『壹』 小學四年級數學公式大全
加法交換律:a+b=b+b
加法結合律:a+b+c=a+(b+c)
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
有的可能不是
『貳』 小學四年級數學大全
require.async(['wkcommon:widget/ui/lib/sio/sio.js'], function(sio) { var url = 'https://cpro.static.com/cpro/ui/c.js'; sio.callByBrowser( url, function () { BAIDU_CLB_fillSlotAsync('u2845605','cpro_u2845605'); } ); });
(2)體積=長×寬×高 V=a×b×h 5:三角形
S:面積 a:底 h:高 面積=底×高÷2 S=a×h÷2 三角形高=面積×2÷底 三角形底=面積×2÷高 6:平行四邊形
S:面積 a:底 h:高 面積=底×高 S=a×h 7:梯形
S:面積 a:上底 b:下底 h:高 面積=(上底+下底)×高÷2 S=(a+b)× h÷2 ▲8:圓形
S:面積 C:周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ ▲9:圓柱體
v:體積 h:高 s:底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 ▲10: 圓錐體
V:體積 h:高 S:底面積 r:底面半徑 體積=底面積×高÷3 V=S底面積×h×1/3 總數÷總份數=平均數 ▲和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 ▲和倍問題 和 差倍問題 和÷(倍數-1)=小數 小數×倍數=大數(或者 和-小數=大數) 差÷(倍數-1)=小數 小數×倍數=大數(或 小數+差=大數) ▲倍數和因數
0是自然數。在自然數中,最小的偶數是0,最小的奇數是1。 一個數的最小倍數和它的最大因數相等。
一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。 一個數最小的因數是1,最大的因數是它本身。一個數因數的個數是有限的。 什麼是偶數?是2倍數的數叫做偶數。(能被2整除的數是偶數) 什麼是奇數?不是2倍數的數叫做奇數。(不能被2整除的數是奇數) 2的倍數,個位上的數是2、4、6、8和0。2的倍數都是雙數。
5的倍數,個位上的數是5和0。個位上是0的既是2的倍數,又是5的倍數。 3的倍數,它各位上數的和一定是3的倍數。
注意:4的倍數一定是2的倍數,2的倍數不一定是4的倍數。
什麼是素數(或質數)?只有1和它本身兩個因數,叫做素數(或質數)。 什麼是合數?除了1和它本身還有別的因數,叫做合數。 注意:1的因子只有1個(是1)。1既不是素數,也不是合數。最小的素數是2,最小的合數4。沒有最大的素數和合數。
小學四年級數學下冊一些定義、定律、計算公式和法則
var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;
▲一、四則混和運算
四則混合運算的順序:在四則混合運算中,只有加減或只有乘除的運算,就從左至右依此計算;如果既有加減法又有乘除法,就要先算乘除,後算加減;如果有括弧,就要先算括弧裡面的,再算括弧外面的;如果既有小括弧,又有中括弧,就先算小括弧裡面的,再算中括弧裡面的,最後算括弧外面的。 二、乘除法的關系和運算律 乘除法的關系:
一個因子=積÷另一個因子
已知兩個因數的積與其中的一個因數,求另一個因數,用除法。
除數=被除數÷商 被除數=商×除數 除法是乘法的逆運算 0不能作除數 在有餘數的除法里,被除數與商、除數、余數之間的關系: 被除數=商×除數+余數 除數=(被除數-余數)÷商 商=(被除數-余數)÷除數
一個整數除以另一個不為0的整數,商是整數,沒有餘數,我們就說一個數能被另一個數整除。如:6÷2=3,就是6能被2整除,或者說2能整出6。
乘法交換律:兩個因數相乘,交換因數的位置,積不變,這就是乘法交換律。如果用a,b表示兩個數,乘法交換律可以表示為:a×b=b×a
乘法結合律:三個數相乘,先乘前兩個數或者先乘後兩個數,乘積不變,這就叫乘法結合律。如果用a,b,c表示3個數,乘法結合律可以表示為:
(a ×b)×c=a×(b×c)
乘法分配律:兩個數的和與一個數相乘,可以先把兩個數與這個數分別相乘,再將兩個積相加,結果不變,這叫做乘法分配律。如果用如果用a,b,c表示3個數,乘法分配律可以表示為:(a+b) ×c= a ×c+ b×c
簡便計算的方法很多:如,利用上面的運算定律,可以使計算簡便,還可以用湊整法,分解法,一個數連續減兩個數,等於這個數減兩個數的和,等都可以使計算簡便。在簡便計算時,要根據實際情況具體分析,該用什麼方法才能使計算簡便,就用什麼方法,要靈活運用。
因子與積的變化規律:
一個因子不變,另一個因子擴大(或縮小)幾倍,積也擴大(或縮小)相同的倍數。 一個因子擴大(或縮小)幾倍,另一個因子也擴大(或縮小)幾倍,積就擴大(或縮小)兩個因子擴大(或縮小)的倍數之積。
如果一個因子擴大幾倍,另一個因子縮小相同的倍數,積不變。 三、小數的意義和性質
小數的意義:像0.7,0.45,0.025,0.107„„這樣,用來表示十分之幾、百分之幾、千分之幾„„的數,叫做小數。小數的計數單位有0.1,0.01,0.001„„每相鄰兩個計數單位間的進率是「10」。
小數的讀法:整數部分按照整數的讀法來讀,小數部分從左到右順次讀出每一個數位上的數。
小數的性質:在小數的末尾添上「0」或去掉「0」,小數的大小不變。這叫做小數的性質。
小數大小的比較:兩個小數比大小,整數部分大的那個就大,整數部分相同,十分位元元上的數較大的那個就大,整數部分相同,十分位元元也相同,百分位上的數較大的那個數就大„„以此類推。
『叄』 小學四年級數學
每條線上的每一個點會形成2條射線,所以共2x2x3=12條
『肆』 小學四年級數學
1.這個數被11除餘8,證明這個數添上三就可以整除11了;被13除餘10,證明這個數專添上三就可以整除13了;被屬17除餘14,證明這個數添上三就可以整除17了。都是缺3,那麼加上三就可以同時整除11、13、17了。那麼這個數就是11、13、17相乘再減3就是了。
2.把蘋果換成3香蕉,得:
香蕉-500=蘋果-6500
香蕉-500=三香蕉-6500 去掉減法,兩邊同時加上500,得
香蕉=三香蕉-6000
可以看出2香蕉就等於6000
所以香蕉就是6000除以2等於3000。
蘋果就是3000乘3等於9000。
只能說成這樣啦,本人初一,望採納~
『伍』 急求香港小學四五年級數學英語兩門學科的習題,最好是耀中學校的,沒有的話是香港小四小五難度的也好
你說的是抄耀中國際學校吧?如果是你要到香港的習題也沒多大用。國際學校和本地學校學的東西都不是一樣的。
耀中的數學深不到哪去,來來回回都是些加減乘除,分數,百分比,圖形那些。
不過教的東西都因老師而已的啦,有些老師就按照課本教,有些就喜歡額外教些東西。你最好還是問問那個學生他四年級都學了些什麼。
『陸』 小學四年級數學
第一單元,億以內數的讀法和寫法。教學重點是讀、寫萬級的數。教學難點是億以內中間和末尾有0的數的讀、寫法。教學關鍵是讓學生熟練掌握數位順序表,掌握數位和名稱、順序、進率關系、四位分級法以及數的組成等知識。並以萬以內數的讀、寫法為基礎,把個級的讀、寫方法推廣到萬級,能正確地讀、寫億以內的數。
億以內數的讀法和寫法學生普遍掌握較好。但是,求近似數,有部分同學仍比較糊塗,常以為要得到整十、整百數。這個知識點有賴於多練習。找到要保留的數位,將其後面緊跟的數進行四捨五入,再在後面加上計數單位。
第二單元,億以內的加法和減法。教學要求是讓學生會正確地口算整百整十數加、減整百整十數,以及整萬數的加、減法;認識電子計算器,會使用電子計算器進行四則運算;掌握加、減法之間的關系,並會應用這種關系求未知數X和列出含有未知數X的等式解答有關的一步應用題。
加、減法各部分間的關系,學生掌握得很好。求未知數X的題,學生基本上都能順利解答。加、減法的簡便演算法,學生通過多次的練習後,簡算能力得到了很大的提高。
第三單元,乘法、除法的知識。這單元的教學重點是理解和掌握乘、除法各部分間的關系,利用它來驗算乘法和除法,並會用求未知數X的方法解答乘、除法的應用題。教學難點是教學乘、除法的一些簡便演算法。教學關鍵是引導學生觀察、思考,主動掌握乘、除法各部分間的關系。
乘、除法各部分間的關系,學生掌握得很好。乘、除法的簡便演算法,學生掌握情況不理想,是歷屆學生學習的難點,這與學生口算能力有關,並要先觀察、分析數與數之間的關系,再拆數或合數。這需要多練,才能達到「熟能生巧」的境界。除法估算學生掌握不好。主要需要學生靈活地利用四捨五入法,除數是兩位數以上的,要先求出除數的近似數,再靈活地求被除數的近似數,易於口算。
應用題,學生解題情況不太理想。要從培養學生多讀題開始,要求學生先讀題3遍,明確已知條件和問題,分析數與數的關系,再解題。告訴學生,養成了這個好習慣,解決應用題就一點兒也不難了。
『柒』 小學四年級數學
謝邀!
您好,
數學作業比語文作業少一元,
假設購買的全是數學作業,則需120×15=1800元
1840-1800=40元,
所以語文作業是40本,則數學是80本。
望採納!
『捌』 小學四年級數學
小學四年級的數學,現在上學期學的主要是認識角和量角,三位數乘以兩位數的乘法,下學期主要是方程和簡便運算,四年級數學是由易到難的一個轉折,一定要用心學習。
『玖』 香港四年級數學!急!
長方形布的周長是:
1×3=3(米)
長方形布的面積是:
1²÷2=0.5(平方米)
『拾』 小學四年級數學復習資料
四年級下冊數學背誦或默寫知識點
知識點一
四則運算(背誦)
1、加法、減法、乘法和除法統稱四則運算。
2、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括弧的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。 4、算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序。
知識點二
0的運算(默寫)
1、「0」不能做除數; 字母表示:a÷0錯誤 2、一個數加上0還得原數; 字母表示:a+0= a 3、一個數減去0還得原數; 字母表示:a-0= a 4、被減數等於減數,差是0; 字母表示:a-a = 0 4、一個數和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)= 0
知識點三 運算定律(默寫)
1、 加法交換律:a+b=b+a
2、 加法結合律:(a+b) +c=a+(b+c) 3、 乘法交換律:a×b=b×a
4、 乘法結合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、連減:a—b—c=a—(b+c) 7、連除: a÷b÷c=a÷(b×c)
知識點四
簡便計算一(默寫或自己舉例子)
一、常見乘法計算:
25×4=100 125×8=1000
二、加法交換律簡算例子: 三、加法結合律簡算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交換律簡算例子: 五、乘法結合律簡算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交換律與結合律的簡便計算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交換律與結合律的簡便計算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知識點四
簡便計算二(默寫或自己舉例子)
乘法分配律簡算例子:
一、分解式 二、合並式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知識點四
簡便計算三(默寫或自己舉例子) 一、 連續減法簡便運算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 連續除法簡便運算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它簡便運算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知識點五 三角形(第1條到第13條要背誦)
1、由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
2、從三角形的一個頂點到它的對邊做一條垂線,頂點到垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。三角形只有3條高。
3、三角形具有穩定性。
4、三角形任意兩邊之和大於第三邊。
5、三個角都是銳角的三角形叫做銳角三角形。 6、有一個角是直角的三角形叫做直角三角形。 7、有一個角是鈍角的三角形叫做鈍角三角形。
8、每個三角形都至少有兩個銳角;每個三角形都至多有1個直角;每個三角形都至多有1個鈍角。
9、兩條邊相等的三角形叫做等腰三角形。
10、三條邊都相等的三角形叫等邊三角形,也叫正三角形。 11、等邊三角形是特殊的等腰三角形 12、三角形的內角和是180°。 13、四邊形的內角和是360°
14、用2個相同的三角形可以拼成一個平行四邊形。
15、用2個相同的直角三角形可以拼成一個平行四邊形、一個長方形、一個大三角形。 16、用2個相同的等腰的直角的三角形可以拼成一個平行四邊形、一個正方形。一個大的等腰的直角的三角形。
知識點六
小數的意義和性質(第7、10條默寫,其它要理解)
1、小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、 0.01、 0.001…… 2、每相鄰兩個記數單位間的進率是(10)。
3、小數的數位是十分位、百分位、千分位……最高位是十分位。整數部分的最低位是個位。個位和十分位的進率是10。
4、 小數的數位順序表
整數部分
小數點
小數部分
數位
…
萬位 千位
百位
十位
個位
·
十分位
百分位
千分位
萬分
位
… 計數
單位
… 萬
千
百
十
一(個)
十分之一
百分之一
千分之一
萬分
之一
… 5、小數的讀法:先讀整數部分(按照原來的讀法),再讀小數點,再讀小數部分。讀小數部分,小數部分要依次讀出每個數字,而且有幾個0就讀幾個0。
6、小數的寫法:先寫整數部分(按照原來的寫法),再寫小數點,再小數部分:寫小數部分,小數部分要依次寫出每個數字,而且有幾個0就寫幾個0。
7、小數的性質:小數的末尾添上「0」或者去掉「0」,小數的大小不變。
8、小數的大小比較:(1) 先比較整數部分;(2)如果整數部分相同,就比較十分位;(3)十分位相同,就比較百分位;(4)以此類推,直到比較出大小。
9、小數點的移動 小數點向右移:
移動一位,小數就擴大到原數的10倍; 移動兩位,小數就擴大到原數的100倍; 移動三位,小數就擴大到原數的10 00倍;
移動四位,小數就擴大到原數的10000倍;…… 小數點向左移:
移動一位,小數就縮小10倍,即小數就縮小到原數的101
;
移動兩位,小數就縮小100倍,即小數就縮小到原數的1001
;
移動三位,小數就縮小1000倍,即小數就縮小到原數的1000
1
;
移動四位,小數就縮小10000倍,即小數就縮小到原數的10000
1
;……
10、生活中常用的單位:
質量: 1噸=1000千克; 1千克=1000克
長度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面積: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公頃 1公頃=10000平方米 人民幣: 1元=10角 1角=10分 1元=100分 11、小數的近似數(用「四捨五入」的方法):
(1)保留整數,表示精確到個位,就是要把小數部分省略,要看十分位,如果十分位的數字大於或等於5則向前一位進一。如果小於五則舍。
(2)保留一位小數,表示精確到十分位,就要把第一位小數以後的部分全部省略, 這時要看小數的第二位,如果第二位的數字比5小則全部舍。反之,要向前一位進一。
(3)保留兩位小數,表示精確到百分位,就要把第二位小數以後的部分全部省略,這時要看小數的第三位,如果第三位的數字比5小則全部舍。反之,要向前一位進一。
(4)為了讀寫的方便,常常把不是整萬或整億的數改寫成用「萬」或「億」作單位的數。改寫成「萬」作單位的數就是小數點向左移4位,即在萬位的右邊點上小數點,在數的後面加上「萬」字。改寫成「億」作單位的數就是小數點往左移8位即在億位的右邊點上小數點,在數的後面加上「億」字。然後再根據小數的性質把小數末尾的零去掉即可。
知識點七
小數的加法和減法(第1條背誦)
1、小數的加、減法要注意:小數點要對齊也就是把數位對齊,得數的末尾有0,一般要把0去掉。
2、整數的運算定律(以及簡便的方法)在小數運算中同樣適用。
知識點八
統計圖(背誦)
1、 條形統計圖優點:直觀地反映數量的多少。
2、 折線統計圖優點:既可以反映數量的多少,又能反映數量的增減變化。 3、 折線統計圖中,變化趨勢指:上升或者下降。 知識點九
數學廣角(默寫)
(一)植樹問題:
1、 兩端要栽:間隔數=總長÷間距; 總長=間距×間隔數; 棵數=間隔數+1; 間隔數=棵數-1
2、 兩端不栽:間隔數=總長÷間距; 總長=間距×間隔數; 棵數=間隔數-1; 間隔數=棵數+1
(二)鋸木問題: 段數=次數+1; 次數=段數-1 總時間=每次時間×次數
(三)方陣問題: 最外層的數目是:邊長×4—4或者是(邊長-1)×4 整個方陣的總數目是:邊長×邊長
(四)封閉的圖形(例如圍成一個圓形、橢圓形): 總長÷間距=間隔數;棵數=間隔數