1. 小學六年級奧數 很難
設每分鍾甲乙速度為V甲,V乙,AB兩地路程S,80分鍾甲乙相遇
則S=(V甲+V乙)*80
80分鍾後他們第一次相遇,又過了20分鍾乙第一次超越甲.
則甲100分鍾的路程100V甲=乙20分鍾的路程-甲80分鍾的路程80V甲
得100V甲=20V乙-80V甲,V乙=9V甲
可以知道甲從A到B需要時間為S/V甲=800V甲/V甲=800分鍾
800分鍾乙所走的路程有800*9V甲=7200V甲=9S
即乙可以往返AB兩地4次,外加最後到A地後,甲到達B地
所以甲乙會對面相遇5次(乙從B到A 5次),乙會追上甲4次(乙從A到B 5次)
2. 小學六年級學習奧數晚不晚呀,哪裡有奧數輔導班呢
1.不晚
2.只要想學任何時候都不晚
3.不過要有興趣
4.不能強求
5.現在對奧數已經開始淡化了
3. 小學六年級奧數....簡便方法
因為1/30=1/5-1/6,1/42+1/6-1/7
所以
1/30+1/42+1/56+……+1/90
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=1/5-1/10
=1/10
(2)二分之一×三分之一+三分之一×四分之一+…四專十九分之一×五屬十分之一
=1/2-1/3+1/3-1/4+……-1/49+1/49-1/50
=1/2-1/50
=24/50
=12/25
4. 小學六年級奧數題及答案(30道)。
給你一個網址http://www.aoshu.com/z2011/lnjaszsd/
5. 小學六年級奧數應該怎樣教
建議選擇華思教育,幫孩子一對一補習奧數題,畢竟奧數題是超出所學知識范圍的拓展題。哈哈哈哈
6. 小學六年級奧數題 要難的 ,有解的
六年級奧數精選
我的孩子也六年級,下面的題都是我精選出來的(我自己多年輔導小學奧數)。題不要多,要讓孩子做一道,明白一個系列。一共有5份,這是其中的一份。但願對您的孩子有點幫助。我的郵箱[email protected]
1.某水池可以用甲、乙兩水管注水,單放甲管需12小時注滿,單放乙管需24小時注滿。現在規定10小時內必須注滿水池,那麼甲、乙兩管同時注水時間至少要幾小時?
【解析】:把工作總量看作單位「1」,甲管的工效為1/12,乙管的工效為1/24,甲管的工效更高。
10小時注滿,要使兩管同時注水時間盡可能少,應把工效高的甲管開滿10小時,不足部分由乙管注入,乙管注水時間就是兩管同開時間,兩管同時注水時間最少為:
(1-10×1/12)÷1/24=4(小時)
2.一個水池,甲、乙兩管同時開,5小時灌滿;乙、丙兩管同時開,4小時灌滿。如果乙管先開6小時,還需要甲、丙兩管同時開2小時才能灌滿(這時乙管關閉),那麼乙管單獨灌滿水池需要多少小時?
【解析】:把灌滿一池水的工作量看作單位「1」,則甲、乙兩管同開的工效為1/5,乙、丙兩管同開的工效為1/4。 「乙管先開6小時,甲、丙兩管再同時開2小時」,相當於甲、乙先同開2小時,乙、丙再同開2小時,最後乙再單獨開2小時。 根據以上分析,可以先求出乙管單獨開2小時的工作量:
1-2×1/5-2×1/4=1/10再根據工作時間與工作量的比例關系,求出乙管單獨灌滿水池需要的時間:2÷(1-2×1/5-2×1/4)=20(小時)。
3.一個水池安裝了甲、乙兩根進水管,在同樣的時間內,乙管的進水量是甲管的1.6倍。為了灌滿空著的水池,開始由甲管灌入1/5池水,然後關閉甲管,打開乙管,由乙管單獨灌滿剩下的水,共用12分15秒,問甲管開了多長時間?
【解析】:12分15秒=49/4分鍾 把灌滿一池水的工作量看作單位「1」,乙管所灌的剩下的水量為:1-1/5=4/5 「同樣的時間內,乙管的進水量是甲管的1.6倍。」即乙管的工效是甲管的1.6倍。工作量一定,工效和工作時間成反比,可以推出灌滿一池水甲管所用的時間是乙管的1.6倍。假設乙管灌滿一池水需要x分鍾,則甲管需要1.6x分鍾,由題意可得:1.6x×1/5+x×4/5=49/4解得:x=175/16所以甲管的開放時間為:1.6×(175/16)×1/5=3.5(分鍾)
4.蓄水池裝有甲、丙兩根進水管和乙、丁兩根排水管。要注滿一池水,單開甲管要3小時,單開丙管要5小時。要排光,單開乙管要4小時,單開丁管要6小時。現知池內有1/6池水,如果按甲、乙、丙、丁、甲、乙、丙、丁......的順序輪流開1小時,問多長時間後,水開始溢出水池?
【解析】:4個小時一個周期,先求出一個循環周期的進水量情況:
第1個小時後,水池中存水量增加:1/3
每4個小時後,水池中存水量增加:1/3-1/4+1/5-1/6=7/60
分析上面的情況,每個周期水池的水量會增長7/60,但只要水池中不足水量為不超過1/3,即水量達到2/3,在下一個周期里,就可以直接由甲管注滿。
池中已有水量為1/6,且空出1/3的容積:
(1-1/6-1/3)÷7/60=4又2/7
即需要5個周期後水池的水量才能達到2/3,。
第6個周期的進水量情況:
需要注入水量:1-1/6-5×7/60=1/4
甲管還需要注水時間:1/4÷1/3=3/4(小時)
所以,從開始到水溢出共需時間:4×5+3/4=20又3/4(小時)
5.兄妹兩人同時從家出發去1080米遠的學校上學,哥哥騎車每分鍾走360米,妹妹步行每分鍾走60米,哥哥到校門口時,發現忘帶課本,立即原路返回,問哥哥再次由家出發在離學校多遠處追上妹妹?
【解析】:哥哥比妹妹總共多行了家與學校之間全程的2倍,即(1080×2)米。而哥哥每分鍾比妹妹多行(360-60)米。則從兄妹同時出發到哥哥再次追及妹妹,經過時間為:
1080×2÷(360-60)=7.2(分鍾)。用家校距離減去妹妹行走路程,可以求出追及地點離學校的距離為:1080-7.2×60=648(米)。
7.實驗小學組織學生排隊步行去郊遊,步行速度是每秒1米,排頭的王老師以每秒2.5米的速度趕到排尾,然後立即返回排頭,共用10分鍾,求隊伍的長度。
第一次排頭的王老師從排頭趕到排尾的過程中,王老師步行的路程與隊伍步行路程之和正好等於隊伍的長度;
第二次王老師從排尾趕到排頭,王老師步行路程與隊伍步行路程之差正好等於隊伍的長度。
解法一,假設王老師從排頭趕到排尾用了x分鍾,由題意可得:
(1+2.5)×60x=(2.5-1)×60×(10-x)
解得:x=3
所以,隊伍的長度為:
(1+2.5)×60×3=630(米)
解法二:令王老師從排頭趕到排尾的時間為第一段時間,這段時間里,王老師和隊伍步行的路程和等於隊伍長度,即:
隊伍長度=(1+2.5)×第一段步行時間
令王老師從排尾趕到排頭的時間為第二段時間,這段時間里,王老師和隊伍步行的路程差等於隊伍長度,即:
隊伍長度=(2.5-1)×第二段步行時間
隊伍長度是一定的,速度與時間成反比例,即速度擴大幾倍,時間就縮小相同的倍數。
(1+2.5)÷(2.5-1)=7/3
所以第一段時間是第二段時間的3/7,是總時間的3/10。
所以隊伍的長度為:
(1+2.5)×60×(10×3/10)=630(米)
6.甲從A地步行去B地,同時乙從B地騎自行車去A地,1小時後在途中第一次相遇。乙到達A地後立即返回到B地,在途中又追上了甲,此時與第一次相遇相隔40分鍾,乙到達B地後又立即折返A地,兩人又第二次相遇在途中,此時與乙追上甲的時間相隔多長?
第一次相遇時,兩人合行了1個全程,需要1小時。第二次相遇時,兩人合行了3個全程,則需要3個小時。即第二次相遇與出發時間相隔3個小時。
乙追上甲時,與出發時間相隔:1小時+40分鍾=1小時40分鍾。
所以,兩人第二次相遇時與乙追上甲的時間相隔:3小時-1小時40分鍾=1小時20分鍾
7. 小學六年級奧數
先看上面的黑點,
其左上角有6個格點
其右下角有20個格點
在左上角的6個格點中任選1個
在右下角的20個格點中也任選1個
這樣就能唯一確定一個方格表,內部包含上面的小黑點
一共有6×20=120個
同理,包含下面的小黑點的方格表有16×9=144個
這樣一共有120+144=264個
需要注意的是,這264個方格表有重復
同時包含兩個黑點的,兩次都統計到了
利用容斥原理,需要減去
再利用上面的方法,
同時含有兩個小黑點的方格表有6×9=54個
那麼至少包含一個小黑點的方格表有264-54=210個
當然,這題也可以從另一個角度思考
先求只含有上面小黑點的
然後求只含有下面小黑點的
再求同時含有兩個小黑點的
然後相加,也能得到答案
利用上面的方法,自己試下吧
8. 小學六年級奧數題:六年級奧數專題訓練之排列
1.某鐵路線共有14個客車站,這條鐵路共需要多少種不同的車票?
2.有紅、黃、藍三種信號旗,把任意兩面分上、下掛在旗桿上表示不同信號,一共可以組成多少種不同信號?
3.有五種顏色的小旗,任意取出三面排成一行表示各種信號。問:共可以表示多少種不同的信號?
4.(1)有五本不同的書,分別借給3名同學,每人借一本,有多少種不同的借法?
(2)有三本不同的書,5名同學來借,每人最多借一本,借完為止,有多少種不同的借法?
5.七個同學照像,分別求出在下列條件下有多少種站法:
(1)七個人排成一排;
(2)七個人排成一排,某人必須站在中間;
(3)七個人排成一排,某兩人必須有一人站在中間;
(4)七個人排成一排,某兩人必須站在兩頭;
(5)七個人排成一排,某兩人不能站在兩頭;
(6)七個人排成兩排,前排三人,後排四人;
(7)七個人排成兩排,前排三人,後排四人,某兩人不在同一排。
6.甲、乙、丙、丁四人各有一個作業本混放在一起,四人每人隨便拿了一本。問:
(1)甲拿到自己作業本的拿法有多少種?
(2)恰有一人拿到自己作業本的拿法有多少種?
(3)至少有一人沒拿到自己作業本的拿法有多少種?
(4)誰也沒拿到自己作業本的拿法有多少種?
7.用0、1、2、3四個數碼可以組成多少個沒有重復數字的四位偶數?
8.用數碼0、1、2、3、4可以組成多少個
(1)三位數;
(2)沒有重復數字的三位數;
(3)沒有重復數字的三位偶數;
(4)小於1000的自然數;
(5)小於1000的沒有重復數字的自然數。
9.用數碼0、1、2、3、4、5可以組成多少個
(1)四位數;
(2)沒有重復數字的四位奇數;
(3)沒有重復數字的能被5整除的四位數;
(4)沒有重復數字的能被3整除的四位數;
(5)沒有重復數字的能被9整除的四位偶數;
(6)能被5整除的四位數;
(7)能被4整除的四位數。
10.從1、3、5中任取兩個數字,從2、4、6中任取兩個數字,共可組成多少個沒有重復數字的四位數?其中偶數有多少個?
(注意要寫出算式)
問題補充:1L的.我都做了2小時了~~~~(>_<)~~~~
9. 小學六年級奧數題及答案
甲的年齡是另外三人年齡和的1/2,也就是另外三人年齡和是甲的2倍,
甲佔四人年齡和的:1÷(1+2)=1/3
乙的年齡是另外三人年齡和的1/3,也就是另外三人年齡和是乙的3倍,
乙佔四人年齡和的:1÷(1+3)=1/4
丙的年齡是另外三個人年齡和的1/4,也就是另外三人年齡和是丙的4倍,
丙佔四人年齡和的:1÷(1+4)=1/5
那麼丁佔四人年齡和的:1-1/3-1/4-1/5=13/60
四人年齡和是:26÷13/60=120歲
甲年齡是:120×1/3=40歲