Ⅰ 小學五年級解方程附答案
一、 找找數量間的等量關系,再把每個方程補充完整。
1. 水果店運來X箱蘋果,每箱重10千克,賣出75千克,還剩下5千克。
等量關系:
方程: =5
2. 水欣原野有畫片45張,送給豆豆和樂樂各X張後,還剩13張。
等量關系:
方程: =13
3. 一個長方形長13米,寬X米,周長38米。
等量關系:
方程: =38
4. 小華拿8元錢去買作業本,每本作業0.75元,買了X本後,找回3.5元。
等量關系:
方程: =3.5
二、列方程解決問題。
1. 林場種楊樹350棵,比種松樹的4倍少50棵,林場種松樹多少棵?
2. 爺爺今年76歲了,比孫子年齡的6倍還大4歲。孫子今年多少歲?
3. 小王買了一支鋼筆和一支圓珠筆,共花了7.86元,鋼筆的價錢是圓珠筆價錢的2倍,鋼筆和圓珠筆的價錢各是多少元?
4. 市場運來一批水果,其中蘋果是梨的3倍,已知蘋果比梨重270千克,蘋果和梨各重多少千克?
5. 甲乙兩地間長480千米,客車和貨車同時從兩地相對開出,已知客車每小時行65千米,貨車每小時行55千米,經過幾小時兩車相遇?
6. 爸爸買紅糖,白糖各1.5千克,共花發11.1元,已知每千克紅糖3.2元。每千克白糖多少元?(用兩種方法解答)
7. 果園里有三種果樹共650棵,蘋果樹是梨樹的3倍,桃樹是梨樹的1.2倍,梨樹有多少棵?
8.長方形的周長是360米,長是寬的4倍,這個長方形的長和寬各是多少?
9.地球的表面積是5.1億平方千米,其中海洋面積約為陸地面積的2.4倍。地球上的海洋面積和陸地面積分別是多少億平方千米?
10.有兩桶油,第二桶重量是第一的1.5倍,如果從第二桶中取出2千克放入第一桶中,這時兩桶油的重量相等,第一桶有多少千克?
Ⅱ 求小學五年級方程計算題
1:2x+5=15 2:6X+5=11 3:X-0.8X=6
4:19y+y=40 5:25-5x=15 6:79y+y=80
7:42x+28x=140 8:3x-1=8 9: 90y-90=90
10: 80y-90=70 11: 78y+2y=160 12: 88-x=80
13: 9-4x=1 14: 20x=40 15: 65y-30=100
16: 51y-y=100 17: 6X-3X=18 18: 1.5x+18=3x
19: 5×3-x÷2=8 20: 0.273÷x=0.35 21: 1.8x=0.972
22: x÷0.756=90 23: 9x-40=5 24: x÷5+9=21
25: 48-27+5x=31 26: 10.5+x+21=56 27: x+2x+18=78
28: (200-x)÷5=30 29: (x-140)÷70=4 30: 0.1(x+6)=3.3×0.4
31: 4(x-5.6)=1.6 32: 7(6.5+x)=87.5
34: 3X+5X=48 35: 14X-8X=12
36: 6x5+2X=44
37: 20X-50=50 38: 28+6X=88 39: 32-22X=10
40: 24-3X=3 41: 10X(5+1)=60 42: 99X=100-X
43: X+3=18 44: X-6=12 45: 56-2X=20
46: 4y+2=6 47: x+32=76 48: 3x+6=18
49: 16+8x=40 50: 2x-8=8 51: 4x-3×9=29
52: 8x-3x=105
53: x-6×5=42
54: x+5=7
55: 2x+3=10
56: 12x-9x=9
57: 6x+18=48
58: 56x-50x=30
59: 5x=15
60: 78-5x=28
61: 32y-29=3
62: 5x+5=15
63: 89x-9=80
64: 100-20x=20
65: 55x-25x=60
66: 76y-75=1
67: 23y-23=23
68: 4x-20=0
69: 80y+20=100
70: 17:85y+1=-86
71: 18:45x-50=40
72: 5x=15
73: 78-5x=28
74: 32y-29=3
75: 5x+5=15
76: 89x-9=80
77: 100-20x=20
78: 55x-25x=60
79: 76y-75=1
80: 23y-23=23
81: 4x-20=0
82: 80y+20=100
83: 53x-90=16
84: 2x+9x=11
85: 12y-12=24
86: 80+5x=100
87: 10X(5+1)=60
88: 99X=100-X
89: X+3=18
90: X-6=12
91: 56-2X=20
92: 4y+2=6
93: x+32=76
94: 3x+6=18
95: 16+8x=40
96: 2x-8=8
97: 4x-3×9=29
98: 8x-3x=105
99: x-6×5=42
100: x+5=7
101: 2x+3=10
102: 12x-9x=9
103: 6x+18=48
104: 56x-50x=30
105: 5x=15
106: 78-5x=28
107: 32y-29=3
108: 5x+5=15
109: 89x-9=80
110: 100-20x=20
111: 55x-25x=60
112: 76y-75=1
113: 23y-23=23
114: 4x-20=0
115: 80y+20=100
116: 53x-90=16
117: 2x+9x=11
118: 12y-12=24
119: 80+5x=100
120: 7x-8=6
121: 65x+35=100
122: 19y+y=40
123: 25-5x=15
124: 79y+y=80
125: 42x+28x=140
126: 3x-1=8
127: 90y-90=90
128: 80y-90=70
129: 78y+2y=160
130: 88-x=80
131: 9-4x=1
132: 20x=40
133: 65y-30=100
134: 51y-y=100
135: 85y+1=-86
136: 45x-50=40
137: 6x-3x=18
138: 1.5x+18=3x
139: 5×3-x÷2=8
140: 0.273÷x=0.35
141: 1.8x=0.972
142: x÷0.756=90
143: 9x-40=5
144: x÷5+9=21
145: 48-27+5x=31
146: 10.5+x+21=56
147: x+2x+18=78
148: (200-x)÷5=30
149: (x-140)÷70=4
150: 0.1(x+6)=3.3×0.4
151: 4(x-5.6)=1.6
152: 7(6.5+x)=87.5
153: (27.5-3.5)÷x=4
154: 3X+5X=48
155: 14X-8X=12
156: 6×5+2X=44
157: 20X-50=50
158: 28+6X=88
159: 32-22X=10
160: 24-3X=3
161:(5+1)x=60
162: 99X=100-X
163: X+3=18
164: X-6=12
165: 56-2X=20
166: 4y+2=6
167: x+32=76
168: 3x+6=18
169: 16+8x=40
170: 2x-8=8
171:4x-3×9=29
172:8x-3x=105
173:x-6×5=42
174:x+5=7
175:2x+3=10
176:12x-9x=9
177:6x+18=48
178:56x-50x=30
179:5x=15
180:78-5x=28
181:32y-29=3
182:5x+5=15
183:89x-9=80
184:100-20x=20
185:55x-25x=60
186:76y-75=1
187:23y-23=23
188:4x-20=0
189:80y+20=100
190:53x-90=16
191:2x+9x=11
192:12y-12=24
193:80+5x=100
194:4x-3×9=29
195:8x-3x=105
196:x-6×5=42
197:x+5=7
198:2x+3=10
199:12x-9x=9
200:6x+18=48
201:56x-50x=30
202:5x=15
203:78-5x=28
204:32y-29=3
205:5x+5=15
206:89x-9=80
207:100-20x=20
208:55x-25x=60
209:76y-75=1
210:23y-23=23
211:4x-20=0
212:80y+20=10
可能有小數,請包涵一下。
Ⅲ 小學五年級數學 全部公式方程
加法交換律:a+b=b+a 有兩個加數相加,交換加數的位置,和不變,這叫做加法交換律。加法結合律:a+b+c=(a+b)+c=a+(b+c) 三個數相加,先把前兩個數相加,再和第三個數相加,或者先把後兩個數相加,在和第一個數相加,和不變,這叫做加法結合律。減法的性質:a-b-c=a-(b+c) 一個數連續減去兩個數,可以用第一個數減輕後面兩個數的和,差不變,這作減法的性質。乘法交換律:a×b=b×a 兩個數相乘,交換加數的位置,積不變,這叫做乘法的交換律。乘法結合律:a×b×c=(a×b)×c=a×(b×c) 三個數相乘,先把前兩個數相乘,在和第三個數相乘,或者先把後兩個數相乘,再和第一個數相乘,積不變,這叫做乘法的結合律。乘法分配律:(a+b)×c=a×c+b×c 兩個數的和與第三個數相乘,等於把這兩個數分別與這個數相乘,再把它們的積相加起來,積不變,這叫做乘法分配律。出發的性質:a÷b÷c=a÷(b×c) 一個數連續除以兩個數,等於一個數除以兩個數的積,商不變,這叫做除法的性質。
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
評論(1) | 7 1
舉報| 2010-12-25 19:34 雪依依ee | 二級
加法交換律:a+b=b+a 有兩個加數相加,交換加數的位置,和不變,這叫做加法交換律。
加法結合律:a+b+c=(a+b)+c=a+(b+c) 三個數相加,先把前兩個數相加,再和第三個數相加,或者先把後兩個數相加,在和第一個數相加,和不變,這叫做加法結合律。
減法的性質:a-b-c=a-(b+c) 一個數連續減去兩個數,可以用第一個數減輕後面兩個數的和,差不變,這作減法的性質。
乘法交換律:a×b=b×a 兩個數相乘,交換加數的位置,積不變,這叫做乘法的交換律。
乘法結合律:a×b×c=(a×b)×c=a×(b×c) 三個數相乘,先把前兩個數相乘,在和第三個數相乘,或者先把後兩個數相乘,再和第一個數相乘,積不變,這叫做乘法的結合律。
乘法分配律:(a+b)×c=a×c+b×c 兩個數的和與第三個數相乘,等於把這兩個數分別與這個數相乘,再把它們的積相加起來,積不變,這叫做乘法分配律。
出發的性質:a÷b÷c=a÷(b×c) 一個數連續除以兩個數,等於一個數除以兩個數的積,商不變,這叫做除法的性質。
Ⅳ 小學 五年級上冊 解方程具體方法 如何解
小學五年級數學上冊解方程的具體方法:
1、根據加、減、乘、除各部分之間的關系解方程;
2、根據天平兩邊平衡的原理,在方程的兩邊同時加上或減去,乘或除以(0除外)一個相同的數,方程的兩邊仍然相等。
例如:
應用第1種方法解:
3x+5=11
解:3x=11-5(把3x看作一個加數。一個加數=和-另一個加數)
3x=6
x=6÷3(一個因數=積÷另一個因數)
x=2
應用第2種方法解:
3x+5=11
解:3x+5-5=11-5(方程兩邊同時減去5,方程兩邊仍然相等)
3x=6
3x÷3=6÷3(方程兩邊同時除以3,方程兩邊仍然相等)
x=2
Ⅳ 五年級所有方程
我們可以把課本中出現的方程分為三大類:一般方程,特殊方程,稍復雜的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 這幾種方程,我們可以稱為一般方程。
形如:a- x =b,a÷x =b這兩種方程,我們可以稱為特殊方程。
形如:ax+b=c , a(x-b)=c這兩種方程,我們可以稱為稍復雜的方程。
我們知道,對於一般方程,如果方程是加上a,在利用等式的性質求解時,會在方程的兩邊減去a,同樣,如果方程是減去a,在利用等式的性質求解時,會在方程的兩邊加上a,乘和除以也是一樣的,換句話說,加減乘除是相反的,並且加減乘除的都是一個具體的數字。總結一句話就是:一般方程很簡單,具體數字幫你辦,加減乘除要相反。
對於特殊方程,減去和除以的都是未知數x,求解時,減去未知數那就加上未知數,除以未知數那就乘未知數,符號也是相反的,這樣方程也就變換成了一般方程,總結為:特殊方程別犯難,減去除以未知數,加上乘上變一般。
對於稍復雜的方程,我教給孩子們的方法是,「舍遠取近」的方法,意思是,離未知數x遠的就先去掉,離未知數x進的先看成整體保留,通過變換,方程就變得簡單,一目瞭然。總結為:若遇稍微復雜點,舍遠取近便瞭然。
當然後面還有形如ax+bx=c等形式,能夠學會上面這幾種,對於孩子來說,這些方程就顯得輕而易舉了。
解方程練習題及答案(一)
1、知識點:
1、用字母表示數
(1)用字母表示數量關系
(2)用字母表示計算公式
(3)用字母表示運算定律和計演算法則
(4)求代數式的值:把給定字母的數值代入式子,求出式子的值。
2、注意:
(1)數字和字母、字母和字母相乘時,乘號可以記作「·」,或者省略不寫,數字要寫在字母的前面。
(2)當1與任何字母相乘時,1省略不寫。
(3)在一個問題中,不同的量用不同的字母來表示,而不能用同一個字母表示。
(4)字母可以表示任意數,所以在一些式子中,對字母的表示要進行說明。如:(a≠0)
3、簡易方程:
(1)方程:含有未知數的等式叫作方程。
方程都是等式,等式不一定是方程,只有當等式中含有未知數時,才是方程。
(2)方程的解:使方程左右兩邊相等的未知數的值叫作方程的解。
(3)解方程:求方程的解的過程叫作解方程。
(4)方程的解是一個值,一般來說,沒有解方程這個計算過程,方程的解是難以求出的,解方程是求方程的解的過程,是一個演算過程
Ⅵ 小學五年級解方程總結
移項,去分母,去括弧
Ⅶ 《五年級》下冊「解方程大全」公式
小學五年級解方程發方法
一.移項
所謂移項就是把一個數從等號的一邊移到等號的另一邊去。注意,加減法移項和乘除法移項不一樣,
移項規則:當把一個數從等號的一邊移到另一邊去的時候,要把這個數原來前面的運算符號改成和它相反的運算符號,比如「+」變成「-」,或是「×」變成「÷」
請看例題:
加減法移項:
x+4=9
x=9-4
x=5
乘除法移項:
3x=27
x=27÷3
x=9
常規題目,
第一步,把所有跟未知數不能直接運算的數字,轉移到與未知數相反的等號那一邊。
比如:
3x-4=8
3x=8+4
3x=12
x=4
第二種情況請記住,當未知數前面出現「-」或是「÷」的時候,要把這兩個符號變成「+」或是「×」,
具體如何改變請看下面例題:
20 – 3x=2
20=2+3x-----(注意:也就是前面提過的移項問題,改變符號在方程裡面就是移項)
20-2=3x
18=3x
x=6
36÷4x=3
36=3×4x----(注意:也就是前面提過的移項問題,改變符號在方程裡面就是移項)
36=12x
x=3
3.未知數在小括弧裡面的情況,注意,這種情況要分兩種,第一種是根據乘法分配律先把小括弧去掉
例如:
3(3x+4) = 57
9x + 12=57
9x=57-12
9x=45
x=5
第二種情況就是,要看括弧前面的那個數跟等號後面的那個數是否倍數關系,如果是倍數關系,可以互相除一下,當然,用這一種方法的前提就是等號另一邊的數只有一個數字,如果有多個,則先要計算成一個。
4. 第四種情況就是未知數在等號的兩邊都有,這種情況就是要把未知數都移項到一邊,把
其它的數字移項到另一邊,具體規則,如果兩個未知數前面的運算符號不一樣,要把未知數前面是「-」的移到「+」這一邊來,如果兩個未知數前面的運算符號一樣,則要把小一點的未知數移到大一點的未知數那一邊去。