導航:首頁 > 小學年級 > 小學數學五年級下冊知識點

小學數學五年級下冊知識點

發布時間:2020-11-28 15:06:23

A. 小學五年級數學知識點總結

數學與交通:
1 相遇問題:
基本公式:一個人走:速度×時間=路程
兩個人同時相對而行:速度和×相遇時間=兩人共走路程
甲走的路程+乙走的路程=兩人共走的路程
2、旅遊費用:
①購票方案:根據人數的多少,價格的不同以及團體優惠人數的多少,合理選

擇一種方案購票或幾種方案結合起來購票。若只有A、B兩種方案是,只要選擇

其中一種價格便宜的就行。
②租車問題: 用列表法解決問題。兩個原則:多用單價低的,少空座。

3、看圖找關系:
①讀懂圖表中的有關信息,一定要分析橫軸與縱軸分別表示的是什麼。
②在速度與時間的關繫上,線往上畫,說明提速;與橫軸平行,說明勻速行

駛;線往下畫,說明減速。
③在時間與路程的問題上,線往上畫,說明從某地出發;與橫軸平行,說明

原地不動;線往下畫,說明又從終點回到某地。

B. 小學五年級下冊數學

一個棱長為6厘米的正方體木塊,如果把它鋸成棱長為2厘米的正方體,它能夠被分成27個相同的小塊:
沒有被鋸開時的表面積為:
6×6×6=216(平方厘米)
當它被鋸開時,每個小正方體的表面積是:
2×2×6=24(平方厘米)
大的正方體一共被分成了27個相同的正方體,那麼這27個正方體表面積的總和是:
24×27=648(平方厘米)
那麼表面增加的數量為
648-216=432(平方厘米)

C. 小學數學五年級下第四單元復習提綱或復習材料

第四單元分數的意義和性質知識點:
1、分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。

2、分數單位:把單位「1」平均分成若干份,表示這樣的一份的數叫做分數單位。

3、分數與除法的關系:除法中的被除數相當於分數的分子,除數相等於分母,用字母表示:a÷b= (b≠0)。

4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小於1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大於1或等於1。由整數部分和分數部分組成的分數叫做帶分數。

5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。

6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。

7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。

8、互質數:公因數只有1的兩個數叫做互質數。兩個數互質的特殊判斷方法:①1和任何大於1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。

9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。

10、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。

11、最小公倍數:幾個數共有的倍數叫做它們的公倍數,其中最小的一個叫做最小公倍數。

12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

13、特殊情況下的最大公因數和最小公倍數:

①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。

14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。
15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。

D. 小學五年級數學知識點

小學五年級數學上冊期末復習知識點歸納
第一單元小數乘法
1、小數乘整數(P2、3):意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數(P4、5):意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
3、規律(1)(P9):一個數(0除外)乘大於1的數,積比原來的數大;
一個數(0除外)乘小於1的數,積比原來的數小。
4、求近似數的方法一般有三種:(P10)
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。
6、(P11)小數四則運算順序跟整數是一樣的。
7、運算定律和性質:
加法:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性質:a÷b÷c=a÷(b×c)
第二單元小數除法
8、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。
9、小數除以整數的計算方法(P16):小數除以整數,按整數除法的方法去除。,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
10、(P21)除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
11、(P23)在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數。
12、(P24、25)除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。
②除數不變,被除數擴大,商隨著擴大。③被除數不變,除數縮小,商擴大。
13、(P28)循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232……的循環節是32.
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。
第四單元簡易方程
16、(P45)在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫。
加號、減號除號以及數與數之間的乘號不能省略。
17、a×a可以寫作a•a或a ,a 讀作a的平方。 2a表示a+a
18、方程:含有未知數的等式稱為方程。
使方程左右兩邊相等的未知數的值,叫做方程的解。
求方程的解的過程叫做解方程。
19、解方程原理:天平平衡。
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。
20、10個數量關系式:加法:和=加數+加數 一個加數=和-兩一個加數
減法:差=被減數-減數 被減數=差+減數 減數=被減數-差
乘法:積=因數×因數 一個因數=積÷另一個因數
除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的檢驗過程:方程左邊=…… 23、方程的解是一個數;
=…… 解方程式一個計算過程。
=方程右邊
所以,X=…是方程的解。
第五單元多邊形的面積
23、公式:長方形:周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】 字母公式:C=(a+b)×2
面積=長×寬 字母公式:S=ab
正方形:周長=邊長×4 字母公式:C=4a
面積=邊長×邊長 字母公式:S=a
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 ——【底=面積×2÷高;高=面積×2÷底】 字母公式: S=ah÷2
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面積×2÷高-下底,下底=面積×2÷高-上底;高=面積×2÷(上底+下底)】
24、平行四邊形面積公式推導:剪拼、平移 25、三角形面積公式推導:旋轉
平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底; 平行四邊形的底相當於三角形的底;
長方形的寬相當於平行四邊形的高; 平行四邊形的高相當於三角形的高;
長方形的面積等於平行四邊形的面積, 平行四邊形的面積等於三角形面積的2倍,
因為長方形面積=長×寬,所以平行四邊形面積=底×高。 因為平行四邊形面積=底×高,所以三角形面積=底×高÷2
26、梯形面積公式推導:旋轉 27、三角形、梯形的第二種推導方法老師已講,自己看書
兩個完全一樣的梯形可以拼成一個平行四邊形, 知道就行。
平行四邊形的底相當於梯形的上下底之和;
平行四邊形的高相當於梯形的高;
平行四邊形面積等於梯形面積的2倍,
因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
29、長方形框架拉成平行四邊形,周長不變,面積變小。
30、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適。
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼。
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區) 0 5 4 0 0 1
前3位表示郵區
前4位表示縣(市)
最後2位表示投遞局

35、身份證號碼:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台縣 出生日期 順序碼 校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女。
第一單元 倍數與因數(我們只在自然數(0除外)范圍內研究倍數和因數。)
1、像0、1、2、3、4、5、6……這樣的數是自然數。
2、像-3、-2、-1、0、1、2、3……這樣的數是整數。3、整數與自然數的關系:整數包括自然數。
4、倍數和因數: 舉例如4×5=20,20是4和5的倍數,4和5是20的因數,倍數和因數是相互依存的。
5、找倍數:從1倍開始有序的找。
6、一個數倍數的特點: ①一個數的倍數的個數是無限的;
②最小的倍數是它本身;
③沒有最大的倍數。
7、找因數:找一個數的因數,一對一對有序的找較好。
8、一個數因數的特點: ①一個數的因數的個數是有限的;
②最小的因數是1;
③最大的因數是它本身。
9、2的倍數的特徵:個位是0、2、4、6、8的數是2的倍數。
10、奇數和偶數:是2的倍數的數叫偶數,不是2的倍數的數叫奇數。
按一個數是不是2的倍數來分,自然數可以分成兩類:奇數和偶數
11、5的倍數的特徵:個位是0或5的數是5的倍數。
12、3的倍數的特徵:各個數位上的數字的和是3的倍數,這個數就是3的倍數。
13、既是2的倍數又是5的倍數的特徵:個位是0的數。
既是2的倍數又是3的倍數的特徵:①個位是0、2、4、6、8的數;
②各個數位上的數字的和是3的倍數
既是3的倍數又是5的倍數的特徵:①個位是0或5的數;
②各個數位上的數字的和是3的倍數
既是2的倍數又是3的倍數還是5的倍數的特徵: ①個位是0的數;
②各個數位上的數字的和是3的倍數
9的倍數的特徵:各個數位上的數字的和是9的倍數,這個數就是9的倍數
14、質數:一個數只有1和它本身兩個因數,這個數叫質數。最小的質數是2,是唯一的質數中的偶數。
100以內的質數:
15、合數:一個數除了1和它本身以外還有別的因數,這個數叫合數。
1既不是質數也不是合數,最小的合數是4.
16、按一個數的因數個數分,自然數可以分為三類。
第二單元 圖形的面積(一)
1、 長方形周長=(長+寬)×2 C = 2 ( a + b )
2、 長方形面積=長×寬 S = a b
3、 正方形周長=邊長×4 C = 4 a
4、 正方形面積=邊長×邊長 S = a 2
5、 平行四邊形面積=底×高 S = a h
6、 平行四邊形底=面積÷高 a = S ÷ h
7、 平行四邊形高=面積÷底 h = S ÷ a
8、 三角形面積=底×高÷2 S = a h ÷ 2
9、 三角形底=面積×2÷高 a = 2 S ÷ h
10、 三角形高=面積×2÷底 h = 2 S ÷ a
11、 梯形面積=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面積×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面積×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面積×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公頃=1000000平方米
16、 1公頃=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三單元 分數
1、 分數:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、 分母:表示平均分的份數。分子:表示取出的份數。
3、 分數單位:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做
分數。表示其中的一份的數,叫做這個分數的分數單位。
4、 真分數:分子小於分母的分數叫做真分數。真分數小於1。
5、 假分數:分子大於或等於分母的分數,叫做假分數。假分數都大於或等於1。
6、 帶分數:由整數和真分數組成的分數叫做帶分數。
7、 假分數化成帶分數:用分子除以分母,商是帶分數的整數部分,余數是帶分數分數部分的分子,分母不變。
8、 整數化成假分數:用指定的分母做分母,用整數與分母的積做分子。
9、 帶分數化成假分數:用帶分數的整數部分乘分母加分子做分子,分母不變。
10、 質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的因數,叫做這個合數的質因數。
11 把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 如12=2×2×3
12、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個,叫做它們的最大公因數。
13 互質:兩個數的公因數只有1,這兩個數叫做互質。
互質的規律:
(1) 相鄰的自然數互質;
(2) 相鄰的奇數都是互質數;
(3) 1和任何數互質;
(4) 兩個不同的質數互質
(5) 2和任何奇數互質。
質數與互質的區別:質數是就一個數而言,而互質是指兩個或兩個以上的數之間的關系;這些數本身不一定是質數,但它們之間最大的公因數是1,如8和9.
14、 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。
15、 求最大公因數,最小公倍數的方法
關系
最大公因數
最小公倍數
倍數關系
16、 分子分母互質的分數叫最簡分數,或者說分子分母的公因數只有的1的
分數是最簡分數。
17、 約分:把一個分數的分子和分母同時除以公因數,分數值不變,這個過
程叫做約分。計算結果通常用最簡分數表示。
18、 通分:把異分母分數分別化成同分母分數,叫通分。通常用最小公倍數
做分數的分母較簡便。
19、 如何比較分數的大小:
分母相同時,分子大的分數大;
分子相同時,分母小的分數大;
分子分母都不同時,通分再比。
20、 分數基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分
數大小不變。
21、分數的意義兩種解釋:①把單位「1」平均分成4份,表示這樣的3份。
②把3平均分成4份,表示這樣的1份。
數學與交通:
1 相遇問題:
基本公式:一個人走:速度×時間=路程
兩個人同時相對而行:速度和×相遇時間=兩人共走路程
甲走的路程+乙走的路程=兩人共走的路程
2、旅遊費用:
①購票方案:根據人數的多少,價格的不同以及團體優惠人數的多少,合理選
擇一種方案購票或幾種方案結合起來購票。若只有A、B兩種方案是,只要選擇
其中一種價格便宜的就行。
②租車問題: 用列表法解決問題。兩個原則:多用單價低的,少空座。
3、看圖找關系:
①讀懂圖表中的有關信息,一定要分析橫軸與縱軸分別表示的是什麼。
②在速度與時間的關繫上,線往上畫,說明提速;與橫軸平行,說明勻速行
駛;線往下畫,說明減速。
③在時間與路程的問題上,線往上畫,說明從某地出發;與橫軸平行,說明
原地不動;線往下畫,說明又從終點回到某地。
第四單元 分數加減法
1, 異分母分數加減法:先通分,化成同分母分數,然後按照同分母分數加減法法則進行計算。
2, 對計算結果的要求:能約分的要約成最簡分數,是假分數要化成帶分數。
3, 分數化成小數的方法:用分子除以分母,除不盡的保留兩位小數。
4, 小數化成分數的方法:看小數部分有幾位,就在1的後面加幾個0做分母,去掉小數點做分子,能約分的要約分。
第五單元 圖形的面積(二)
1, 求組合圖形面積的方法:
(1) 分割法:將圖形進行合理分割,形成基本圖形,基本圖形面積的和就是組合圖形的面積。(和法)
(2) 添補法:將圖形所缺部分進行添補,組成幾個基本圖形,基本圖形面積-添補圖形面積=組合圖形面積。
2.不規則圖形面積的估算:
(1)數格子的方法。
(2)把不規則圖形看成近似的基本圖形,估算出面積。
雞兔同籠:
1, 列表法。
2, 假設法
3, 列方程
點陣中的規律:略
第六單元 可能性大小
1,用1表示事件一定發生,用0表示事件一定不會發生,用分數表示可能性的大小。
2,設計活動方案。
鋪地磚:
1, 地面面積除以每塊地磚面積=所鋪地磚塊數
2, 每平方米所需地磚塊數乘以地面面積=所鋪地磚塊數
3, 列方程
4, 注意:轉化單位,結果不是整塊數用進一法取近似值
1、直接寫出得數。(每小題0.5分,共6分)
0.125+7/8= 1/3+1/4= 1-1/9= 5/12+5/24= 12.5X0.1= 1-8/9-1/9=
9.8÷0.01= 3.4+13= 1.08+1/2= 5/8+1/4= 4/5-0.2-0.4= 2/5+5/6+3/5=
2、計算,能簡算的要簡算。(每小題2分,共8分)
5-3/7-4/7 8/9+1/3+2/3 1/2+3/5-11/20 1/2+(1/3-1/5)
3、解方程。(每小題2分,共6分)
① X+1/5-4/35=27

② 3X-6.75=33/4 ③ X-(1-3/7)=1/4
4、列式計算。(每小題3分,共6分)
① 65減去多少個2.5後還剩17.5?
② 一個數的一半與20的和是120,求這個數。
5、圖形觀察、計算。(每小題3分,共6分)
???
五、解決問題。(每小題5分,共30分)
1、小明的媽媽去超市買牛奶,有下面這樣三種瓶裝的牛奶,你認為買哪種瓶裝的最合算?為什麼?
① 250ml/2.00元 ② 500ml/4.60元 ③ 1L/9.00元
2、在一塊長45米,寬28米的長方形地上鋪一層4厘米厚的沙土,如果用一輛每次只能運3.5方沙土的汽車來運這些沙土,這輛汽車至少要運多少次?
3、一段長方體木材,長1.2米,如果鋸短2分米,它的體積就減少40立方分米。求原來這段木材的體積。
4、東東家有一些雞蛋,5個5的數,6個6的數,12個12的數,都多4個,已知這些雞蛋在100-130個之間。你知道東東家有多少個雞蛋嗎?

E. 小學五年級數學下冊概念,要全!!!

五下數學概念
1. 沿中心線對折,完全重合的兩個圖形叫對稱圖形。
2. 對應點到對稱軸的距離是相等的。
3. 連接對應點的連接線是互相垂直的。
4. 2和6是12的因數。12是2的倍數,也是6的倍數。
5. 為了方便,在研究因數和倍數的時候,我們所說的數指的是整數(一般不包括0)
6. 一個數的最小因數是1,最大的因數是他本身。
7. 一個數的因數的個數是有限的。
8. 一個數的最小倍數是他本身,沒有最大的倍數。
9. 一個數的倍數的個數是無限的。
10. 自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
11. 個位上是0,2,4,6,8的數都是2的倍數。
12. 個位上是0或5的數,是5的倍數。
13. 一個數各位上的數的和是3的倍數,這個數就是3的倍數。
14. 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數)
15. 一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。
16. 1不是質數,也不是合數。
17. 質數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、
18. 長方體是由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形。
19. 在一個長方體中,相對的面完全相同,相對的棱長度相等。
20. 相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
21. 正方體是由6個完全相同的正方形圍成的立體圖形。
22. 正方體可以看成是長、寬、高都相等的長方體。
23. 長方體或正方體6個面的總面積,叫做它的表面積。
24. 長方體表面積=(長×寬+長×高+寬×高)×2
25. 長方體沒蓋的表面積=長×寬+(長×高+寬×高)×2
26. 正方體表面積=棱長×棱長×6 (任意一個面積×6)
27. 正方體沒蓋的表面積=棱長×棱長×5
28. 物體所佔空間的大小叫做物體的體積。
29. 計量體積要用體積單位,常用的體積單位有立方厘米,立方分米和立方米,可以寫成cm3,dm3 ,m3
30. 長方體或正方體底面的面積叫做底面積。
31. 長方體體積(容積)=長×寬×高 V=abh
32. 正方體體積(容積)=棱長×棱長×棱長 V=3a
33. 長方體(或正方體)體積=底面積×高 V=sh
34. 1dm3=1000 cm3 1 m3 =1000 dm3
35. 1L=1000ml 1L=1 dm3 1ml=1 cm3
36. 箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。
37. 計量液體的體積,如水油等,常用容積單位升和毫升,也可以寫成L和ml。
38. 長方體或正方體容器的計算方法,跟體積的計算方法相同。但要從容器裡面量長、寬、高。
39. 在進行測量、分物或計算時,往往不能正好得到整數的結果,這時常用分數來表示。
40. 一個物體、一些物體等都可以看作一個整體,把這個整體平均分成若干份,這樣的一份或幾份都可以用分數來表示。
41. 一個整體可以用自然數1來表示,通常把它叫做單位「1」
42. 把單位「1」平均分成若干份,表示其中的一份的數叫分數單位。
43. a÷b=b分之a b≠0
44. 分子比分母小的分數叫真分數。真分數小於1。
45. 分子比分母大或分子和分母相等的分數叫做假分數。假分數大於1或等於1。
像 , ,……這樣的分數叫做帶分數。
46. 分數的基本性質:分數的分子和分母同時乘或者除以相同的數(0除外),
分數大小不變。
47. 1、2、4是16和12公有的因數,叫做它們的公因數。
其中,4是最大的公因數,叫做它們的最大公因數。
48. 公因數只有1的兩個數,叫做互質數。
49. 分子和分母只有公因數1,(分子和分母是互質數)像這樣的分數叫做最簡分數。
50. 把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。
51. 6、12、18••••••是3和2共有的倍數,叫做它們的公倍數。其中,6是最小的公倍數,叫做它們的最小公倍數。
52. 把異分母分數分別化成和原來分數相等的分母分數,叫做通分。用分子除以分母除不盡時,要根據需要按「四捨五入」法保留幾位小數。
53. 一個最簡分數,如果能化成有限小數,它的分母中只含有質因數2和5。
54. 同分母分數相加、減,分母不變,只把分子相加減。
分母不同的分數,要先通分才能相加減。
55. 分數加減法的驗算方法與整數加減法的驗算方法相同。
56. 整數加法的交換律、結合律對分數加法同樣適用。
57. 一組數據中,出現次數最多的一個數或幾個數最多,就是這組數據的眾數。眾數能夠反映一組數據的集中情況。
58. 在一組數據中,眾數可能不只一個,也可能沒有眾數。
59. 復線統計圖能夠清晰分析兩組數據的差別。

F. 蘇教版小學五年級下冊數學總復習資料和知識重點

第一單元 方程

1、表示相等關系的式子叫做等式。

2、含有未知數的等式是方程。

3、方程一定是等式;等式不一定是方程。等式>方程

4、等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。

等式兩邊同時乘或除以同一個不等於0的數,所得結果仍然是等式。這也是等式的性質。

5、求方程中未知數的過程,叫做解方程。

解方程時常用的關系式:

一個加數=和-另一個加數 減數=被減數-差 被減數=減數+差

一個因數=積÷另一個因數 除數=被除數÷商 被除數=商×除數

注意:解完方程,要養成檢驗的好習慣。

6、五個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間的一個數的5倍。奇數個連續的自然數(或連續的奇數,連續的偶數)的和÷個數=中間數

7、4個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間兩個數或首尾兩個數的和×個數÷2(高斯求和公式)

8、列方程解應用題的思路:A、審題並弄懂題目的已知條件和所求問題。B、理清題目的等量關系。C、設未知數,一般是把所求的數用X表示。D、根據等量關系列出方程E、解方程F、檢驗G、作答。

第二單元 確定位置

1、確定位置時,豎排叫做列,橫排叫做行。確定第幾列一般從左往右數,確定第幾行一般從前往後數。

2、數對(x,y)第1個數表示第幾列(x),第2個數表示第幾行(y),寫數對時,是先寫列數,再寫行數。

3、從地球儀上看,連接北極和南極兩點的是經線,垂直於經線的線圈是緯線,經線和緯線、分別按一定的順序編排表示「經度」和「緯度」,「經度」和「緯度」都用度(°)、分(′)、秒(″)表示。

4、將某個點向左右平移幾格,只是列(x)上的數字發生加減變化,向左減,向右加,行(y)上的數字不變。舉例:將點(6,3)的位置向右平移2個單位後的位置是(8,3),列6+2=8;將點(6,3)的位置向左平移2個單位後的位置是(4,3),列6-2=4。

5、將某個點向上下平移幾格,只是行(y)上的數字發生加減變化,向上減,向下加,列(x)上的數字不變。舉例:將點(6,3)的位置向上平移2個單位後的位置是(6,5),行3+2=5;將點(6,3)的位置向下平移2個單位後的位置是(6,1),列3-2=1。

第三單元 公倍數和公因數

1、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。

一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。

一個數最大的因數等於這個數最小的倍數。

2、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,用符號[ ,]表示。幾個數的公倍數也是無限的。

3、兩個數公有的因數,叫做這兩個數的公因數,其中最大的一個,叫做這兩個數的最大公因數,用符號( , )。兩個數的公因數也是有限的。

4、兩個素數的積一定是合數。舉例:3×5=15,15是合數。

5、兩個數的最小公倍數一定是它們的最大公因數的倍數。舉例:[6,8]=24,(6,8)=2,24是2的倍數。

6、求最大公因數和最小公倍數的方法:

倍數關系的兩個數,最大公因數是較小的數,最小公倍數是較大的數。舉例:15和5,[15,5]=15,(15,5)=5

素數關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。舉例:[3,7]=21,(3,7)=1

一個素數和一個合數,最大公因數是1,最小公倍數是它們的乘積。[5,8]=40,(5,8)=1

相鄰關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。[9,8]=72,(9,8)=1

特殊關系的數(兩個都是合數,一個是奇數,一個是偶數,但他們之間只有一個公因數1),比如4和9、4和15、10和21,最大公因數是1,最小公倍數是它們的乘積。

一般關系的兩個數,求最大公因數用列舉法或短除法,求最小公倍數用大數翻倍法或短除法。(詳見課本31頁內容)

數字與信息

1、我國目前採用的郵政編碼為「四級六碼」制。第一、二位代表省(自治區、直轄市),第三位代表郵區,第四位代表縣(市)郵電局,最後兩位是投遞局(區)的編號。

2、身份證編碼規則:1-6位數字為行政區劃代碼,其中1、2位數為各省級政府的代碼,3、4位數為地、市級政府的代碼,5、6位數為縣、區級政府代碼。 7-14位為您的出生日期,其中7-10位為出生年份(4位),11-12位為出生月份,13-14位為出生日期,15-17位為順序碼,是縣、區級政府所轄派出所的分配碼,其中單數為男性分配碼,雙數為女性分配碼。18位為校驗碼,是由號碼編制單位按照統一的公式計算得出來的,其取值范圍是0至10,當值等於10時,用羅馬數字元χ表示。

G. 小學五年級下冊數學主要學什麼

五年級屬於一個非常時期,面臨小升初的壓力必須要在這一時期將數學成績有所提高.另外五年級的數學難度有所提高,下一步是迎接初中.五年級在其中發揮重要的作用.那小學五年級數學輔導具體有哪些.

(不外乎)

1.對症下葯.首先要做的是找到孩子較弱的內容,並為弱小的模塊提供建議,以便有效地提高目標效率.

2.及時整合審查.根據記憶曲線,如果不及時復習,很容易忘記知識點,因此有必要及時復習並不斷鞏固知識點,以便記住知識.記住的知識在復習,沒記牢的知識加強記憶.

3.總結問題解決方法.有一種方法可以做數學,反向推理學習五年級數學.問題中心方法、散射方法等.不同的問題可以採用不同的方法來解決.

4.循序漸進.用階梯法教學,讓學生不會立刻接受太難的知識點,而是從簡單的問題開始,先建立學生的自信心,然後慢慢增加難度.

除了以上的方法之外,學好數學首先就是計算能力的過關,整數運算、小數運算、分數運算都要做到准確無誤.有很多的同學計算的速度相當的慢,原因就是沒有掌握計算的法則,導致老是犯錯誤或者是犯同樣的錯誤,使做題的效率大大減低.所以很有必要進行將強計算,並掌握計算的技巧和規律.

基礎知識和方法如果能掌握好,對於數學來說也就不那麼難了.在學習了合數和質數之後,會出現判斷一個數是合數或者是質數,而對於某個題目來說,常常有很多個思路能夠解決,但是學生需要掌握每個方法和思路的要點,才能在考試中做到准確無誤.平時的積累和學習是有效掌握方法和總結思路的重要方法,所以學生要養成良好的習慣.

(難度)


對於孩子的學習往往使家長感到很頭大,此時可以在假期藉助輔導班來對孩子進行全面的輔導,從學習的要點到學習方法,還有就是學習習慣的養成利用好假期,使孩子在假期中不浪費時間,提高數學的成績.小學五年級數學輔導單單依靠家庭有時候是不能完成的,家長朋友給孩子找個輔導班或者是一對一家教,利用假期時間,制定好學習計劃,讓孩子嚴格按照計劃按部就班堅持去做,相信會有很大的收獲.
閱讀全文

與小學數學五年級下冊知識點相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99