『壹』 五年級數學奧數題(至少要20道)
1.找規律填數。5,6,11,17,28,(
),73。
2.兩個數之積是36,這兩個數的和最小是(版
)。
3.請你用一個5.一個6和恰當權的數學符號組成一個數,是其比5和6這兩個數都要大。這個數是(
)
4.三個自然數與積相等,這三個自然數分別是(
)。
5.在下面數字之間添加適當的符號及括弧,是計算結果為2006。
1
2
3
4
5
6
7
8
9
=2006
6.在方框里填上合適得數。10.3×[169.58+((
)-8.68)]=2006
『貳』 求五年級奧數思考20題(包括答案算式也行)急需!!~~
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
AN:10秒.
2
計算1234+2341+3412+4123=?
AN:11110
3
一個等差數列的首項是5.6
,第六項是20.6,求它的第4項
AN:14.6
4
求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
AN:22.5
5
求解下列同餘方程:
(1)5X≡3(mod
13)
(2)30x≡33(mod
39)
(3)35x≡140(mod
47)
(4)3x+4x≡45(mod
4)
AN:(1)x≡11(mod
13)
(2)x≡5(mod
39)
(3)x≡4(mod
47)
(4)x≡3(mod
4)
6
請問數2206525321能否被7
11
13
整除?
AN:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
AN:一分幣51`枚.二分幣32枚.5分幣17枚.
8
找規律填數:
0
,
3,8,15,24,35,___,63
AN:
48
9
100條直線最多能把平面分為幾個部分?
AN:5051
10
A
B兩人向大洋前進,每人備有12天食物,他們最多探險___天
AN:8天
11
100以內所有能被2或3或5或7整除的自然數個數
AN:78個
12
1/2
+
1/2+3
+
1/2+3+4
+
......+
1/2+3+4+....+10=?
AN:343/330
13
從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
AN:1005
14
求360的全部約數個數.
AN:
24
15
停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛.
AN
:10輛.
16
約數共有8個的最小自然數為____.
AN:24
17求所有除4餘一的兩位數和
AN;1210
18
把一筆獎金分給甲乙兩個組,平均每人得6元.如果只分給甲組每人得10元,只分給乙每人得___元.
AN:15元.
19有一個工廠春遊,有若干輛車,每車乘65人,有15人不能去,每車多乘5人,餘一輛車.車___輛,共____人
AN:17,1120
20
AB兩市學生乘車參觀C地,每車可乘36人,AB兩市學員坐滿若乾颱車後,來自A的學生中餘下的11人與來自B的餘下若幹人坐滿了一輛車.在C地,來自A地和來自B地的學生兩兩合影留念,每個膠卷只能拍36張相片.那麼全部拍完後相機中殘余膠卷能拍____張照片.
AN:13張.
『叄』 五年級奧數找規律,一定要稍微難一些,20題,好的加分!
1.仔細觀察每一排數的排列有什麼規律,然後按規律在( )內填上適當的數.
(1)2,4,8,16,( ),64.
(2)1,4,9,16,( ),36,49.64.
(3)1,4,7,10,13,( ),19,21.
(4)1,4,16,64,( ),1024,4096.
(5)2,3,5,9,17,( ),65,129.
(6)7、2、5、2、3、2、( )、( )
(7)9、11、15、21、29、( )、51
(8)198、297、396、495、( )、( )
(9)1、4、5、8、9、( )、13、( )、( )
(10) 2、4、5、10、11、( )、( )
(11)5、9、13、17、21、( )、( )
(12)2、1、4、3、6、9、8、27、10、( )、( )
(13)5、10、15、( )、25、( )、35
(14)2、4、8、16、( )、64
(15)1、1、2、3、5、8、( )、( )
(16)(1)、(1、2、1)、(1、2、3、2、1)、(1、2、3、4、3、2、1)、( )
(17) 3,8,18,33,53,( );
(18) 15,6,13,7,11,8,( ),( )
(19)1,2,3,6,11,20,( ),68125
(20)7,3.5,1.75,( ),( )
『肆』 20道五年級奧數題
1.
有四箱水果,已知蘋果、梨、橘子平均每箱42個,梨、橘子、桃平均每箱36個。蘋果和桃平均每箱37個。一箱蘋果多少個?一箱桃多少個?
2.
一次考試,甲乙丙三人平均91分,乙丙丁三人平均89分,甲丁二人平均95分,甲丁二人各多少分?
3.
五個數的平均數是18,把其中一個數改為6後,這五個數的平均數是16,這個改動的數原來是多少?
4.
把五個數從小到大排列,其平均數是38,前三個數的平均數是27,後三個數的平均數是48,中間一個數是多少?
5.
求等差數列3、7、11、……、643的平均數
6.
小明上山時每小時行3千米,原路返回時每小時行5千米,小明往返的平均速度是多少?
7.
有一個正方形的草坪,沿草坪四周向外修建一米寬的小路,路面面積是80平方米,求草坪的面積。
8.
五年級有六個班,每班人數相等。從每班選16人參加少先隊活動,剩下的同學相當於原來4個班的人數,原來每班多少人?
9.
一個兩位數的兩個數字和是10.如果把這個兩位數的兩個數字對調位置,組成一個新的兩位數,就比原數大72。求原來的兩位數。
10.
一個兩位數,十位上的數字是個位上的數字的3倍。如果把這兩個數字對調位置,組成一個新的兩位數,與原數的差是54,求原數
11.
一個兩位數,十位上的數字是個位上的數字的2倍。如果把這兩個數字對調位置,組成一個新的兩位數,與原數的和是132,求原數
12.
一個兩位數,十位上的數字比個位上的數字少2。如果把這兩個數字對調位置,組成一個新的兩位數,與原數的和是154,求原數.
3.一個兩位數十位上的數字是個位上數字的三倍,這個兩位數減9,則個位上的數字與十位上的數字相等。這個兩位數是(
)。
14.計算1001×7÷37×444÷137=(
)。
15.計算22+42+62+……+402=(
)
16.有一個三位數,十位數字是個位數字與百位數字之和,這個三位數加上693,則百位數字與個位數字交換位置。這個三位數是(
)。
17.六位數865abc
能被3、4、5整除,要使865abc盡可能小,a、b、c各是(
)。
18.數71427和19的積除以7餘數是(
)。504的約數有(
)個。
19.解放軍某部進行隊列訓練,正好排成一個方陣,若每排增加
12
人,減少
4
排,則可以排成一個長方形。共有(
)個戰士進行隊列訓練?
20.五年級數學競賽,小明獲得的名次與他的年齡和競賽的成績相乘之積是2134,小明獲得的名次(
)名,成績是(
)分。
『伍』 求助20道小學五年級奧數題
1. 有四箱水果,已知蘋果、梨、橘子平均每箱42個,梨、橘子、桃平均每箱36個。蘋果和桃平均每箱37個。一箱蘋果多少個?一箱桃多少個?
2. 一次考試,甲乙丙三人平均91分,乙丙丁三人平均89分,甲丁二人平均95分,甲丁二人各多少分?
3. 五個數的平均數是18,把其中一個數改為6後,這五個數的平均數是16,這個改動的數原來是多少?
4. 把五個數從小到大排列,其平均數是38,前三個數的平均數是27,後三個數的平均數是48,中間一個數是多少?
5. 求等差數列3、7、11、……、643的平均數
6. 小明上山時每小時行3千米,原路返回時每小時行5千米,小明往返的平均速度是多少?
7. 有一個正方形的草坪,沿草坪四周向外修建一米寬的小路,路面面積是80平方米,求草坪的面積。
8. 五年級有六個班,每班人數相等。從每班選16人參加少先隊活動,剩下的同學相當於原來4個班的人數,原來每班多少人?
9. 一個兩位數的兩個數字和是10.如果把這個兩位數的兩個數字對調位置,組成一個新的兩位數,就比原數大72。求原來的兩位數。
10. 一個兩位數,十位上的數字是個位上的數字的3倍。如果把這兩個數字對調位置,組成一個新的兩位數,與原數的差是54,求原數
11. 一個兩位數,十位上的數字是個位上的數字的2倍。如果把這兩個數字對調位置,組成一個新的兩位數,與原數的和是132,求原數
12. 一個兩位數,十位上的數字比個位上的數字少2。如果把這兩個數字對調位置,組成一個新的兩位數,與原數的和是154,求原數.
3.一個兩位數十位上的數字是個位上數字的三倍,這個兩位數減9,則個位上的數字與十位上的數字相等。這個兩位數是( )。
14.計算1001×7÷37×444÷137=( )。
15.計算22+42+62+……+402=( )
16.有一個三位數,十位數字是個位數字與百位數字之和,這個三位數加上693,則百位數字與個位數字交換位置。這個三位數是( )。
17.六位數865abc 能被3、4、5整除,要使865abc盡可能小,a、b、c各是( )。
18.數71427和19的積除以7餘數是( )。504的約數有( )個。
19.解放軍某部進行隊列訓練,正好排成一個方陣,若每排增加 12 人,減少 4 排,則可以排成一個長方形。共有( )個戰士進行隊列訓練?
20.五年級數學競賽,小明獲得的名次與他的年齡和競賽的成績相乘之積是2134,小明獲得的名次( )名,成績是( )分。
『陸』 求小學五年級20道奧數題(有解題過程及答案)
9. 有7個數,它們的平均數是18。去掉一個數後,剩下6個數的平均數是19;再去掉一個數後,剩下的5個數的平均數是20。求去掉的兩個數的乘積。
解: 7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數是12和14它們的乘積是12*14=168
10. 有七個排成一列的數,它們的平均數是 30,前三個數的平均數是28,後五個數的平均數是33。求第三個數。
解:28×3+33×5-30×7=39。
11. 有兩組數,第一組9個數的和是63,第二組的平均數是11,兩個組中所有數的平均數是8。問:第二組有多少個數?
解:設第二組有x個數,則63+11x=8×(9+x),解得x=3。
12.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比後兩次的平均分少2分。如果後三次平均分比前三次平均分多3分,那麼第四次比第三次多得幾分?
解:第三、四次的成績和比前兩次的成績和多4分,比後兩次的成績和少4分,推知後兩次的成績和比前兩次的成績和多8分。因為後三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
13. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數表示)
解:每20天去9次,9÷20×7=3.15(次)。
14. 乙、丙兩數的平均數與甲數之比是13∶7,求甲、乙、丙三數的平均數與甲數之比。
解:以甲數為7份,則乙、丙兩數共13×2=26(份)
所以甲乙丙的平均數是(26+7)/3=11(份)
因此甲乙丙三數的平均數與甲數之比是11:7。
15. 五年級同學參加校辦工廠糊紙盒勞動,平均每人糊了76個。已知每人至少糊了70個,並且其中有一個同學糊了88個,如果不把這個同學計算在內,那麼平均每人糊74個。糊得最快的同學最多糊了多少個?
解:當把糊了88個紙盒的同學計算在內時,因為他比其餘同學的平均數多88-74=14(個),而使大家的平均數增加了76-74=2(個),說明總人數是14÷2=7(人)。因此糊得最快的同學最多糊了
74×6-70×5=94(個)。
16. 甲、乙兩班進行越野行軍比賽,甲班以4.5千米/時的速度走了路程的一半,又以5.5千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以4.5千米/時的速度行進,另一半時間以5.5千米/時的速度行進。問:甲、乙兩班誰將獲勝?
解:快速行走的路程越長,所用時間越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程長,所以乙班獲勝。
17. 輪船從A城到B城需行3天,而從B城到A城需行4天。從A城放一個無動力的木筏,它漂到B城需多少天?
解:輪船順流用3天,逆流用4天,說明輪船在靜水中行4-3=1(天),等於水流3+4=7(天),即船速是流速的7倍。所以輪船順流行3天的路程等於水流3+3×7=24(天)的路程,即木筏從A城漂到B城需24天。
18. 小紅和小強同時從家裡出發相向而行。小紅每分走52米,小強每分走70米,二人在途中的A處相遇。若小紅提前4分出發,且速度不變,小強每分走90米,則兩人仍在A處相遇。小紅和小強兩人的家相距多少米?
解:因為小紅的速度不變,相遇地點不變,所以小紅兩次從出發到相遇的時間相同。也就是說,小強第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小強第二次走了14分,推知第一次走了18分,兩人的家相距
(52+70)×18=2196(米)。
19. 小明和小軍分別從甲、乙兩地同時出發,相向而行。若兩人按原定速度前進,則4時相遇;若兩人各自都比原定速度多1千米/時,則3時相遇。甲、乙兩地相距多少千米?
解:每時多走1千米,兩人3時共多走6千米,這6千米相當於兩人按原定速度1時走的距離。所以甲、乙兩地相距6×4=24(千米)
20. 甲、乙兩人沿400米環形跑道練習跑步,兩人同時從跑道的同一地點向相反方向跑去。相遇後甲比原來速度增加2米/秒,乙比原來速度減少2米/秒,結果都用24秒同時回到原地。求甲原來的速度。
解:因為相遇前後甲、乙兩人的速度和不變,相遇後兩人合跑一圈用24秒,所以相遇前兩人合跑一圈也用24秒,即24秒時兩人相遇。
設甲原來每秒跑x米,則相遇後每秒跑(x+2)米。因為甲在相遇前後各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
21. 甲、乙兩車分別沿公路從A,B兩站同時相向而行,已知甲車的速度是乙車的1.5倍,甲、乙兩車到達途中C站的時刻分別為5:00和16:00,兩車相遇是什麼時刻?
解:9∶24。解:甲車到達C站時,乙車還需16-5=11(時)才能到達C站。乙車行11時的路程,兩車相遇需11÷(1+1.5)=4.4(時)=4時24分,所以相遇時刻是9∶24。
22. 一列快車和一列慢車相向而行,快車的車長是280米,慢車的車長是385米。坐在快車上的人看見慢車駛過的時間是11秒,那麼坐在慢車上的人看見快車駛過的時間是多少秒?
解:快車上的人看見慢車的速度與慢車上的人看見快車的速度相同,所以兩車的車長比等於兩車經過對方的時間比,故所求時間為11
23. 甲、乙二人練習跑步,若甲讓乙先跑10米,則甲跑5秒可追上乙;若乙比甲先跑2秒,則甲跑4秒能追上乙。問:兩人每秒各跑多少米?
解:甲乙速度差為10/5=2
速度比為(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
24.甲、乙、丙三人同時從A向B跑,當甲跑到B時,乙離B還有20米,丙離B還有40米;當乙跑到B時,丙離B還有24米。問:
(1) A, B相距多少米?
(2)如果丙從A跑到B用24秒,那麼甲的速度是多少?
解:解:(1)乙跑最後20米時,丙跑了40-24=16(米),丙的速度
25. 在一條馬路上,小明騎車與小光同向而行,小明騎車速度是小光速度的3倍,每隔10分有一輛公共汽車超過小光,每隔20分有一輛公共汽車超過小明。已知公共汽車從始發站每次間隔同樣的時間發一輛車,問:相鄰兩車間隔幾分?
解:設車速為a,小光的速度為b,則小明騎車的速度為3b。根據追及問題「追及時間×速度差=追及距離」,可列方程
10(a-b)=20(a-3b),
解得a=5b,即車速是小光速度的5倍。小光走10分相當於車行2分,由每隔10分有一輛車超過小光知,每隔8分發一輛車。
26. 一隻野兔逃出80步後獵狗才追它,野兔跑 8步的路程獵狗只需跑3步,獵狗跑4步的時間兔子能跑9步。獵狗至少要跑多少步才能追上野兔?
解:狗跑12步的路程等於兔跑32步的路程,狗跑12步的時間等於兔跑27步的時間。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
27. 甲、乙兩人在鐵路旁邊以同樣的速度沿鐵路方向相向而行,恰好有一列火車開來,整個火車經過甲身邊用了18秒,2分後又用15秒從乙身邊開過。問:
(1)火車速度是甲的速度的幾倍?
(2)火車經過乙身邊後,甲、乙二人還需要多少時間才能相遇?
解:(1)設火車速度為a米/秒,行人速度為b米/秒,則由火車的 是行人速度的11倍;
(2)從車尾經過甲到車尾經過乙,火車走了135秒,此段路程一人走需1350×11=1485(秒),因為甲已經走了135秒,所以剩下的路程兩人走還需(1485-135)÷2=675(秒)。
28. 輛車從甲地開往乙地,如果把車速提高20%,那麼可以比原定時間提前1時到達;如果以原速行駛100千米後再將車速提高30%,那麼也比原定時間提前1時到達。求甲、乙兩地的距離。
29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。問:甲、乙單獨干這件工作各需多少天?
解:甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池裝有一個放水管和一個排水管,單開放水管5時可將空池灌滿,單開排水管7時可將滿池水排完。如果放水管開了2時後再打開排水管,那麼再過多長時間池內將積有半池水?
31.小松讀一本書,已讀與未讀的頁數之比是3∶4,後來又讀了33頁,已讀與未讀的頁數之比變為5∶3。這本書共有多少頁?
解:開始讀了3/7 後來總共讀了5/8
33/(5/8-3/7)=33/(11/56)=56*3=168頁
32.一件工作甲做6時、乙做12時可完成,甲做8時、乙做6時也可以完成。如果甲做3時後由乙接著做,那麼還需多少時間才能完成?
解:甲做2小時的等於乙做6小時的,所以乙單獨做需要
6*3+12=30(小時) 甲單獨做需要10小時
因此乙還需要(1-3/10)/(1/30)=21天才可以完成。
33. 有一批待加工的零件,甲單獨做需4天,乙單獨做需5天,如果兩人合作,那麼完成任務時甲比乙多做了20個零件。這批零件共有多少個?
解:甲和乙的工作時間比為4:5,所以工作效率比是5:4
工作量的比也5:4,把甲做的看作5份,乙做的看作4份
那麼甲比乙多1份,就是20個。因此9份就是180個
所以這批零件共180個
34.挖一條水渠,甲、乙兩隊合挖要6天完成。甲隊先挖3天,乙隊接著
解:根據條件,甲挖6天乙挖2天可挖這條水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙單獨挖需要10天。
甲單獨挖需要1/(1/6-1/10)=15天。
35. 修一段公路,甲隊獨做要用40天,乙隊獨做要用24天。現在兩隊同時從兩端開工,結果在距中點750米處相遇。這段公路長多少米?
36. 有一批工人完成某項工程,如果能增加 8個人,則 10天就能完成;如果能增加3個人,就要20天才能完成。現在只能增加2個人,那麼完成這項工程需要多少天?
解:將1人1天完成的工作量稱為1份。調來3人與調來8人相比,10天少完成(8-3)×10=50(份)。這50份還需調來3人干10天,所以原來有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。調來2人需100÷(2+2)=25(天)。
37.
解:三角形AOB和三角形DOC的面積和為長方形的50%
所以三角形AOB佔32%
16÷32%=50
38.
解:1/2*1/3=1/6
所以三角形ABC的面積是三角形AED面積的6倍。
39.下面9個圖中,大正方形的面積分別相等,小正方形的面積分別相等。問:哪幾個圖中的陰影部分與圖(1)陰影部分面積相等?
解:(2) (4) (7) (8) (9)
40. 觀察下列各串數的規律,在括弧中填入適當的數
2,5,11,23,47,( ),……
解:括弧內填95
規律:數列里地每一項都等於它前面一項的2倍減1
41. 在下面的數表中,上、下兩行都是等差數列。上、下對應的兩個數字中,大數減小數的差最小是幾?
解:1000-1=999
997-995=992
每次減少7,999/7=142……5
所以下面減上面最小是5
1333-1=1332 1332/7=190……2
所以上面減下面最小是2
因此這個差最小是2。
42. 如果四位數6□□8能被73整除,那麼商是多少?
解:估計這個商的十位應該是8,看個位可以知道是6
因此這個商是86。
43. 求各位數字都是 7,並能被63整除的最小自然數。
解:63=7*9
所以至少要9個7才行(因為各位數字之和必須是9的倍數)
44. 1×2×3×…×15能否被 9009整除?
解:能。
將9009分解質因數
9009=3*3*7*11*13
45. 能否用1, 2, 3, 4, 5, 6六個數碼組成一個沒有重復數字,且能被11整除的六位數?為什麼?
解:不能。因為1+2+3+4+5+6=21,如果能組成被11整除的六位數,那麼奇數位的數字和與偶數位的數字和一個為16,一個為5,而最小的三個數字之和1+2+3=6>5,所以不可能組成。
46. 有一個自然數,它的最小的兩個約數之和是4,最大的兩個約數之和是100,求這個自然數。
解:最小的兩個約數是1和3,最大的兩個約數一個是這個自然數本身,另一個是這個自然數除以3的商。最大的約數與第二大
47.100以內約數個數最多的自然數有五個,它們分別是幾?
解:如果恰有一個質因數,那麼約數最多的是26=64,有7個約數;
如果恰有兩個不同質因數,那麼約數最多的是23×32=72和25×3=96,各有12個約數;
如果恰有三個不同質因數,那麼約數最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12個約數。
所以100以內約數最多的自然數是60,72,84,90和96。
48. 寫出三個小於20的自然數,使它們的最大公約數是1,但兩兩均不互質。
解:6,10,15
49. 有336個蘋果、 252個桔子、 210個梨,用這些果品最多可分成多少份同樣的禮物?在每份禮物中,三樣水果各多少?
解:42份;每份有蘋果8個,桔子6個,梨5個。
50. 三個連續自然數的最小公倍數是168,求這三個數。
解:6,7,8。 提示:相鄰兩個自然數必互質,其最小公倍數就等於這兩個數的乘積。而相鄰三個自然數,若其中只有一個偶數,則其最小公倍數等於這三個數的乘積;若其中有兩個偶數,則其最小公倍數等於這三個數乘積的一半。
51. 一副撲克牌共54張,最上面的一張是紅桃K。如果每次把最上面的12張牌移到最下面而不改變它們的順序及朝向,那麼,至少經過多少次移動,紅桃K才會又出現在最上面?
解:因為[54,12]=108,所以每移動108張牌,又回到原來的狀況。又因為每次移動12張牌,所以至少移動108÷12=9(次)。
52. 爺爺對小明說:「我現在的年齡是你的7倍,過幾年是你的6倍,再過若干年就分別是你的5倍、4倍、3倍、2倍。」你知道爺爺和小明現在的年齡嗎?
解:爺爺70歲,小明10歲。提示:爺爺和小明的年齡差是6,5,4,3,2的公倍數,又考慮到年齡的實際情況,取公倍數中最小的。(60歲)
53. 某質數加6或減6得到的數仍是質數,在50以內你能找出幾個這樣的質數?並將它們寫出來。
解:11,13,17,23,37,47。
54. 在放暑假的8月份,小明有五天是在姥姥家過的。這五天的日期除一天是合數外,其它四天的日期都是質數。這四個質數分別是這個合數減去1,這個合數加上1,這個合數乘上2減去1,這個合數乘上2加上1。問:小明是哪幾天在姥姥家住的?
解:設這個合數為a,則四個質數分別為(a-1),(a+1),(2a-1),(2a+1)。因為(a-1)與(a+1)是相差2的質數,在1~31中有五組:3,5;5,7;11,13;17,19;21,31。經試算,只有當a=6時,滿足題意,所以這五天是8月5,6,7,11,13日。
55. 有兩個整數,它們的和恰好是兩個數字相同的兩位數,它們的乘積恰好是三個數字相同的三位數。求這兩個整數。
解:3,74;18,37。
提示:三個數字相同的三位數必有因數111。因為111=3×37,所以這兩個整數中有一個是37的倍數(只能是37或74),另一個是3的倍數。
56. 在一根100厘米長的木棍上,從左至右每隔6厘米染一個紅點,同時從右至左每隔5厘米也染一個紅點,然後沿紅點處將木棍逐段鋸開。問:長度是1厘米的短木棍有多少根?
解:因為100能被5整除,所以可以看做都是自左向右染色。因為6與5的最小公倍數是30,即在30厘米處同時染上紅點,所以染色以30厘米為周期循環出現。一個周期的情況如下圖所示:
由上圖知道,一個周期內有2根1厘米的木棍。所以三個周期即90厘米有6根,最後10厘米有1根,共7根。
57. 某種商品按定價賣出可得利潤960元,若按定價的80%出售,則虧損832元。問:商品的購入價是多少元?
解:8000元。按兩種價格出售的差額為960+832=1792(元),這個差額是按定價出售收入的20%,故按定價出售的收入為1792÷20%=8960(元),其中含利潤960元,所以購入價為8000元。
58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙兩桶哪桶水多?
解:乙桶多。
59. 學校數學競賽出了A,B,C三道題,至少做對一道的有25人,其中做對A題的有10人,做對B題的有13人,做對C題的有15人。如果二道題都做對的只有1人,那麼只做對兩道題和只做對一道題的各有多少人?
解:只做對兩道題的人數為(10+13+15) -25 -2×1=11(人),
只做對一道題的人數為25-11-1=13(人)。
60. 學校舉行棋類比賽,設象棋、圍棋和軍棋三項,每人最多參加兩項。根據報名的人數,學校決定對象棋的前六名、圍棋的前四名和軍棋的前三名發放獎品。問:最多有幾人獲獎?最少有幾人獲獎?
解:共有13人次獲獎,故最多有13人獲獎。又每人最多參加兩項,即最多獲兩項獎,因此最少有7人獲獎。
61. 在前1000個自然數中,既不是平方數也不是立方數的自然數有多少個?
解:因為312<1000<322,103=1000,所以在前1000個自然數中有31個平方數,10個立方數,同時還有3個六次方數(16,26,36)。所求自然數共有 1000-(31+10)+3=962(個)。
62. 用數字0,1,2,3,4可以組成多少個不同的三位數(數字允許重復)?
解:4*5*5=100個
63. 要從五年級六個班中評選出學習、體育、衛生先進集體各一個,有多少種不同的評選結果?
解:6*6*6=216種
64. 已知15120=24×33×5×7,問:15120共有多少個不同的約數?
解: 15120的約數都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分別有5, 4, 2, 2種,所以共有約數5×4×2×2=80(個)。
65. 大林和小林共有小人書不超過50本,他們各自有小人書的數目有多少種可能的情況?
解:他們一共可能有0~50本書,如果他們共有n本書,則大林可能有書0~n本,也就是說這n本書在兩人之間的分配情況共有(n+1)種。所以不超過 50本書的所有可能的分配情況共有1+2+3…+51=1326(種)。
66. 在右圖中,從A點沿線段走最短路線到B點,每次走一步或兩步,共有多少種不同走法?(註:路線相同步驟不同,認為是不同走法。)
解:80種。提示:從A到B共有10條不同的路線,每條路線長5個線段。每次走一個或兩個線段,每條路線有8種走法,所以不同走法共有 8×10=80(種)。
67.有五本不同的書,分別借給3名同學,每人借一本,有多少種不同的借法?
解:5*4*3=60種
68.有三本不同的書被5名同學借走,每人最多借一本,有多少種不同的借法?
解:5*4*3=60種
69. 恰有兩位數字相同的三位數共有多少個?
解:在900個三位數中,三位數各不相同的有9×9×8=648(個),三位數全相同的有9個,恰有兩位數相同的有900—648—9=243(個)。
70. 從1,3,5中任取兩個數字,從2,4,6中任取兩個數字,共可組成多少個沒有重復數字的四位數?
解:三個奇數取兩個有3種方法,三個偶數取兩個也有3種方法。共有 3×3×4!=216(個)。
71. 左下圖中有多少個銳角?
解:C(11,2)=55個
72. 10個人圍成一圈,從中選出兩個不相鄰的人,共有多少種不同選法?
解:c(10,2)-10=35種
73. 一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周,或供23頭牛吃9周。那麼可供21頭牛吃幾周?
解:將1頭牛1周吃的草看做1份,則27頭牛6周吃162份,23頭牛9周吃207份,這說明3周時間牧場長草207-162=45(份),即每周長草15份,牧場原有草162-15×6=72(份)。21頭牛中的15頭牛吃新長出的草,剩下的6頭牛吃原有的草,吃完需72÷6=12(周)。
74. 有一水池,池底有泉水不斷湧出。要想把水池的水抽干, 10台抽水機需抽 8時,8台抽水機需抽12時。如果用6台抽水機,那麼需抽多少小時?
解:將1台抽水機1時抽的水當做1份。泉水每時湧出量為
(8×12-10×8)÷(12-8)=4(份)。
水池原有水(10-4)×8=48(份),6台抽水機需抽48÷(6-4)=24(時)。
75. 規定a*b=(b+a)×b,求(2*3)*5。
解:2*3=(3+2)*3=15
15*5=(15+5)*5=100
76. 1!+2!+3!+…+99!的個位數字是多少?
解:1!+2!+3!+4!=1+2+6+24=33
從5!開始,以後每一項的個位數字都是0
所以1!+2!+3!+…+99!的個位數字是3。
77(1).有一批四種顏色的小旗,任意取出三面排成一行,表示各種信號。在200個信號中至少有多少個信號完全相同?
解:4*4*4=64
200÷64=3……8
所以至少有4個信號完全相同。
77. (2)在今年入學的一年級新生中有 370多人是在同一年出生的。試說明:他們中至少有2個人是在同一天出生的。
解:因為一年最多有366天,看做366個抽屜
因為370>366,所以根據抽屜原理至少有2個人是在同一天出生的。
78. 從前11個自然數中任意取出6個,求證:其中必有2個數互質。
證明:把前11個自然數分成如下5組
(1,2,3)(4,5)(6,7)(8,9)(10,11)
6個數放入5組必然有2個數在同一組,那麼這兩個數必然互質。
79. 小明去爬山,上山時每時行2.5千米,下山時每時行4千米,往返共用3.9時。小明往返一趟共行了多少千米?
80. 長江沿岸有A,B兩碼頭,已知客船從A到B每天航行500千米,從B到A每天航行400千米。如果客船在A,B兩碼頭間往返航行5次共用18天,那麼兩碼頭間的距離是多少千米?
解:800千米。 提示:從A到B與從B到A的速度比是5∶4,從A到B用
81. 請在下式中插入一個數碼,使之成為等式:
1×11×111= 111111
解答:91*11*111=111111
82.甲、乙、丙三數的和是100,甲數除以乙數與丙數除以甲數的結果都是商5餘1。問:乙數是多少?
解:設乙數是x,那麼甲數就是5x+1
丙數是5(5x+1)+1=25x+6
因此x+5x+1+25x+6=100
31x=93 x=3
所以乙數是3
83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪個數的平方
解:12345654321=111111的平方
1+2+3+4+5+6+5+4+3+2+1=36=6的平方
所以原式=666666的平方。
84.某劇院有25排座位,後一排比前一排多2個座位,最後一排有70個座位。問:這個劇院一共有多少個座位?
解:第一排有70-24*2=22個座位
所以總座位數是(22+70)*25/2 =1150
85. 某城市舉行小學生數學競賽,試卷共有20道題。評分標準是:答對一道給3分,沒答的題每題給1分,答錯一道扣1分。問:所有參賽學生的得分總和是奇數還是偶數?為什麼?
解:一定是偶數,因為每個人20道題得分都分別是奇數,20個奇數的和一定是偶數。每個人的得分都是偶數,所以無論有多少參賽學生,參賽學生的得分總和一定是偶數。
86. 可以分解為三個質數之積的最小的三位數是幾?
解:102=2*3*17
87. 兩個質數的和是39,求這兩個質數的積。
解:注意到奇偶性可以知道這2個質數分別是2和37
它們的乘積是2*37=74
88. 有1,2,3,4,5,6,7,8,9九張牌,甲、乙、丙各拿了三張。甲說:「我的三張牌的積是48。」乙說:「我的三張牌的和是15。」丙說:「我的三張牌的積是63。」問:他們各拿了哪三張牌?
解:63=7*1*9 所以丙拿的1,7,9
48=2*3*8 所以甲拿的2,3,8
4+5+6=15 因此乙拿的是4,5,6
89. 四個連續自然數的積是3024,求這四個數。
解:考慮末尾數字,1*2*3*4末尾是4
6*7*8*9末尾也是4
其他情況下末尾都是0
11*12*13*14=24024太大
6*7*8*9=3024剛好
所以這4個數是6,7,8,9
90. 證明:任何一個三位數,連著寫兩遍得到一個六位數,這個六位數一定能被7,11,13整除。
解:該數形如ABCABC=ABC*1001
1001=7*11*13
所以這個六位數一定能被7,11,13整除。
91.在1~100中,所有的只有3個約數的自然數的和是多少?
解:4+9+25+49=87
92. 有一種電子鍾,每到正點響一次鈴,每過九分鍾亮一次燈。如果中午12點整它既響鈴又亮燈,那麼下一次既響鈴又亮燈是什麼時間?
解:[60,9]=180
180/60=3
下次是下午3點鍾。
93. 有一個數除以3餘2,除以4餘1。問:此數除以12餘幾?
解:除以3餘2的數是2,5,8,11,14。。。。。。
除以4餘1的數是1,5,9,。。。。。。
所以此數除以12餘5
94. 把16拆成若干個自然數的和,要求這些自然數的乘積盡量大,應如何拆?
解:16=3+3+3+3+2+2
乘積是3*3*3*3*2*2=324
95. 小明按1~ 3報數,小紅按1~ 4報數。兩人以同樣的速度同時開始報數,當兩人都報了100個數時,有多少次兩人報的數相同?
解:每12次作為一個周期
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 4 1 2 3 4 1 2 3 4
每個周期兩人有3次報的數一樣
100=12*8+4
所以兩個人有8*3+3=27次報的數相同。
96. 某自然數加10或減10皆為平方數,求這個自然數。
解:設這個數是x
x+10=m^2
x-10=n^2
m^2-n^2=20 (m+n)(m-n)=20
m=6,n=4
所以x=6^2-10=26
97. 已知某鐵路橋長1000米,一列火車從橋上通過,測得火車從開始上橋到完全下橋共用120秒,整列火車完全在橋上的時間為80秒。求火車的速度和長度。
解:120秒行駛的距離是橋長+車長
80秒行駛的距離是橋長-車長
所以80(1000+車長)=120(1000-車長)
車長=200米
火車的速度是10米/秒
98. 甲、乙二人按順時針方向沿圓形跑道練習跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他們分別從圓形跑道直徑的兩端同時出發,那麼出發後多少分甲追上乙?
解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分鍾
99. 甲、乙比賽乒乓球,五局三勝。已知甲勝了第一局,並最終獲勝。問:各局的勝負情況有多少種可能?
解:甲 甲 甲
甲 甲 乙 甲
甲 甲 乙 乙 甲
甲 乙 甲 甲
甲 乙 甲 乙 甲
甲 乙 乙 甲 甲
經枚舉發現共有6種可能。
100. 甲、乙二人 2時共可加工 54個零件,甲加工 3時的零件比乙加工4時的零件還多4個。問:甲每時加工多少個零件?
解:甲乙二人一小時共可加工零件27個
設甲每小時加工x個,那麼乙每小時加工27-x個
根據條件得3x=4(27-x)+4
7x=112 x=16
答:甲每小時加工零件16個。
『柒』 20道簡單的五年級奧數題及答案
有獎勵
20道簡單的五年級奧數題及答案
急急急!!!
我來答有獎勵
138******49
LV.1
聊聊關注成為第1位粉絲
1.有一些糖,每人分5塊多10塊;如果現有的人數增加到原人數的1.5倍,那麼每人4塊就少2塊.問這些糖共有多少塊?
【分析與解】 方法一:設開始共有x人,兩種分法的糖總數不變,有5x+10=4×1.5x-2,解得x=12,所以這些糖共有12×5+10=70塊.
方法二:人數增加1.5倍後,每人分4塊,相當於原來的人數,每人分1.5×4=6塊.
有這些糖,每人分5塊多10塊,每人分6塊少2塊,所以開始總人數為(10+2)÷(6-5)=12人,那麼共有糖12×5+10=70塊.
2.甲、乙兩個小朋友各有一袋糖,每袋糖不到20粒.如果甲給乙一定數量的糖後,甲的糖就是乙的糖粒數的2倍;如果乙給甲同樣數量的糖後,甲的糖就是乙的糖粒數的3倍.那麼,甲、乙兩個小朋友共有糖多少粒?
【分析與解】 由題意知糖的總數應該是3的倍數,還是4的倍數.即為12的倍數,因為兩袋糖每袋都不超過20粒,所以總數不超過40粒.於是糖的總數只可能為12、24或36粒.
如果糖的總數為12的奇數倍,那麼「乙給甲同樣數量的糖後」,甲的糖為12÷(3+1)×3=9的奇數倍.那麼在甲給乙兩倍「同樣的數量糖」後,甲的糖為12÷(2+1)×2=8的奇數倍.
也就是說一個奇數加上一個偶數等於偶數,顯然不可能.所以糖的總數不能為12的奇數倍.
那麼甲、乙兩個小朋友共有的糖只能為12的偶數倍,即為24粒.
3.甲班有42名學生,乙班有48名學生.已知在某次數學考試中按百分制評卷,評卷結果各班的數學總成績相同,各班的平均成績都是整數,並且平均成績都高於80分.那麼甲班的平均成績比乙班高多少分?
【分析與解】 方法一:因為每班的平均成績都是整數,且兩班的總成績相等,所以總成績既是42的倍數,又是48的倍數,所以為[42,48]=336的倍數.
因為乙班的平均成績高於80分,所以總成績應高於48×80=3840分.
又因為是按百分制評卷,所以甲班的平均成績不會超過100分,那麼總成績應不高於42×100=4200分.
在3840~4200之間且是336的倍數的數只有4032.所以兩個班的總分均為4032分.
那麼甲班的平均分為4032÷42=96分,乙班的平均分為4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因為7、8互質,所以甲班的平均分為某數的8倍,乙班的平均分為某數的7倍,又因為兩個班的平均分均超過80分,不高於100分,所以這個數只能為12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某鄉水電站按戶收取電費,具體規定是:如果每月用電不超過24度,就按每度9分錢收費;如果超過24度,超出的部分按每度2角錢收費.已知在某月中,甲家比乙家多交了電費9角6分錢(用電按整度計算),問甲、乙兩家各交了多少電費?
【分析與解】 如果甲、乙兩家用電均超過24度,那麼他們兩家的電費差應是2角錢的整數倍;
如果甲、乙兩家用電均不超過24度,那麼他們兩家的電費差應是9分錢的整數倍.
現在9角6分既不是2角錢的整數倍,又不是9分錢的整數倍,所以甲家的用電超過了24度,乙家的用電不超過24度.
設甲家用了24+x度電,乙家用了24-y度電,有20x+9y=96,得x=3,y=4.
即甲家用了27度電,乙家用了20度電,那麼乙家應交電費20×9=180分=1元8角,則甲家交了180+96=276分=2元7角6分.
即甲、乙兩家各交電費2元7角6分,1元8角.
5.一小、二小兩校春遊的人數都是10的整數倍,出行時兩校人員不合乘一輛車,且每輛車盡量坐滿.現在知道,若兩校都租用有14個座位的旅遊車,則兩校共需租用這種車72輛;若兩校都租用19個座位的旅遊車,則二小要比一小多租用這種車7輛.問兩校參加這次春遊的人數各是多少?
【分析與解】 設二小春遊人數為m,一小春遊人數為n.由已知乘19座麵包車二小比一小多租用7輛.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知兩校共需租用14座麵包車72輛,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同時已知m與n都是10的倍數,於是有
, 解得 , 另外四組因為解得m、n不是10的倍數.
經檢驗只有 滿足.
所以,一小參加春遊430人,二小參加春遊570人.
6.某遊客在10時15分由碼頭劃出一條小船,他欲在不遲於13時回到碼頭.河水的流速為每小時1.4千米,小船在靜水中的速度為每小時3千米,他每劃30分鍾就休息15分鍾,中途不改變方向,並在某次休息後往回劃.那麼他最多能劃離碼頭多遠?
【分析與解】 從10時15分出發,不遲於13時必須返回,所以最多可劃行2小時45分,即165分鍾.165=4×30+3×15,最多可劃4個30分鍾,休息3個15分鍾.
順流速度為3+1.4=4.4千米/4,時;所以順流半小時劃行路程為4.4×0.5=2.2千米;
逆流速度為3-1.4=1.6千米/4,時;所以逆流半小時劃行路程為1.6×0.5=0.8千米.
休息15分鍾,則船順流漂行的路程為1.4×0.25=0.35千米.
第一種情況:當開始順流時,至少劃行半小時,行駛2.2千米,而在休息的3個時問內船又順流漂行0.35×3=1.05千米的路程,所以逆流返回時需劃行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小時=121.875分鍾.即最少需30+15×3+121.875=196.875分鍾>165分鍾,來不及按時還船.不滿足.
第二種情況:當開始逆流時,每逆流半小時,則行駛0.8千米,則3次逆流後,行駛了0.8×3=2.4千米,船在遊客休息時順流漂行了1.05千米,所以回劃時只用劃行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小時≈18.41分鍾.共需3×30+3×15+18.41=153.41分鍾<165分鍾,滿足.
於是,只有第二種情況滿足,此時最遠的路程為休息了2次後第3次逆流所至的地點,為0.8×3-0.35×2=1.7千米.
所以,他最多能劃離碼頭1.7千米.
7. 機械廠計劃生產一批機床,原計劃每天生產40台,可在預定的時間內完成任務,實際每天生產48台,結果提前4天完成任務,求這批機床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷廠計劃用24天裝訂一批書,每天裝訂12000本,實際提前4天完成了任務,實際比原計劃每天多裝訂多少本?
【分析與解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙兩磚廠,甲廠原存磚87500塊,乙廠比甲廠多存磚4500塊,某日甲廠賣出25000塊,乙廠比甲廠少賣出3000塊,這時哪廠存磚多?多多少塊?
【分析與解】甲廠存磚:87500-25000=62500(塊)
乙廠存磚:(87500+4500)-(25000-3000)=70000(塊)
∴ 乙廠存磚多,多 70000-62500=7500(塊)
10. 一筐蘋果連筐共重45千克,賣出一半後,剩下的蘋果連筐共重24千克,求原來有蘋果多少千克?
【分析與解】(45-24)×2=42(千克)
11.小明上午8時騎自行車以每小時12千米的速度從A地到B地,小強上午8時40分騎自行車以每小時16千米的速度從B地到A地,兩人在A、B兩地的中點處相遇,A、B兩地間的路程是多少千米?
【分析與解】這是一個相向而行相遇求路程的問題。但兩人不是同時出發,如果能轉換成同時出發,並且求出行多少小時相遇,就可以用數學課學的方法解答。
兩人在兩地間的路程的中點相遇,但小明比小強多行了40分鍾,如果兩人同時出發,相遇時,小明行的路程就比小強少12÷60×40=8(千米),就是當小強出發時,小明已經行了8千米,從8時40分起兩人到兩人相遇,由於小明每小時比小強少行16-12=4(千米),說明兩人相遇時間是8÷4=2(小時),那麼,A、B兩地間的路程是8+(12+16)×2=64(千米)。
答:A、B兩地間的路程是64千米。
12:甲、乙兩村相距3550米,小偉從甲村步行往乙村,出發5分鍾後,小強騎自行車從乙村前往甲村,經過10分鍾遇見小偉。小強騎車每分鍾行的比小偉步行每分鍾多160米,小偉每分鍾走多少米?
【分析與解】如果小強每分鍾少行160米,他行的速度就和小偉步行的速度相同,這樣小強10分鍾就少行了160×10=1600(米),小偉(5+10)分鍾和小強10分鍾一共行走的路程是3550-1600=1950(米),那麼小偉每分鍾走的路是1950÷(5+10+10)=78(米)。
答:小偉每分鍾走78米。
13:客車從東城和貨車從西城同時開出,相向而行,客車每小時行44千米,貨車每小時行36千米,客車到西城比貨車到東城早2小時。兩車開出後多少小時在途中相遇?
【分析與解】當客車到西城時,貨車離東城還有2×36=72(千米),而貨車每小時行的比客車少44-36=8(千米),客車行東西城間的路程用的時間是72÷8=9(小時),因此東西城相距44×9=396(千米),兩車從出發到相遇用的時間是;396÷(44+36)=4.95(小時)
答:兩車開出後4.95小時在途中相遇。
14:甲、乙二人同一天從北京出發沿同一條路騎車往廣州,甲每天行100千米,乙第一天行70千米,以後每天都比前一天多行3千米,直到追上甲,乙出發後第幾天追上甲?
【分析與解】二人同時、同地出發同向而行,但開始時,乙比甲行得慢,當乙的速度增加到與甲相同前,兩人間的距離越拉越大,當乙的速度超過甲時,兩人間的距離又越來越近,直到乙追上甲。
開始時,乙一天行的比甲少100-70=30(千米),以後乙每天多行3千米,到與甲速相同要經過30÷3=10(天),即前10天,甲、乙之間的距離是逐天拉大的,第11天兩人速度相同,從第12天起,乙的速度開始比甲快,與甲的距離逐天拉近,所以,乙追上甲用的時間是:10×2+1=21(天)。
答:乙出發後第21天追上甲。
15:甲、乙兩地相距10千米,快、慢兩車都從甲地開往乙地,快車開出時,慢車已行了1.5千米,當快車到達乙地時,慢車距乙地還有1千米,那麼快車在距乙地多少千米處追上慢車?
【分析與解】慢車行了1.5千米,快車才開出,而快車到達乙地時,慢車距乙地還有1千米,就是在快車行10千米的時間里,比慢車多行的路程為1.5+1=2.5(千米)。快車每行1千米比慢車多2.5÷10=0.25(千米)。
16. 有7個數,它們的平均數是18。去掉一個數後,剩下6個數的平均數是19;再去掉一個數後,剩下的5個數的平均數是20。求去掉的兩個數的乘積。
【分析與解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數是12和14它們的乘積是12*14=168
17. 有七個排成一列的數,它們的平均數是 30,前三個數的平均數是28,後五個數的平均數是33。求第三個數。
【分析與解】28×3+33×5-30×7=39。
18. 有兩組數,第一組9個數的和是63,第二組的平均數是11,兩個組中所有數的平均數是8。問:第二組有多少個數?
【分析與解】設第二組有x個數,則63+11x=8×(9+x),解得x=3。
19.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比後兩次的平均分少2分。如果後三次平均分比前三次平均分多3分,那麼第四次比第三次多得幾分?
【分析與解】第三、四次的成績和比前兩次的成績和多4分,比後兩次的成績和少4分,推知後兩次的成績和比前兩次的成績和多8分。因為後三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
20. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數表示)
【分析與解】每20天去9次,9÷20×7=3.15(次)。
編輯於 2020-02-13
查看全部8個回答
數學考試題,數學題目大全,0元試聽,總結高效提分方法。
值得一看的數學相關信息推薦
數學考試題,掌門1對1擁有10000+教研人員,1對1針對性教學,查缺補漏,快速提升!數學考試題,初高中在線1對1輔導,好老師1對1輔導教出好成績。
上海掌小門教育科技..廣告
掌門優課在線高二數學題目及答案輔導_一線名師在線教學
名師高二數學題目及答案輔導,全程視頻互動,結合地域差異,個性化教學,2節精品小班課免費領!
上海掌小門教育科技..廣告
相關問題全部
廣告數學題五年級_數學沖刺高分的秘籍_名師來告訴你
數學題五年級_作業幫,緊扣當地教材,快速吃透教材重難點,短時沖刺高分必備。學完就測評孩子成績提升看得見!
572020-06-03
20道五年級下學期奧數題(簡單一點的)不要答案
第六屆小學「希望杯」全國數學邀請賽一、填空題(每小題5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奧運吉祥物中的5個「福娃」取「北京歡迎您」的諧音:貝貝、京京、歡歡、迎迎、妮妮。如果在盒子中從左向右放5個不同的「福娃」,那麼,有 種不同的放法。3、有一列數:1,1,3,8,22,60,164,448……其中的前三個數是1,1,3,從第四個數起,每個數都是這個數前面兩個數之和的2倍。那麼,這列數中的第10個數是 4、有一排椅子有27個座位,為了使後去的人隨意坐在哪個位置都有人與他相鄰,則至少要先坐 人。5、一個擰緊瓶蓋的瓶子里裝著一些水(如圖1),由圖中的數據可推知瓶子的容積是 立方厘米;( 取3.14)6、某小區有一塊如圖2所示的梯形空地,根據圖中的數據計算,空地的面積是 平方米。 7、如圖3,棱長分別為1厘米,2厘米,3厘米,5厘米的四個正方體緊貼在一起,則所得到的多面體的表面積是 平方厘米。8、五年級一班共有36人,每人參加一個興趣小組,共有A,B,C,D,E五個小組,若參加A組的有15人,參加B組的僅次於A組,參加C組、D組的人數相同。參加E組的人數最少,只有4人,那麼,參加B組的有 人。 9、菜地里的西紅柿獲得豐收,摘了全部的 時,裝滿了3筐還多16千克。摘完其餘部分後,又裝滿6筐,則共收得西紅柿 千克。10、工程隊修一條公路,原計劃每天修720米,實際每天比原計劃多修80米。因而提前3天完成任務。這條路全長 千米。11、王叔叔開車從北京到上海,從開始出發,車速即比原計劃的速度提高了 ,結果提前一個半小時到達;返回時,按原計劃的速度行駛280千米後,將車速提高 ,於是提前1小時40分到達北京。北京、上海兩市間的路程是 千米。12、兩個完全相同長方體的長、寬、高分別是5厘米、4厘米、3厘米,把它們拼在一起可組成一個新長方體,在這些長方體中,表面積最小的是 平方厘米。二、解答題(本大題共4小題,每小題15分,共60分)要求:寫出推算過程13、著名的哥德巴赫猜想:「任意一個大於4的偶數都可以表示為兩個質數的和」。如6=3+3,12=5+7,等。那麼自然數100可以寫成多少種兩個不同質數和的形式?請分別寫出來(100=3+97和100=97+3算作同一種形式)14、如圖4(a),ABCD是一個長方形,其中陰影部分是由一副面積為100平方厘米的七巧板(圖4(b))拼成。那麼,長方形ABCD的面積是多少平方厘米? 15、號碼分別為2005、2006、2007、2008的4名運動員進行乒乓球賽,規定每2人比賽的場數是他們號碼的和被4除所得的余數。那麼2008號運動員比賽了多少場?16、有一個蓄水池裝了9根相同的水管,其中一根是進水管,其餘8根是出水管。開始時,進水管以均勻的速度不同地向蓄水池注水。後來,想打開出水管,使池內的水全部排光。如果同時打開8根出水管,則3小時可排盡池內的水;如果僅打開5根出水管,則需6小時才能排盡池內的水。若要在4.5小時內排盡池內的水,那麼應當同時打開多少根出水管第二屆華博士小學數學奧林匹克網上競賽試題及答案選擇正確的答案: (1)在下列算式中加一對括弧後,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的內角和是180度.一個五邊形的內角和應是( )度.A 500 B 540 C 360 D 480(3)甲乙兩個數的和是15.95,甲數的小數點向右移動一位就等於乙數,那麼 甲數是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一個顧客買了6瓶酒,每瓶付1.3元,退空瓶時,售貨員說,每隻空瓶錢比酒錢 少1.1元,顧客應退回的瓶錢是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)兩數相除得3餘10,被除數,除數,商與余數之和是143,這兩個數分別是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女兒的年齡和是44歲,10年後,爸爸的年齡是女兒的3倍,今年女兒是多少歲? A16 B11 C9 D10 (7)一個兩位數除250,余數是37,這樣的兩位數是( ).A 17 B38 C 71 D 91(8)把一條細繩先對折,再把它所折成相等的三折,接著再對折,然後用剪刀在折過三次的繩中間剪一刀,那麼這條繩被剪成( )段.A 13 B 12 C 14 D 15(9) 把兩個表面積都是6平方厘米的正方體拼成一個長方體,這個長方體的表面積( ). A 12 B 18 C10 D11(10)一晝夜鍾面上的時針和分針重疊( )次.A 23 B 12 C 20 D13(11)某車間四月份實際生產機器76台,其中原計劃生產的台數比超產台數多60台, 求四月份比原計劃超產多少台機器?A 16 B 8 C 10 D 12(12)一塊紅磚長25厘米,寬15厘米,用這樣的紅磚拼成一個正方形最少需要多少塊? A 15 B 12 C 75 D 8 E(13)圖中ABCD是長方形,已知AB=4厘米,BC=6厘米,三角形EFD的面積比三角形ABF的面積大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外釣魚已知甲比乙多釣6條,丙釣的是甲的2 倍,比乙多釣22條,問他們三人一共釣了多少條?A 48 B 50 C 52 D 58(15)張師傅以1元錢4個蘋果的價格買進蘋果若干個,又以2元錢5個蘋果有價格把這些蘋果賣出,如果他要賺得15元錢的利潤,那麼他必須賣出蘋果多少個?A 10 B 100 C 20 D 1602006年「希望杯」全國數學大賽(時間:90分鍾 滿分:120分)題 號一二其中:總 分13141516得 分 得分評卷人 一、填空題。(每題6分,共72分。) 1.計算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的個位上的數字是____________。3.有四個連續奇數的和是2008,則其中最小的一個奇數是____________。4.張阿姨把相同數量的蘋果和橘子分給若干名小朋友,每名小朋友分得1個蘋果和3個橘子。最後橘子分完了,蘋果還剩下12個。那麼一共分給了____________名小朋友。5.有這樣一種算式:三個不同的自然數相乘,積是100。這樣的算式有____________種。(交換因數位置的算同一種。)6.在右邊的數陣中,如果按照從上往下,從左往右的順序數數,可以知道第1個數是1,第3個數是2,第6個數是3,……那麼第99個數是____________。7.一天,小慧和劉老師一起談心。小慧問:「老師,您今年有多少歲?」劉老師回答說:「你猜猜,當我像你這么大時,你才1歲;當你到我這么大時,我就34歲了。」劉老師今年的年齡是____________歲。8.小華同學為了在「希望杯」數學大賽中取得好成績,自己做了四份訓練題(每份訓練題滿分為120分)。他第一份訓練題得了90分,第二份訓練題得了100分,那麼第三份訓練題至少要得____________分才能使四份訓練題的平均成績達到105分。9.某小學五年級有9名同學進入了「希望杯」數學大賽的決賽。已知他們在初賽中前3名同學的平均分比前6名同學的平均分多3分,後6名同學的平均分比後3名同學的平均分多3分。那麼前3名同學的總分比後3名同學的總分多____________分。10.在右圖中,已知正方形ABCD的面積是正方形EFGH面積的4倍,正方形AMEN的周長是4厘米,那麼正方形ABCD的周長是____________厘米。11.一個自然數各個數位上的數字之和是15。如果它 的各個數位上的數字都不相同,那麼符合條件的最大數是____________,最小數是____________。12.對自然數作如下操作:如果是偶數就除以2,如果是奇數就減去1,如此操作直到結果變成0為止。那麼經過6次操作後使結果變成0的數有______個,分別是_____________________________________。得分評卷人 二、解答題。(每題12分,共48分。) 13.五名裁判員給一名體操運動員評分,去掉一個最高分和一個最低分後平均得分是9.38分。若去掉一個最高分平均得分為9.26分;若去掉一個最低分平均得分為9.46分。這名體操運動員的最高分和最低分分別是多少分?14.小狗給動物王國編一本童話故事書。 我編這本書一共用了666個數字。小狗編的這本書一共有多少頁?15.學校合唱團全部是來自甲、乙、丙三個班的同學,其中來自甲、乙兩班的同學共有60人。合唱團中不是甲班的同學有100人,不是乙班的同學有90人。問:(1)合唱團中來自甲、乙兩班的同學各有多少人?(2)合唱團的同學一共有多少人?16.下面是一些「神秘等式」。式中的「+」、「-」、「×」、「÷」等運算符號的意義都與普通的用法相同,但0、1、2、3、……、9等數字所代表的意義則與普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)請你破解出這些「神秘等式」中的秘密,找出其中每個數字所代表的普通意義。(2)普通意義的2006用「神秘等式」中數字所代表的意義來表示,怎樣表示?(3)如果採用「神秘等式」中數字所代表的意義,那麼,60+06等於多少?
1 瀏覽560
求,,,20道小學五年級的奧數題及答案!
1.甲乙丙三人同時從同一地點出發沿同一路線追趕前面的小明;他們三人分別用9分,15分,20分追上小明,已知甲每小時行24千米,以每小時行20千米,求丙每小時行多少千米? 甲9分追上時行走了24*9/60=3.6,乙9分時行走了20*9/60=3,說明在9分時,乙和小明距離為0.6,15分時乙追上,用了6分追了0.6千米,說明乙比小明每分多走0.1千米,乙速度為20,則小明為14千米每小時,則設丙速度為x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小時) 2.甲乙兩人同時從山腳開始爬山,到達山頂後就立即下山,甲乙兩人下山的速度都是各自上山速度的二倍,嫁到山頂是一句山頂還有500米,甲回到山腳是乙剛好下到半山腰,求從山腳到山頂的路程。 甲乙兩人下山的速度都是各自上山速度的二倍,甲到山頂時乙距山頂還有500米,甲到山腳時乙距離山腳距離為500*(1+2)=1500米。 甲回到山腳是乙剛好下到半山腰,所以,從山腳到山頂的路程為3000米 3.甲一分鍾能洗3個盤子或9個碗,乙一分鍾能洗2個盤子或7個碗,甲乙兩人合作,20分鍾洗了134個盤子和碗,問洗了幾個盤子幾個碗? 設甲乙各用x、y分鍾洗盤子,則 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盤子=16*3+18*2=84個,碗=4*9+2*7=50個 4.全班有30名學生,其中17人會騎自行車,16人會游泳,11人會滑冰,
『捌』 求,,,20道小學五年級的奧數題及答案!
1.甲乙丙三人同時從同一地點出發沿同一路線追趕前面的小明;他們三人分別用9分,15分,20分追上小明,已知甲每小時行24千米,以每小時行20千米,求丙每小時行多少千米?
甲9分追上時行走了24*9/60=3.6,乙9分時行走了20*9/60=3,說明在9分時,乙和小明距離為0.6,15分時乙追上,用了6分追了0.6千米,說明乙比小明每分多走0.1千米,乙速度為20,則小明為14千米每小時,則設丙速度為x
9/60*x+11/60*(x-14)=3.6
x=18.5(千米每小時)
2.甲乙兩人同時從山腳開始爬山,到達山頂後就立即下山,甲乙兩人下山的速度都是各自上山速度的二倍,嫁到山頂是一句山頂還有500米,甲回到山腳是乙剛好下到半山腰,求從山腳到山頂的路程。
甲乙兩人下山的速度都是各自上山速度的二倍,甲到山頂時乙距山頂還有500米,甲到山腳時乙距離山腳距離為500*(1+2)=1500米。
甲回到山腳是乙剛好下到半山腰,所以,從山腳到山頂的路程為3000米
3.甲一分鍾能洗3個盤子或9個碗,乙一分鍾能洗2個盤子或7個碗,甲乙兩人合作,20分鍾洗了134個盤子和碗,問洗了幾個盤子幾個碗?
設甲乙各用x、y分鍾洗盤子,則
3x+9(20-x)+2y+7(20-y)=134
6x+5y=186 x<=20,y<=20
x=16, y=18
所以,盤子=16*3+18*2=84個,碗=4*9+2*7=50個
4.全班有30名學生,其中17人會騎自行車,16人會游泳,11人會滑冰,這三項運動沒有人全會,至少會這三分之一項的學生數學成績都及格了,但又都不是優秀。如果全班有8人數學不及格。問:全班有幾人既會游泳又會滑冰?
都不會的人數為8個,所以有24個人至少會一樣。
既會游泳又會滑冰的不會騎自行車,而不會騎自行車的有7人。
驗證:此時會游泳和會滑冰的還剩9人和4人。假設他們都會騎自行車,則
既會騎自行車又會游泳有9人
既會騎自行車又會滑冰有4人
剩餘4人只會騎自行車。
7+9+4+4=24
所以,既會游泳又會滑冰的有7人。
5.小紅和小強同時從家相向而行 ,小紅每分鍾走52米,小強每分鍾走70米,二人在途中的A處相遇。若小紅提前4分鍾出發,但速度不變,小強每分鍾走90米,則兩人仍在A點相遇,小紅和小強家相聚多遠?
小紅提前4分鍾,速度不變,
則到達A點所用時間也提前了4分鍾
小強每分鍾走90米,速度為原來的90÷70=9/7
所用時間為原來的7/9
原來所用時間為:4÷(1-7/9)=18分鍾
小紅和小強相距:(70+52)×18=2196米
6.汽車和自行車分別從A,B兩地相向而行,汽車每小時行50千米,自行車每小時行10千米,兩車相遇後,各自仍演員方向行駛,當汽車到達B地後,返回到兩車相遇時,自行車在前面10千米處正向A地行駛,求A.B兩地之間的距離?
設AB距離為6x千米,所以當兩車相遇時汽車走了5x,自行車走了x,
兩車速度比為 5:1,所以同樣的時間兩車走的路也為 5:1 ,汽車到了B點又返回到相遇點,就走了 2x,那自行車走的路程就為 2x/5 , 所以 2x/5=10
x=25,AB之間的距離就為 150千米
這是我以前做的奧數題,現在我已經上初一了,希望這些題對你有幫助!!
『玖』 20條五年級上冊奧數題
A找規律填空46分(每格2分)
(1)160、145、130、( )、、( )
(2)2、6、18、54、( )、( )、1458
(3)15、4、13、4、11、4、( )、( )
(4)8、15、10、13、12、11、( )、( )
(5)1、6、7、12、13、18、19、( )、( )
(6)2、3、5、8、12、( )、( )、( )
(7)1、3、6、8、16、18、( )、( )、76、78
(8)1頭豬換2隻羊,1隻羊換2隻兔子,1頭豬換( )只兔子。
(9)1個蘋果=2個橘子,1個橘子=8顆糖
1個蘋果可以換( )顆糖
2個蘋果可以換( )顆糖
3個橘子可以換( )顆糖
16顆糖可以換( )個橘子
B應用題54分(1-4題每題4分,5-6題5分,7-10題7分)
1 小紅炒蛋需要做7項工作:敲蛋(1分)、攪蛋(3分)、切蔥(2分)、洗鍋(2分)、燒熱鍋(2分)、燒油(4分)、炒蛋(4分),小紅完成這些工作需要18分鍾,問你覺得最合理的安排需要多少時間 ?說說你安排的思路?
2 小王給個人燒水沏茶,洗水壺要2分鍾,燒開水要17分鍾,洗茶壺要1分鍾,洗茶杯要用5分鍾,放茶葉要1分鍾。小王估算了一下,完成這些工作要27分鍾,問你覺得最合理的安排需要多少時間 ?說說你安排的思路?
3 A、B、C三人分別拿著2個、3個、1個熱水瓶同時到達開水供應點打水,熱水龍頭只有一個,怎樣安排他們所花的等待時間最好?(每瓶打滿需要1分鍾)說說你安排的思路?
4 小東早晨起床,淘米要2分鍾,電飯鍋燒飯要18分鍾,背外語要12分鍾,刷牙洗臉要3分鍾,吃飯要8分鍾,問你覺得最合理的安排需要多少時間 ?說說你安排的思路?
5 一桶水,連桶重250千克,用去一半水後,連桶重145千克,問桶重多少千克?水重多少千克?(5分)
6 小林考的4門功課,平均成績是92分。如果數學成績不計算在內,平均成績是90分,小林的數學成績是多少分?(5分)
7 某工廠計劃生產36500套軸承。前5天平均每天生產2100套,後來改進操作方法,平均每天可以生產2600套。這樣完成這工作需要幾天?
8 羊毛衫廠要做756件羊毛衫。原計劃每人每天做3件,派18人來完成。實際增加了3人,可以提前幾天完成任務?
9 A、B兩人的存款相等,A取出60元,B存入20元,B的存款是A的3倍,兩人原有存款各多少元?
10 一天,甲、乙、丙三人去郊區釣魚,已知甲比乙多釣6條,丙釣的魚是甲的2倍,比乙多釣22條,他們一共釣了多少魚?
1.五張卡片上分別寫有數字:0,0,1,2,3,可以用它們組成許多不同的五位數,求所有這些五位數的平均數是多少。
2.小兔子和小貓咪一起上樓梯,小貓咪的速度是小兔子的速度的2倍,問:當小兔子上到第四層樓時,小貓咪上到第( )層樓。
3.一種野草,每天長高1倍,12天能長到48毫米,當這種野草長到6毫米時需要( )天。
4.小強有兩包糖果,一包有48粒,另一包有12粒,他每次從多的一包里取出3粒,放到少的一包里去,經過( )次,才能使兩包糖果的粒數相等。
5.緊接著4444後面寫一串數字,寫下的每個數字都是它前面兩個數字乘積的個位數。例如:4×4=16,在4的後面寫6,4×6=24,在6的後面寫4,……得到一串數字:4444644644……,這串數字從1開始往右數,第4444個數字是( )。
6.媽媽在平底鍋上煎雞蛋,雞蛋的兩面都要煎,每煎完一面需要30秒鍾,這個鍋上只能同時煎兩個雞蛋,現在需要煎三個雞蛋,至少需要( )秒鍾。
7.有兩堆水果,一堆蘋果一堆梨。如果用1個蘋果換1個梨,那麼還多2個蘋果,如果用1個梨換2個蘋果,那麼還多1個梨,想想看,原來有( )個蘋果,( )個梨。
8. 修一條路,還剩下2.6千米沒有修,已知沒修的比修好的一半還多0.2千米。這條馬路全長是( )千米。
9. 一桶油連桶重5.6千克,用去一半油後連桶還重3.1克。這桶油凈重( )千克。
10. 農葯廠生產一批農葯,每天生產0.24噸。如果每500克售價28.5元。這個廠每天生產的農葯值( )元。
11. 已知甲、乙、丙、丁四個數都不是零,又知道:
甲數÷乙=0.5 丁數÷乙數=1.01 丙數÷0.4=乙數
甲數÷1.25=丙數
比較甲、乙、丙、丁四個數的大小,按從大到小的順序排列,排在第三位的是( )。
12. 3.704小數點後面第100位上的數字是( )。
13. 1993×199.2-1992×199.1=( )
14. 15.37×7.88-9.37×7.88-15.37×2.12+9.37×2.12=( )
15. 有甲、乙、丙三人,甲每分鍾走50米,乙每分鍾走40米,丙每分鍾走60米。甲、乙從東村,丙從西村,同時出發相對而行。甲出發40分鍾後與丙相遇,乙出發( )後與丙相遇。
『拾』 五年級奧數20題,帶答案
朋友:學奧數關鍵要弄清解題方法,光有幾十道題目也沒什麼作用,學習得一步一個腳印。你可以一類一類地過關。建議買一本五年級的奧數書。