要用5分鍾,放茶葉要1分鍾。小王估算了一下,完成這些工作要27分鍾,問你覺得最合理的安排需要多少時間 ?說說你安排的思路?

3 A、B、C三人分別拿著2個、3個、1個熱水瓶同時到達開水供應點打水,熱水龍頭只有一個,怎樣安排他們所花的等待時間最好?(每瓶打滿需要1分鍾)說說你安排的思路?

4 小東早晨起床,淘米要2分鍾,電飯鍋燒飯要18分鍾,背外語要12分鍾,刷牙洗臉要3分鍾,吃飯要8分鍾,問你覺得最合理的安排需要多少時間 ?說說你安排的思路?

5 一桶水,連桶重250千克,用去一半水後,連桶重145千克,問桶重多少千克?水重多少千克?(5分)

6 小林考的4門功課,平均成績是92分。如果數學成績不計算在內,平均成績是90分,小林的數學成績是多少分?(5分)

7 某工廠計劃生產36500套軸承。前5天平均每天生產2100套,後來改進操作方法,平均每天可以生產2600套。這樣完成這工作需要幾天?

8 羊毛衫廠要做756件羊毛衫。原計劃每人每天做3件,派18人來完成。實際增加了3人,可以提前幾天完成任務?

9 A、B兩人的存款相等,A取出60元,B存入20元,B的存款是A的3倍,兩人原有存款各多少元?

10 一天,甲、乙、丙三人去郊區釣魚,已知甲比乙多釣6條,丙釣的魚是甲的2倍,比乙多釣22條,他們一共釣了多少魚?

閱讀全文

與小學五年級奧數內容相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99