1. 小學五年級奧數題30道要答案算式
五年級數學思維訓練題
1、用3個大瓶和5個小瓶可裝墨水5.6千克,用一個大瓶和3個小瓶可裝墨水2.4千克。那麼用1個大瓶和2個小瓶可裝墨水( )千克。
加在一起,4大8小裝5.6+2.4=8,所以,1大2小裝8/4=2千克
2、a,b,c,d四位同學參加奧數測試,a得74分,b得86分,c得96分,四人的平均成績正好是整數。d可能得幾分?
74/4餘2, 86/4餘2, 96/4是整數, 2+2=4, 能被4整除。所以,d分數應該是4的倍數,4n (n=0,1,2。。。25)
3、□×5÷3×9+11=1991中,□里應填入的數字是( )。
(1991-11) ÷9×3÷5=1980÷15=132
4、有紅色小旗2面,藍色小旗1面,這些旗大小和形狀都相同,把這些小旗掛在旗桿上做出各種信號,每面旗以一定的間隔排列。利用這些旗能表示出多少種不同的信號。
只有藍色:3
只有一面紅色:3
只有兩面紅色:3
1紅1藍:3*2=6
2紅1藍:3
3*6=18
5、一筐蘋果,如果平分給4小朋友多出3個蘋果;如果平分給5個小朋友又多出4個蘋果;如果平分給6小朋友則又少1個蘋果。這筐蘋果最少有( )個。
相當於4n-1, 5m-1, 6x-1
找4,5,6的最小公倍數,再-1就是了
4,5,6最小公倍數60,所以蘋果最少有60-1=59個
6、甲、乙兩地相距360千米,客車和貨車同時從甲地出發駛向乙地。貨車速度每小時60千米,客車速度每小時40千米,貨車到達乙地後停留0.5小時,又以原速返回甲地,問從甲地出發幾小時後兩車相遇?
貨車到達乙地時,走了360/60=6小時,再過0.5小時,客車共走6.5*40=260千米,距離乙地360-260=100千米,再過100/(40+60)=1小時兩車相遇,此時距從甲地出發6+0.5+1=7.5小時。
7、一個數除以3餘2,除以4餘3,除以5餘4,這個數最小是( )
同第5題,求3,4,5最小公倍數再-1。 3,4,5最小公倍數是60, 60-1=59
8、綠化工人在一段公路的兩側每隔4米栽一棵樹,一共栽了74棵。現在要改成每隔6米栽一棵樹,不用移栽的樹有多少棵?
每側74/2=37棵
每側(37-1)*4=144米
4和6最小公倍數是12,所以0,12,24。。。。144米的不用移栽,共13棵,需要移栽的是37-13=24棵
兩側一共需要移栽24*2=48棵
9、濱海縣實驗小學五(4)班學生去野炊。用餐時,每2人一個飯碗,每3人一個菜碗,每4人一個湯碗,一共用了65個碗。這個班有多少個學生?
2,3,4最小公倍數是12,每12人用6飯碗、4菜碗、3湯碗,共13個碗。
65/13=5組,所以學生數5*12=60人
10、某縣內電話話費計費是這樣的:0~3分鍾0.2元,超過3分鍾,超過部分按每分鍾0.1元計(不足1分鍾按1分鍾計),小軍打了縣內電話計時7分35秒,算一算這個電話的話費。
0.2+(8-3)*0.1=0.7元
2. 小學五年級數學奧數題(帶答案) 最好是計算題。應用...
1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?五年級試題三答案1,因為10人2組都參加,所以只參加數學的5人,只參加航模的8人,加上那10人就是23人,40-23=17,2個小組都不參加的17人2,同理,數學滿分10人,2科都滿分的3人,於是只是數學滿分的7人,45-7-29=9,這個就是語文滿分的人(如果說只是語文滿分的則需要減去3)3,50÷4取整12,50÷6取整8,但是要注意,報4倍數的同時可能是6的倍數,所以還要算出4和6的公倍數,有50÷12(4和6的最小公倍數)=4(取整),所以,應該是50-12-8+4=344,100÷2=50,100÷3=33(取整),還是算出2和3的公倍數100÷6=16(取整),然後找出即沒不被2整除,也不被3整除的數的個數100-50-33+16=28,所以,准備鉛筆為50X2+33X3+28=2275,180÷3=60,180÷4=45,但是可能2個劃線劃在一起,也就是要算出他們的公倍數,180÷3÷4=15,所以應該為60+45-15=901.一塊長1米20厘米,寬90厘米的鋁皮,剪成直徑30厘米的圓片,最多可以剪幾塊?分析:此題不需求面積的。只需求長和寬各是圓的直徑的幾倍,然後求出長和寬的倍數的積。1米20厘米=120厘米120÷30=4 90÷30=34×3=12(塊)答:最多可以剪12塊。2.一個圓柱,底面半徑1分米,它的側面展開是一個正方形。這個圓柱的表面積和體積是多少?分析:從側面展開圖正方形入手,可知這個圓柱的高是圓柱的底面周長。圓柱的表面積:(3.14×1×2)×(3.14×1×2)+3.14×1×1×2=6.28×6.28+6.28=6.28×7.28=45.7184(平方分米)圓柱的體積:3.14×1×1×(3.14×1×2)=3.14×6.28=19.7192(平方分米)答:這個圓柱的表面積是45.7184平方分米,體積是19.7192平方分米。3.一列火車上午8時從甲站開出,到第二天的晚上9時到達乙站。已知火車平均每小時行98千米。甲乙兩站間的鐵路長多少千米?分析:這題的解題關鍵是要知道火車行駛的時間。24-8+9=25(小時)[或者:12-8+12+9=25(小時)]98×25=(100-2)×25=2500-50=2450(千米)答:甲乙兩站間的鐵路長2450千米。4.一個圓和一個扇形的半徑相等。已知圓的面積是30平方厘米,扇形的圓心角是72度。求扇形的面積。分析:因為圓和扇形的半徑相等,圓和扇形的面積存要在倍數關系。這個倍數就是它們圓心角之間的倍數關系。72÷360=1/5,30×1/5=6(平方厘米)答:扇形的面積是6平方厘米。第11題:一個半徑3厘米的圓,在圓中畫一個扇形,使它的面積占圓面積的20%,並且算出這個扇形的面積。分析:此題與上題的思路一樣。3.14×3×3×20%=5.652(平方厘米)答:這個扇形的面積是5.652平方厘米。5.學校把植樹任務按5:3分給六年級和五年級。六年級實際栽了108棵,超過原分配任務的20%。原計劃五年級栽樹多少棵?分析:六年級原計劃栽樹的棵數是解題的關鍵。1、六年級原計劃栽樹多少棵?108÷(1+20%)=108×5/6=90(棵)2、原計劃五年級栽樹多少棵?90÷5×3=54(棵)綜合算式:108÷(1+20%)÷5×3=90÷5×3=54(棵)答:原計劃五年級栽樹54棵。6.甲乙兩面個工程隊全修一段公路,甲隊的工作效率是乙隊的3/5。兩隊合修6天正好完成這段公路的2/3,餘下的由乙隊單獨修,還要幾天才能修完?分析:求兩隊的工效是解題的關鍵。1、兩隊的工效和是多少?2/3÷6=1/92、乙隊的工效是多少?1/9×[5÷(3+5)]=1/9×5/8=5/723、還要幾天才能修完?(1-2/3)÷5/72=1/3×72/5=24/5(天)答:還要24/5天才能修完。7.某水泥廠去年生產水泥232400噸,今年頭5個月的產量就等於去年全年的產量。照這樣計算,這個水泥廠今年將比去年增產百分之幾?解法一:分析,今年後7個月的產量就是增產的,因此我們要先求出後7個月生產量。232400÷5×(12-5)=46480×7=325360(噸)325360÷232400=1、4=140%解法二:把232400噸看作單位「1」,1、今年平均每月生產量是去年的幾分之幾?1÷5=1/52、今年比去年增產幾分之幾?1/5×(12-5)=7/53、今年比去年增產百分之幾?7/5=1.4=140%綜合算式:1÷5×(12-5)=1.4=140%答:這個廠今年比去年增產140%。8.幼兒園買進大小兩種毛巾各40條,共用258.8元。大毛巾的單價比小毛巾單價的2倍多0.11元。這兩種毛巾單價各是多少元?解:設小毛巾的單價是x元,則大毛巾的單價是(2x+0.11)元。[x+(2x+0.11)]×40=258.83x=6.47-0.11x=6.36÷3x=2.122x+0.11=2.12×2+0.11=4.35答:大毛巾的單價是每條4.35元,小毛巾的單價是每條2.12元。9. 一間長4、8米、寬3、6米的房間,用邊長0、15米的正方形瓷磚鋪地面,需要768塊。在長6米、寬4、8米的房間里,如果用同樣的瓷磚來鋪,需要多少塊?如果在第一個房間改鋪邊長0、2米的正方形瓷磚,要用多少塊?(用比例解)分析:房間的面積是一定的,每塊磚的面積和塊數成反比例。解:設需要x塊。0.15×0.15x =6×4.8x =6×4.8÷0.15÷0.15x =1280答:需要1280塊。解:設需要y塊。0.2×0.2y=4.8×3.6y=4.8×3.6÷0.2÷0.2y=432答:需要432塊。10.一艘輪船所帶的柴油最多可以用6小時。駛出時順風,每小時行駛30千米。駛回時逆風,每小時行駛的路程是順風時的4/5。這艘輪船最多駛出多遠應往回駛?分析:輪船行駛的路程一定,每小時行駛的路程和時間成反比例。解:設這艘輪船逆風行駛了x小時。30×4/5x=30×(6-x)4/5x=6-x9/5x=6x=10/330×4/5×10/3=80(千米)答:這艘輪船最多駛出80千米就應往回駛。11. 一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,這時距離乙地還有94千米。甲乙兩地的公路長多少千米?分析:「從第二小時比第一小時多行了16千米」可知第二小時行了全程的1/7和16千米。第一小時和第二小時共行全程的(1/7+1/7)和16千米。由此可知(96+16)佔全程的(1-1/7-1/7)。根據上面的分析得:(96+16)÷(1-1/7-1/7)=112÷5/7=112×7/5=156、8(千米)答:甲乙兩地的公路長156、8千米。或者用方程解:解:設甲乙兩地的公路長x千米。(1-1/7-1/7)x=96+165/7x=112x=156、8答:甲乙兩地的公路長156、8千米。題目改編:若這題中的一個條件改成「這時距離甲地96千米」,其它條件不變,問題也不變。如何解答?12.一個編織組,原來30人10天生產1500隻花籃。現在增加到80人,按原來的工效,生產6000隻花籃需要多少天?(用比例解答)分析:題中說「按原來的工效」,這說明這個紡織組的工作效率是一定的。工作效率一定,工作總量和工作時間成正比例。解:設需要x天。1500:(30×50)=6000:(80×x)1500×(80×x)=6000×(30×50)x=6000×30×50÷80÷1500x=6000÷80x=75答:需要75天。
終於打完了,行嗎?我奧術書上的。
3. 要30道5年級數學奧數題,帶答案。
1.一塊長米20厘米,寬90厘米的鋁皮,剪成直徑30厘米的圓片,最多可以剪幾塊?
分析:此題不需求面積的。只需求長和寬各是圓的直徑的幾倍,然後求出長和寬的倍數的積。
1米20厘米=120厘米
120÷30=4
90÷30=3
4×3=12(塊)
答:最多可以剪12塊。
2.一個圓柱,底面半徑1分米,它的側面展開是一個正方形。這個圓柱的表面積和體積是多少?
分析:從側面展開圖正方形入手,可知這個圓柱的高是圓柱的底面周長。
圓柱的表面積:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圓柱的體積:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:這個圓柱的表面積是45.7184平方分米,體積是19.7192平方分米。
3.一列火車上午8時從甲站開出,到第二天的晚上9時到達乙站。已知火車平均每小時行98千米。甲乙兩站間的鐵路長多少千米?
分析:這題的解題關鍵是要知道火車行駛的時間。
24-8+9=25(小時)[或者:12-8+12+9=25(小時)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙兩站間的鐵路長2450千米。
4.一個圓和一個扇形的半徑相等。已知圓的面積是30平方厘米,扇形的圓心角是72度。求扇形的面積。
分析:因為圓和扇形的半徑相等,圓和扇形的面積存要在倍數關系。這個倍數就是它們圓心角之間的倍數關系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面積是6平方厘米。
第11題:一個半徑3厘米的圓,在圓中畫一個扇形,使它的面積占圓面積的20%,並且算出這個扇形的面積。
分析:此題與上題的思路一樣。
3.14×3×3×20%=5.652(平方厘米)
答:這個扇形的面積是5.652平方厘米。
5.學校把植樹任務按5:3分給六年級和五年級。六年級實際栽了108棵,超過原分配任務的20%。原計劃五年級栽樹多少棵?
分析:六年級原計劃栽樹的棵數是解題的關鍵。
1、六年級原計劃栽樹多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原計劃五年級栽樹多少棵?
90÷5×3=54(棵)
綜合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原計劃五年級栽樹54棵。
6.甲乙兩面個工程隊全修一段公路,甲隊的工作效率是乙隊的3/5。兩隊合修6天正好完成這段公路的2/3,餘下的由乙隊單獨修,還要幾天才能修完?
分析:求兩隊的工效是解題的關鍵。
1、兩隊的工效和是多少?
2/3÷6=1/9
2、乙隊的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、還要幾天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:還要24/5天才能修完。
7.某水泥廠去年生產水泥232400噸,今年頭5個月的產量就等於去年全年的產量。照這樣計算,這個水泥廠今年將比去年增產百分之幾?
解法一:分析,今年後7個月的產量就是增產的,因此我們要先求出後7個月生產量。
232400÷5×(12-5)
=46480×7
=325360(噸)
325360÷232400=1、4=140%
解法二:把232400噸看作單位「1」,
1、今年平均每月生產量是去年的幾分之幾?
1÷5=1/5
2、今年比去年增產幾分之幾?
1/5×(12-5)=7/5
3、今年比去年增產百分之幾?
7/5=1.4=140%
綜合算式:1÷5×(12-5)=1.4=140%
答:這個廠今年比去年增產140%。
8.幼兒園買進大小兩種毛巾各40條,共用258.8元。大毛巾的單價比小毛巾單價的2倍多0.11元。這兩種毛巾單價各是多少元?
解:設小毛巾的單價是x元,則大毛巾的單價是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的單價是每條4.35元,小毛巾的單價是每條2.12元。
9.
一間長4、8米、寬3、6米的房間,用邊長0、15米的正方形瓷磚鋪地面,需要768塊。在長6米、寬4、8米的房間里,如果用同樣的瓷磚來鋪,需要多少塊?如果在第一個房間改鋪邊長0、2米的正方形瓷磚,要用多少塊?(用比例解)
分析:房間的面積是一定的,每塊磚的面積和塊數成反比例。
解:設需要x塊。
0.15×0.15x
=6×4.8
x
=6×4.8÷0.15÷0.15
x
=1280
答:需要1280塊。
解:設需要y塊。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432塊。
10.一艘輪船所帶的柴油最多可以用6小時。駛出時順風,每小時行駛30千米。駛回時逆風,每小時行駛的路程是順風時的4/5。這艘輪船最多駛出多遠應往回駛?
分析:輪船行駛的路程一定,每小時行駛的路程和時間成反比例。
解:設這艘輪船逆風行駛了x小時。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:這艘輪船最多駛出80千米就應往回駛。
11.
一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,這時距離乙地還有94千米。甲乙兩地的公路長多少千米?
分析:「從第二小時比第一小時多行了16千米」可知第二小時行了全程的1/7和16千米。第一小時和第二小時共行全程的(1/7+1/7)和16千米。由此可知(96+16)佔全程的(1-1/7-1/7)。
根據上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙兩地的公路長156、8千米。
或者用方程解:
解:設甲乙兩地的公路長x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙兩地的公路長156、8千米。
題目改編:若這題中的一個條件改成「這時距離甲地96千米」,其它條件不變,問題也不變。如何解答?
12.一個編織組,原來30人10天生產1500隻花籃。現在增加到80人,按原來的工效,生產6000隻花籃需要多少天?(用比例解答)
分析:題中說「按原來的工效」,這說明這個紡織組的工作效率是一定的。工作效率一定,工作總量和工作時間成正比例。
解:設需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.紅光農場有兩塊麥田,第一塊5.5公頃,共收小麥27.3噸,第二塊3.6公頃,共收小麥18.2噸,這兩塊麥田平均每公頃收小麥多少噸?
14.
一輛汽車在山區行駛,上山用了3小時,平均每小時行30千米,下山行完同樣的路程,只用了2小時,求這輛汽車上山,下山的平均速度.
15.
甲乙二人同時從同一地點向相反方向背向而行,甲每小時行駛15千米,乙每小時行駛12千米,4.5小時兩人相距多少千米?甲比乙多走多少千米?
16.
服裝廠計劃做1470套服裝,已經做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原來每天多做多少套?
17.
每套童裝用布2.5米,每套成人服裝用布4米,現在要做童裝5套,成人服裝3套,共有布30米,還可以剩下多少米布?如果每條褲子用布1.1米,剩下的這些布可做褲子多少條?
18.超市開展礦泉水「買5送1」的活動。一個旅遊團有48人,想每人發一瓶礦泉水,需要購買多少瓶水就夠了?
(買5送1
的意思是要6瓶礦泉水只需要買5瓶,48里有8個6,所以只需要8個5就可以了,答案是40瓶。)
19.
一個小數部分是兩位的小數,用四捨五入法把它精確到0.1,它的近似值是5.0,那麼這個兩位小數是什麼?
(解析:所求的兩位小數是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20.
一隻底面是正方形的長方體鐵箱,如果把它的側面展開,正好得到一個邊長是40cm的正方形.求這只鐵箱的容積是多少升?
《
40÷4=10
10×10×40÷1000=4》
回答者:
cyg2436
-
高級經理
七級
1-12
15:16
小學5年級奧數題選
填空題
1.計算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。
2.1×1+2×2+3×3+……1997×1997+1998×1998的個位數字是________。
3.一個兩位數,在它的兩個數字中間添一個0,就比原來的數多630,這樣的兩位數共有_______個。
4.現有壹元的人民幣4張,貳元的人民幣2張,拾元的人民幣3張,如果從中至少取1張,至多取9張,那麼,共可以配成_______種不同的錢數。
5.一組四位數,每一個數的數字均不為0,並且互不相同,但每個數所有的數字和都為12,將所有這樣的四位數從小到大依次排列,第25個數是_______。
6.大猴給小猴分桃子,如果每隻小猴分8個桃子,還剩10桃子;如果每隻小猴分9個桃子,那麼有一隻小猴就分不足9個,但仍可以分到桃子,小
8.有一棟居民樓,每家都訂2份不同的報紙,該居民樓共訂了三種報紙。其中《南通廣播電視報》34份,《揚子晚報》30份,《報刊文摘》22份。那麼,訂《揚子晚報》和《報刊文摘》的共有_______家。
9.強強、芳芳兩人在相距120米的直路上來回跑步,強強每秒跑2米,芳芳每秒跑3米。如果兩人同時從兩端點出發,那麼15分鍾內他們共相遇_______次。
10.某車間加工一批零件,計劃每天加工48個,實際每天比計劃多加工12個,結果提前5天完成任務。這批零件共有_______個。
(小數報427期改編)
11.李、孫、王三人今年年齡之和為113歲,王38歲時,孫的年齡是李的2倍,李17歲時,王的年齡是孫的2倍,孫今年_______歲。
(小數報492期,98—9—18)
(小數報475期)
13.有16把鎖和20把鑰匙,其中20把鑰題中的16把是和16把鎖一一配對的,但現在鎖和鑰匙弄亂了。那麼,至少需要試_______次才能確保鎖和鑰匙都配對起來。
(小數報457期,改編)
(小數報475期98—4—10改編)
15.甲、乙、丙、丁四名學生參加南通市小學生數學競賽。賽前,三位老師進行預測:
一位老師說:丙第一名,甲第二名;
另一位老師說:乙第一名,丁第四名;
還有一位老師:丁第二名,丙第三名。
http://rita.blog.luohue.net/blog/View.aspx?essayID=27351&BlogID=6572
看看滿意嗎?
4. 五年級上冊奧數計算題及答案,在線等。
1. 765×213÷27+765×327÷27
2.(9999+9997+…+9001)-(1+3+…+999)
3.19981999×19991998-19981998×19991999
1. 765×213÷27+765×327÷27
解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300
2. (9999+9997+…+9001)-(1+3+…+999)
解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000 (500個9000)
=4500000
3.19981999×19991998-19981998×19991999
解:(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000
4計算:20×20-19×19+18×18-17×17+…+2×2-1×1
答案:
原式=(20+19)(20-19)+(18+17)(18-17)+…+(2+1)(2-1)
=20+19+18+17+…+2+1
=210
5計算1994.5×79+0.24×790+7.9×31
解答:原式=1994.5×79+2.4×79+79×3.1
=(1994.5+2.4+3.1)×79
=2000×79
=158000
6計算:38765432-3876542×3876544
解答:本題一看好大的數字,肯定有絕招,我們發現
3876542=3876543-1
3876544=3876543+1
原式=38765432-(3876543-1)×(3876543+1)
=38765432-(38765432-1)
=1
7計算2010×2009-2009×2008+2008×2007-2007×2006+…+2×1
解答:原式=2009×(2010-2008)+2007×(2008-2006)+…+3×(4-2)+2×1
=(2009+2007+…+3+1)×2
=1010025×2
=2020050
一、輕松填一填:
1.1~20的自然數中,奇數有個,偶數有個,質數有個,合數有個。
2.327至少加上,才是2的倍數,至少減去,才是5的倍數。
3.在15、18、20、30、45這五個數中,是3的倍數是。有因數
5的數是,既是3的倍數,又是5的倍數有。
4.在三位數4□2的「 □ 」中分別填上、、和後組成的數、都是3的倍數。
5.兩個完全一樣的三角形,拼成一個面積是8.2平方厘米的平行四邊形,其中一個三角形的面積是平方厘米。
6.一個平行四邊形面積是38平方厘米,底是9.5厘米,高是。
7.把3噸煤平均分成3堆,每堆煤重噸,每堆煤是3噸煤的。
8.3/4的分數單位是,再加上個這樣的單位就是最小的質數。
9.3620平方厘米=()平方分米=()平方米
0.15公頃=()平方米500米=()千米
10.自然數a和b,當a()b時,b/a是真分數,當a()b時,b/a是假分數,當a()b時,b/a=1。
11、一個數的倍數的個數是,其中最小的是。
二、判斷。
1.三角形的面積等於平行四邊形面積的一半。
2.兩個連續奇數的積一定是合數。
3.一個數的倍數總比這個數的因數大。
4.5是因數,15是倍數。
5.在獻愛心活動中,笑笑捐了自己零花錢的1/5,淘氣捐了自己零花錢的3/5, 淘氣捐的錢比笑笑多。
6、假分數都比1大。
三、選擇。
1.既是2的倍數,又是5的倍數的最大三位數是
A、999 B、995 C、990 D、950
2.一個質數
A、沒有因數B、只有一個因數 C、只有2個因數 D、有3個因數
3.下面各組數中,三個連續自然數都是合數的是
A、14、15、16 B、7、8、9 C、13、15、16
4.分數的分母與除法算式中的除數
A、可以是任何數B、不能是0C、可以是0
5.一個梯形的上底、下底都不變,高擴大為原來的2倍,它的面積
A、不變 B、擴大為原來的2倍C、縮小為原來的4倍
四、計算。
1、直接寫出得數。
4.1×0.5=7.6×2.5×4= 2.88÷0.4=
1.35÷5= 7a-0.2a+a=2.5-1.37=
2、解方程。
2X+3X=50 m-0.85m=3
7(X-1)=6.3 3X+7X+2.6=74
五、生活中的數學。
1、五(2)班學生在為災區獻愛心活動中捐書129本,其中男生捐書78本,剩下的是女生捐的。男生捐書的本數佔全班捐書總數的幾分之幾?女生捐書的本數佔全班捐書總數的幾分之幾?
2、甲、乙兩地相距460千米,客車與貨車同時從甲、乙兩地出發,相向而行,客車每小時行60千米,貨車每小時行55千米。
(1)經過多久兩車可能相遇?(用方程解)
(2)相遇時客車比貨車多行多少千米?
3、小明家的菜地是梯形的,上底是6米,下底是10米,高12米,如果每平方米收西紅柿7千克,這塊菜地可以收西紅柿多少千克?
4、一批零件平均分給3個,5個,7個師傅做都剩1個,這批零件在100—110個之間。請問這批零件有多少個?
5、甲5小時行24千米,乙7小時行32千米。他們兩人誰的速度快?
6、同學們去游覽自然風景區,門票如下:學生票每人30元,成人票每人60人,團體20人以上(含20人)每人40元;有40名學生和5位教師。
怎樣購票最省錢,共需多少元?
一、每空1分,共28分。
1、10,10,8,11; 2、1,7; 3、15,18,30,45;
15,20,30,45;15,30,45; 4、0,3,6,9;
5、4.1平方厘米;6、4厘米; 7、1,1/3;
8、1/4,5;9、36.2,0.362,1500,0.5;10、>,<,=;
11、有限的,它本身;
二、判斷:每題2分,共12分。
1、 ×2、√ 3、×4× 5、× 6、×
三、每題2分,共10分。
1、 C 2、C 3、 A4、 B 5、 B
四、計算:共18分
1、每題1分,共6分。
2.05;76;7.2;0.27;7.8a;1.13;;
3、每題3分,共12分。
X=10;X= 20 ; X=1.9;X=4.8
六、生活中的數學:1、3、4、5、6每題6分,2題7分;共26分。
1、26/43,17/43; 2、4小時,20千米;3、672千克; 4、106個;
5、甲的速度快
6、買40張學生票,5張成人票;共1500元
5. 20道簡單的五年級奧數題及答案
有獎勵
20道簡單的五年級奧數題及答案
急急急!!!
我來答有獎勵
138******49
LV.1
聊聊關注成為第1位粉絲
1.有一些糖,每人分5塊多10塊;如果現有的人數增加到原人數的1.5倍,那麼每人4塊就少2塊.問這些糖共有多少塊?
【分析與解】 方法一:設開始共有x人,兩種分法的糖總數不變,有5x+10=4×1.5x-2,解得x=12,所以這些糖共有12×5+10=70塊.
方法二:人數增加1.5倍後,每人分4塊,相當於原來的人數,每人分1.5×4=6塊.
有這些糖,每人分5塊多10塊,每人分6塊少2塊,所以開始總人數為(10+2)÷(6-5)=12人,那麼共有糖12×5+10=70塊.
2.甲、乙兩個小朋友各有一袋糖,每袋糖不到20粒.如果甲給乙一定數量的糖後,甲的糖就是乙的糖粒數的2倍;如果乙給甲同樣數量的糖後,甲的糖就是乙的糖粒數的3倍.那麼,甲、乙兩個小朋友共有糖多少粒?
【分析與解】 由題意知糖的總數應該是3的倍數,還是4的倍數.即為12的倍數,因為兩袋糖每袋都不超過20粒,所以總數不超過40粒.於是糖的總數只可能為12、24或36粒.
如果糖的總數為12的奇數倍,那麼「乙給甲同樣數量的糖後」,甲的糖為12÷(3+1)×3=9的奇數倍.那麼在甲給乙兩倍「同樣的數量糖」後,甲的糖為12÷(2+1)×2=8的奇數倍.
也就是說一個奇數加上一個偶數等於偶數,顯然不可能.所以糖的總數不能為12的奇數倍.
那麼甲、乙兩個小朋友共有的糖只能為12的偶數倍,即為24粒.
3.甲班有42名學生,乙班有48名學生.已知在某次數學考試中按百分制評卷,評卷結果各班的數學總成績相同,各班的平均成績都是整數,並且平均成績都高於80分.那麼甲班的平均成績比乙班高多少分?
【分析與解】 方法一:因為每班的平均成績都是整數,且兩班的總成績相等,所以總成績既是42的倍數,又是48的倍數,所以為[42,48]=336的倍數.
因為乙班的平均成績高於80分,所以總成績應高於48×80=3840分.
又因為是按百分制評卷,所以甲班的平均成績不會超過100分,那麼總成績應不高於42×100=4200分.
在3840~4200之間且是336的倍數的數只有4032.所以兩個班的總分均為4032分.
那麼甲班的平均分為4032÷42=96分,乙班的平均分為4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因為7、8互質,所以甲班的平均分為某數的8倍,乙班的平均分為某數的7倍,又因為兩個班的平均分均超過80分,不高於100分,所以這個數只能為12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某鄉水電站按戶收取電費,具體規定是:如果每月用電不超過24度,就按每度9分錢收費;如果超過24度,超出的部分按每度2角錢收費.已知在某月中,甲家比乙家多交了電費9角6分錢(用電按整度計算),問甲、乙兩家各交了多少電費?
【分析與解】 如果甲、乙兩家用電均超過24度,那麼他們兩家的電費差應是2角錢的整數倍;
如果甲、乙兩家用電均不超過24度,那麼他們兩家的電費差應是9分錢的整數倍.
現在9角6分既不是2角錢的整數倍,又不是9分錢的整數倍,所以甲家的用電超過了24度,乙家的用電不超過24度.
設甲家用了24+x度電,乙家用了24-y度電,有20x+9y=96,得x=3,y=4.
即甲家用了27度電,乙家用了20度電,那麼乙家應交電費20×9=180分=1元8角,則甲家交了180+96=276分=2元7角6分.
即甲、乙兩家各交電費2元7角6分,1元8角.
5.一小、二小兩校春遊的人數都是10的整數倍,出行時兩校人員不合乘一輛車,且每輛車盡量坐滿.現在知道,若兩校都租用有14個座位的旅遊車,則兩校共需租用這種車72輛;若兩校都租用19個座位的旅遊車,則二小要比一小多租用這種車7輛.問兩校參加這次春遊的人數各是多少?
【分析與解】 設二小春遊人數為m,一小春遊人數為n.由已知乘19座麵包車二小比一小多租用7輛.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知兩校共需租用14座麵包車72輛,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同時已知m與n都是10的倍數,於是有
, 解得 , 另外四組因為解得m、n不是10的倍數.
經檢驗只有 滿足.
所以,一小參加春遊430人,二小參加春遊570人.
6.某遊客在10時15分由碼頭劃出一條小船,他欲在不遲於13時回到碼頭.河水的流速為每小時1.4千米,小船在靜水中的速度為每小時3千米,他每劃30分鍾就休息15分鍾,中途不改變方向,並在某次休息後往回劃.那麼他最多能劃離碼頭多遠?
【分析與解】 從10時15分出發,不遲於13時必須返回,所以最多可劃行2小時45分,即165分鍾.165=4×30+3×15,最多可劃4個30分鍾,休息3個15分鍾.
順流速度為3+1.4=4.4千米/4,時;所以順流半小時劃行路程為4.4×0.5=2.2千米;
逆流速度為3-1.4=1.6千米/4,時;所以逆流半小時劃行路程為1.6×0.5=0.8千米.
休息15分鍾,則船順流漂行的路程為1.4×0.25=0.35千米.
第一種情況:當開始順流時,至少劃行半小時,行駛2.2千米,而在休息的3個時問內船又順流漂行0.35×3=1.05千米的路程,所以逆流返回時需劃行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小時=121.875分鍾.即最少需30+15×3+121.875=196.875分鍾>165分鍾,來不及按時還船.不滿足.
第二種情況:當開始逆流時,每逆流半小時,則行駛0.8千米,則3次逆流後,行駛了0.8×3=2.4千米,船在遊客休息時順流漂行了1.05千米,所以回劃時只用劃行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小時≈18.41分鍾.共需3×30+3×15+18.41=153.41分鍾<165分鍾,滿足.
於是,只有第二種情況滿足,此時最遠的路程為休息了2次後第3次逆流所至的地點,為0.8×3-0.35×2=1.7千米.
所以,他最多能劃離碼頭1.7千米.
7. 機械廠計劃生產一批機床,原計劃每天生產40台,可在預定的時間內完成任務,實際每天生產48台,結果提前4天完成任務,求這批機床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷廠計劃用24天裝訂一批書,每天裝訂12000本,實際提前4天完成了任務,實際比原計劃每天多裝訂多少本?
【分析與解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙兩磚廠,甲廠原存磚87500塊,乙廠比甲廠多存磚4500塊,某日甲廠賣出25000塊,乙廠比甲廠少賣出3000塊,這時哪廠存磚多?多多少塊?
【分析與解】甲廠存磚:87500-25000=62500(塊)
乙廠存磚:(87500+4500)-(25000-3000)=70000(塊)
∴ 乙廠存磚多,多 70000-62500=7500(塊)
10. 一筐蘋果連筐共重45千克,賣出一半後,剩下的蘋果連筐共重24千克,求原來有蘋果多少千克?
【分析與解】(45-24)×2=42(千克)
11.小明上午8時騎自行車以每小時12千米的速度從A地到B地,小強上午8時40分騎自行車以每小時16千米的速度從B地到A地,兩人在A、B兩地的中點處相遇,A、B兩地間的路程是多少千米?
【分析與解】這是一個相向而行相遇求路程的問題。但兩人不是同時出發,如果能轉換成同時出發,並且求出行多少小時相遇,就可以用數學課學的方法解答。
兩人在兩地間的路程的中點相遇,但小明比小強多行了40分鍾,如果兩人同時出發,相遇時,小明行的路程就比小強少12÷60×40=8(千米),就是當小強出發時,小明已經行了8千米,從8時40分起兩人到兩人相遇,由於小明每小時比小強少行16-12=4(千米),說明兩人相遇時間是8÷4=2(小時),那麼,A、B兩地間的路程是8+(12+16)×2=64(千米)。
答:A、B兩地間的路程是64千米。
12:甲、乙兩村相距3550米,小偉從甲村步行往乙村,出發5分鍾後,小強騎自行車從乙村前往甲村,經過10分鍾遇見小偉。小強騎車每分鍾行的比小偉步行每分鍾多160米,小偉每分鍾走多少米?
【分析與解】如果小強每分鍾少行160米,他行的速度就和小偉步行的速度相同,這樣小強10分鍾就少行了160×10=1600(米),小偉(5+10)分鍾和小強10分鍾一共行走的路程是3550-1600=1950(米),那麼小偉每分鍾走的路是1950÷(5+10+10)=78(米)。
答:小偉每分鍾走78米。
13:客車從東城和貨車從西城同時開出,相向而行,客車每小時行44千米,貨車每小時行36千米,客車到西城比貨車到東城早2小時。兩車開出後多少小時在途中相遇?
【分析與解】當客車到西城時,貨車離東城還有2×36=72(千米),而貨車每小時行的比客車少44-36=8(千米),客車行東西城間的路程用的時間是72÷8=9(小時),因此東西城相距44×9=396(千米),兩車從出發到相遇用的時間是;396÷(44+36)=4.95(小時)
答:兩車開出後4.95小時在途中相遇。
14:甲、乙二人同一天從北京出發沿同一條路騎車往廣州,甲每天行100千米,乙第一天行70千米,以後每天都比前一天多行3千米,直到追上甲,乙出發後第幾天追上甲?
【分析與解】二人同時、同地出發同向而行,但開始時,乙比甲行得慢,當乙的速度增加到與甲相同前,兩人間的距離越拉越大,當乙的速度超過甲時,兩人間的距離又越來越近,直到乙追上甲。
開始時,乙一天行的比甲少100-70=30(千米),以後乙每天多行3千米,到與甲速相同要經過30÷3=10(天),即前10天,甲、乙之間的距離是逐天拉大的,第11天兩人速度相同,從第12天起,乙的速度開始比甲快,與甲的距離逐天拉近,所以,乙追上甲用的時間是:10×2+1=21(天)。
答:乙出發後第21天追上甲。
15:甲、乙兩地相距10千米,快、慢兩車都從甲地開往乙地,快車開出時,慢車已行了1.5千米,當快車到達乙地時,慢車距乙地還有1千米,那麼快車在距乙地多少千米處追上慢車?
【分析與解】慢車行了1.5千米,快車才開出,而快車到達乙地時,慢車距乙地還有1千米,就是在快車行10千米的時間里,比慢車多行的路程為1.5+1=2.5(千米)。快車每行1千米比慢車多2.5÷10=0.25(千米)。
16. 有7個數,它們的平均數是18。去掉一個數後,剩下6個數的平均數是19;再去掉一個數後,剩下的5個數的平均數是20。求去掉的兩個數的乘積。
【分析與解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數是12和14它們的乘積是12*14=168
17. 有七個排成一列的數,它們的平均數是 30,前三個數的平均數是28,後五個數的平均數是33。求第三個數。
【分析與解】28×3+33×5-30×7=39。
18. 有兩組數,第一組9個數的和是63,第二組的平均數是11,兩個組中所有數的平均數是8。問:第二組有多少個數?
【分析與解】設第二組有x個數,則63+11x=8×(9+x),解得x=3。
19.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比後兩次的平均分少2分。如果後三次平均分比前三次平均分多3分,那麼第四次比第三次多得幾分?
【分析與解】第三、四次的成績和比前兩次的成績和多4分,比後兩次的成績和少4分,推知後兩次的成績和比前兩次的成績和多8分。因為後三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
20. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數表示)
【分析與解】每20天去9次,9÷20×7=3.15(次)。
編輯於 2020-02-13
查看全部8個回答
數學考試題,數學題目大全,0元試聽,總結高效提分方法。
值得一看的數學相關信息推薦
數學考試題,掌門1對1擁有10000+教研人員,1對1針對性教學,查缺補漏,快速提升!數學考試題,初高中在線1對1輔導,好老師1對1輔導教出好成績。
上海掌小門教育科技..廣告
掌門優課在線高二數學題目及答案輔導_一線名師在線教學
名師高二數學題目及答案輔導,全程視頻互動,結合地域差異,個性化教學,2節精品小班課免費領!
上海掌小門教育科技..廣告
相關問題全部
廣告數學題五年級_數學沖刺高分的秘籍_名師來告訴你
數學題五年級_作業幫,緊扣當地教材,快速吃透教材重難點,短時沖刺高分必備。學完就測評孩子成績提升看得見!
572020-06-03
20道五年級下學期奧數題(簡單一點的)不要答案
第六屆小學「希望杯」全國數學邀請賽一、填空題(每小題5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奧運吉祥物中的5個「福娃」取「北京歡迎您」的諧音:貝貝、京京、歡歡、迎迎、妮妮。如果在盒子中從左向右放5個不同的「福娃」,那麼,有 種不同的放法。3、有一列數:1,1,3,8,22,60,164,448……其中的前三個數是1,1,3,從第四個數起,每個數都是這個數前面兩個數之和的2倍。那麼,這列數中的第10個數是 4、有一排椅子有27個座位,為了使後去的人隨意坐在哪個位置都有人與他相鄰,則至少要先坐 人。5、一個擰緊瓶蓋的瓶子里裝著一些水(如圖1),由圖中的數據可推知瓶子的容積是 立方厘米;( 取3.14)6、某小區有一塊如圖2所示的梯形空地,根據圖中的數據計算,空地的面積是 平方米。 7、如圖3,棱長分別為1厘米,2厘米,3厘米,5厘米的四個正方體緊貼在一起,則所得到的多面體的表面積是 平方厘米。8、五年級一班共有36人,每人參加一個興趣小組,共有A,B,C,D,E五個小組,若參加A組的有15人,參加B組的僅次於A組,參加C組、D組的人數相同。參加E組的人數最少,只有4人,那麼,參加B組的有 人。 9、菜地里的西紅柿獲得豐收,摘了全部的 時,裝滿了3筐還多16千克。摘完其餘部分後,又裝滿6筐,則共收得西紅柿 千克。10、工程隊修一條公路,原計劃每天修720米,實際每天比原計劃多修80米。因而提前3天完成任務。這條路全長 千米。11、王叔叔開車從北京到上海,從開始出發,車速即比原計劃的速度提高了 ,結果提前一個半小時到達;返回時,按原計劃的速度行駛280千米後,將車速提高 ,於是提前1小時40分到達北京。北京、上海兩市間的路程是 千米。12、兩個完全相同長方體的長、寬、高分別是5厘米、4厘米、3厘米,把它們拼在一起可組成一個新長方體,在這些長方體中,表面積最小的是 平方厘米。二、解答題(本大題共4小題,每小題15分,共60分)要求:寫出推算過程13、著名的哥德巴赫猜想:「任意一個大於4的偶數都可以表示為兩個質數的和」。如6=3+3,12=5+7,等。那麼自然數100可以寫成多少種兩個不同質數和的形式?請分別寫出來(100=3+97和100=97+3算作同一種形式)14、如圖4(a),ABCD是一個長方形,其中陰影部分是由一副面積為100平方厘米的七巧板(圖4(b))拼成。那麼,長方形ABCD的面積是多少平方厘米? 15、號碼分別為2005、2006、2007、2008的4名運動員進行乒乓球賽,規定每2人比賽的場數是他們號碼的和被4除所得的余數。那麼2008號運動員比賽了多少場?16、有一個蓄水池裝了9根相同的水管,其中一根是進水管,其餘8根是出水管。開始時,進水管以均勻的速度不同地向蓄水池注水。後來,想打開出水管,使池內的水全部排光。如果同時打開8根出水管,則3小時可排盡池內的水;如果僅打開5根出水管,則需6小時才能排盡池內的水。若要在4.5小時內排盡池內的水,那麼應當同時打開多少根出水管第二屆華博士小學數學奧林匹克網上競賽試題及答案選擇正確的答案: (1)在下列算式中加一對括弧後,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的內角和是180度.一個五邊形的內角和應是( )度.A 500 B 540 C 360 D 480(3)甲乙兩個數的和是15.95,甲數的小數點向右移動一位就等於乙數,那麼 甲數是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一個顧客買了6瓶酒,每瓶付1.3元,退空瓶時,售貨員說,每隻空瓶錢比酒錢 少1.1元,顧客應退回的瓶錢是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)兩數相除得3餘10,被除數,除數,商與余數之和是143,這兩個數分別是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女兒的年齡和是44歲,10年後,爸爸的年齡是女兒的3倍,今年女兒是多少歲? A16 B11 C9 D10 (7)一個兩位數除250,余數是37,這樣的兩位數是( ).A 17 B38 C 71 D 91(8)把一條細繩先對折,再把它所折成相等的三折,接著再對折,然後用剪刀在折過三次的繩中間剪一刀,那麼這條繩被剪成( )段.A 13 B 12 C 14 D 15(9) 把兩個表面積都是6平方厘米的正方體拼成一個長方體,這個長方體的表面積( ). A 12 B 18 C10 D11(10)一晝夜鍾面上的時針和分針重疊( )次.A 23 B 12 C 20 D13(11)某車間四月份實際生產機器76台,其中原計劃生產的台數比超產台數多60台, 求四月份比原計劃超產多少台機器?A 16 B 8 C 10 D 12(12)一塊紅磚長25厘米,寬15厘米,用這樣的紅磚拼成一個正方形最少需要多少塊? A 15 B 12 C 75 D 8 E(13)圖中ABCD是長方形,已知AB=4厘米,BC=6厘米,三角形EFD的面積比三角形ABF的面積大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外釣魚已知甲比乙多釣6條,丙釣的是甲的2 倍,比乙多釣22條,問他們三人一共釣了多少條?A 48 B 50 C 52 D 58(15)張師傅以1元錢4個蘋果的價格買進蘋果若干個,又以2元錢5個蘋果有價格把這些蘋果賣出,如果他要賺得15元錢的利潤,那麼他必須賣出蘋果多少個?A 10 B 100 C 20 D 1602006年「希望杯」全國數學大賽(時間:90分鍾 滿分:120分)題 號一二其中:總 分13141516得 分 得分評卷人 一、填空題。(每題6分,共72分。) 1.計算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的個位上的數字是____________。3.有四個連續奇數的和是2008,則其中最小的一個奇數是____________。4.張阿姨把相同數量的蘋果和橘子分給若干名小朋友,每名小朋友分得1個蘋果和3個橘子。最後橘子分完了,蘋果還剩下12個。那麼一共分給了____________名小朋友。5.有這樣一種算式:三個不同的自然數相乘,積是100。這樣的算式有____________種。(交換因數位置的算同一種。)6.在右邊的數陣中,如果按照從上往下,從左往右的順序數數,可以知道第1個數是1,第3個數是2,第6個數是3,……那麼第99個數是____________。7.一天,小慧和劉老師一起談心。小慧問:「老師,您今年有多少歲?」劉老師回答說:「你猜猜,當我像你這么大時,你才1歲;當你到我這么大時,我就34歲了。」劉老師今年的年齡是____________歲。8.小華同學為了在「希望杯」數學大賽中取得好成績,自己做了四份訓練題(每份訓練題滿分為120分)。他第一份訓練題得了90分,第二份訓練題得了100分,那麼第三份訓練題至少要得____________分才能使四份訓練題的平均成績達到105分。9.某小學五年級有9名同學進入了「希望杯」數學大賽的決賽。已知他們在初賽中前3名同學的平均分比前6名同學的平均分多3分,後6名同學的平均分比後3名同學的平均分多3分。那麼前3名同學的總分比後3名同學的總分多____________分。10.在右圖中,已知正方形ABCD的面積是正方形EFGH面積的4倍,正方形AMEN的周長是4厘米,那麼正方形ABCD的周長是____________厘米。11.一個自然數各個數位上的數字之和是15。如果它 的各個數位上的數字都不相同,那麼符合條件的最大數是____________,最小數是____________。12.對自然數作如下操作:如果是偶數就除以2,如果是奇數就減去1,如此操作直到結果變成0為止。那麼經過6次操作後使結果變成0的數有______個,分別是_____________________________________。得分評卷人 二、解答題。(每題12分,共48分。) 13.五名裁判員給一名體操運動員評分,去掉一個最高分和一個最低分後平均得分是9.38分。若去掉一個最高分平均得分為9.26分;若去掉一個最低分平均得分為9.46分。這名體操運動員的最高分和最低分分別是多少分?14.小狗給動物王國編一本童話故事書。 我編這本書一共用了666個數字。小狗編的這本書一共有多少頁?15.學校合唱團全部是來自甲、乙、丙三個班的同學,其中來自甲、乙兩班的同學共有60人。合唱團中不是甲班的同學有100人,不是乙班的同學有90人。問:(1)合唱團中來自甲、乙兩班的同學各有多少人?(2)合唱團的同學一共有多少人?16.下面是一些「神秘等式」。式中的「+」、「-」、「×」、「÷」等運算符號的意義都與普通的用法相同,但0、1、2、3、……、9等數字所代表的意義則與普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)請你破解出這些「神秘等式」中的秘密,找出其中每個數字所代表的普通意義。(2)普通意義的2006用「神秘等式」中數字所代表的意義來表示,怎樣表示?(3)如果採用「神秘等式」中數字所代表的意義,那麼,60+06等於多少?
1 瀏覽560
求,,,20道小學五年級的奧數題及答案!
1.甲乙丙三人同時從同一地點出發沿同一路線追趕前面的小明;他們三人分別用9分,15分,20分追上小明,已知甲每小時行24千米,以每小時行20千米,求丙每小時行多少千米? 甲9分追上時行走了24*9/60=3.6,乙9分時行走了20*9/60=3,說明在9分時,乙和小明距離為0.6,15分時乙追上,用了6分追了0.6千米,說明乙比小明每分多走0.1千米,乙速度為20,則小明為14千米每小時,則設丙速度為x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小時) 2.甲乙兩人同時從山腳開始爬山,到達山頂後就立即下山,甲乙兩人下山的速度都是各自上山速度的二倍,嫁到山頂是一句山頂還有500米,甲回到山腳是乙剛好下到半山腰,求從山腳到山頂的路程。 甲乙兩人下山的速度都是各自上山速度的二倍,甲到山頂時乙距山頂還有500米,甲到山腳時乙距離山腳距離為500*(1+2)=1500米。 甲回到山腳是乙剛好下到半山腰,所以,從山腳到山頂的路程為3000米 3.甲一分鍾能洗3個盤子或9個碗,乙一分鍾能洗2個盤子或7個碗,甲乙兩人合作,20分鍾洗了134個盤子和碗,問洗了幾個盤子幾個碗? 設甲乙各用x、y分鍾洗盤子,則 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盤子=16*3+18*2=84個,碗=4*9+2*7=50個 4.全班有30名學生,其中17人會騎自行車,16人會游泳,11人會滑冰,
6. 小學奧數題5年級脫式計算題
五年級奧數題計算題
1、0.2008+2.008+20.08+200.8+2008
=0.2008×(1+10+100+1000+10000)
=0.2008×11110
=2230.888
2、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷……÷(2007÷2008)=1×3/2×4/3×5/4×6/5×……×2008/2007
=2008
3、1+1/3+1/6+1/10+……+1/2009×1004
=2×(1/2+1/6+1/12+1/20+……+1/2008×2009)
=2×(1-1/2+1/2-1/3+1/3-1/4+……+1/2008-1/2009)
=2×(1-1/2009)
=2×2008/2009
=4016/2009
4、2006個2006乘2007個2007再乘2008個2008的積的個位數是?
2006個2006的個位數字是6
2007個2007的個位數字是3
2008個2008的個位數字是6
6×3×6=108
所以2006個2006乘2007個2007再乘2008個2008的積的個位數字是8
5、325.24+425.24+625.24+925.24+525.24
=(300+400+600+900+500)+25.24×5
=2700+126.2
=2826.2
6、1/1×4+1/4×7+1/7×10+1/10×13+……+1/2005×2008
=(1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+……+1/2005-1/2008)÷3
=(1-1/2008)÷3
=2007/2008÷3
=669/2008
提問者評價
7. 50道小學五年級奧數題(有答案,行程問題)
行程問題
1、客貨兩車同時從甲乙兩站相對開出,客車每小時行54千米,貨車每小時行48千米,兩車相遇後又以原來的速度前進,到達對方站後立即返回,兩車再次相遇時客車比貨車多行了21.6千米。甲乙兩站相距多少千米?
答案:122.4千米。
2、甲乙兩地相距48千米,其中一部分是上坡路,其餘是下坡路。某人騎自行車從甲地到達乙地後沿原路返回,去時用了4小時12分,返回用了3小時48分。已知自行車上坡是每小時行10千米,求自行車下坡每小時行多少千米?
答案:下坡每小時行15千米。
3、南北兩鎮之間全是山路,某人上山每小時走2千米,下山時每小時走5千米,從南鎮到北鎮要走38小時,從北鎮到南鎮要走32小時,兩鎮之間的路程是多少千米?從南鎮到北鎮的上山路和下山路各是多少千米?
答案:下山路為40千米,上山路為60千米 。
4、甲每小時行12千米,乙每小時行8千米.某日甲從東村到西村,乙同時從西村到東村,以知乙到東村時,甲已先到西村5小時.求東西兩村的距離
甲乙的路程是一樣的,時間甲少5小時,設甲用t小時
可以得到
1. 12t=8(t+5)
t=10
所以距離=120千米
5、小明和小芳圍繞著一個池塘跑步,兩人從同一點出發,同向而行。小明:280米/分;小芳:220/分。8分後,小明追上小芳。這個池塘的一周有多少米?
280*8-220*8=480
這時候如果小明是第一次追上的話就是這樣多
這時候小明多跑一圈...
6、某人從甲地到乙地,先騎12小時摩托車,再騎9小時自行車正好到達.返回時,先騎21小時自行車,再騎8小時摩托車也正好到達.從甲地到乙地如果全騎摩托車需要多少時間?
摩托車的速度是xkm/h,自行車速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托車共需12+9/3=15小時
7、有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.
8、某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度.
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11
9、現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米.如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長.
快車長:18×12-10×12=96(米)
慢車長:18×9-10×9=72(米)
10、一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?
(1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)
11、小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表.小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒.已知兩電線桿之間的距離是100米.你能幫助小英和小敏算出火車的全長和時速嗎?
(1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
12、一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒.求這列火車的速度與車身長各是多少米?
設火車車身長x米.根據題意,得
(530+X )÷40=(380+X )÷30
X=70
(530+X )÷40=600÷40=15(米/秒)
13、兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+160)÷(15+20)=8(秒).
14、某人步行的速度為每秒鍾2米.一列火車從後面開來,越過他用了10秒鍾.已知火車的長為90米,求列車的速度.
列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
15、快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
1034÷(20-18)=91(秒)
16、快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
182÷(20-18)=91(秒)
17、一人以每分鍾120米的速度沿鐵路邊跑步.一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度.
288÷8-120÷60=36-2=34(米/秒)
18、一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
(600+200)÷10=80(秒)
19、小明上午8時騎自行車以每小時12千米的速度從A地到B地,小強上午8時40分騎自行車以每小時16千米的速度從B地到A地,兩人在A、B兩地的中點處相遇,A、B兩地間的路程是多少千米?
兩人在兩地間的路程的中點相遇,但小明比小強多行了40分鍾,如果兩人同時出發,相遇時,小明行的路程就比小強少12÷60×40=8(千米),就是當小強出發時,小明已經行了8千米,從8時40分起兩人到兩人相遇,由於小明每小時比小強少行16-12=4(千米),說明兩人相遇時間是8÷4=2(小時),那麼,A、B兩地間的路程是8+(12+16)×2=64(千米)。
20、甲、乙兩村相距3550米,小偉從甲村步行往乙村,出發5分鍾後,小強騎自行車從乙村前往甲村,經過10分鍾遇見小偉。小強騎車每分鍾行的比小偉步行每分鍾多160米,小偉每分鍾走多少米?
如果小強每分鍾少行160米,他行的速度就和小偉步行的速度相同,這樣小強10分鍾就少行了160×10=1600(米),小偉(5+10)分鍾和小強10分鍾一共行走的路程是3550-1600=1950(米),那麼小偉每分鍾走的路是1950÷(5+10+10)=78(米)。
21、客車從東城和貨車從西城同時開出,相向而行,客車每小時行44千米,貨車每小時行36千米,客車到西城比貨車到東城早2小時。兩車開出後多少小時在途中相遇?
當客車到西城時,貨車離東城還有2×36=72(千米),而貨車每小時行的比客車少44-36=8(千米),客車行東西城間的路程用的時間是72÷8=9(小時),因此東西城相距44×9=396(千米),兩車從出發到相遇用的時間是;396÷(44+36)=4.95(小時)
22、甲、乙二人同一天從北京出發沿同一條路騎車往廣州,甲每天行100千米,乙第一天行70千米,以後每天都比前一天多行3千米,直到追上甲,乙出發後第幾天追上甲?
開始時,乙一天行的比甲少100-70=30(千米),以後乙每天多行3千米,到與甲速相同要經過30÷3=10(天),即前10天,甲、乙之間的距離是逐天拉大的,第11天兩人速度相同,從第12天起,乙的速度開始比甲快,與甲的距離逐天拉近,所以,乙追上甲用的時間是:10×2+1=21(天)。
23、甲、乙兩地相距10千米,快、慢兩車都從甲地開往乙地,快車開出時,慢車已行了1.5千米,當快車到達乙地時,慢車距乙地還有1千米,那麼快車在距乙地多少千米處追上慢車?
慢車行了1.5千米,快車才開出,而快車到達乙地時,慢車距乙地還有1千米,就是在快車行10千米的時間里,比慢車多行的路程為1.5+1=2.5(千米)。快車每行1千米比慢車多2.5÷10=0.25(千米)。
24、甲、乙兩班進行越野行軍比賽,甲班以4.5千米/時的速度走了路程的一半,又以5.5千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以4.5千米/時的速度行進,另一半時間以5.5千米/時的速度行進。問:甲、乙兩班誰將獲勝?
快速行走的路程越長,所用時間越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程長,所以乙班獲勝。
25、輪船從A城到B城需行3天,而從B城到A城需行4天。從A城放一個無動力的木筏,它漂到B城需多少天?
輪船順流用3天,逆流用4天,說明輪船在靜水中行4-3=1(天),等於水流3+4=7(天),即船速是流速的7倍。所以輪船順流行3天的路程等於水流3+3×7=24(天)的路程,即木筏從A城漂到B城需24天。
26、小紅和小強同時從家裡出發相向而行。小紅每分走52米,小強每分走70米,二人在途中的A處相遇。若小紅提前4分出發,且速度不變,小強每分走90米,則兩人仍在A處相遇。小紅和小強兩人的家相距多少米?
因為小紅的速度不變,相遇地點不變,所以小紅兩次從出發到相遇的時間相同。也就是說,小強第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小強第二次走了14分,推知第一次走了18分,兩人的家相距
(52+70)×18=2196(米)。
27、小明和小軍分別從甲、乙兩地同時出發,相向而行。若兩人按原定速度前進,則4時相遇;若兩人各自都比原定速度多1千米/時,則3時相遇。甲、乙兩地相距多少千米?
每時多走1千米,兩人3時共多走6千米,這6千米相當於兩人按原定速度1時走的距離。所以甲、乙兩地相距6×4=24(千米)
28、甲、乙兩人沿400米環形跑道練習跑步,兩人同時從跑道的同一地點向相反方向跑去。相遇後甲比原來速度增加2米/秒,乙比原來速度減少2米/秒,結果都用24秒同時回到原地。求甲原來的速度。
因為相遇前後甲、乙兩人的速度和不變,相遇後兩人合跑一圈用24秒,所以相遇前兩人合跑一圈也用24秒,即24秒時兩人相遇。
設甲原來每秒跑x米,則相遇後每秒跑(x+2)米。因為甲在相遇前後各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
29、 甲、乙兩車分別沿公路從A,B兩站同時相向而行,已知甲車的速度是乙車的1.5倍,甲、乙兩車到達途中C站的時刻分別為5:00和16:00,兩車相遇是什麼時刻?
甲車到達C站時,乙車還需16-5=11(時)才能到達C站。乙車行11時的路程,兩車相遇需11÷(1+1.5)=4.4(時)=4時24分,所以相遇時刻是9∶24。
30、 一列快車和一列慢車相向而行,快車的車長是280米,慢車的車長是385米。坐在快車上的人看見慢車駛過的時間是11秒,那麼坐在慢車上的人看見快車駛過的時間是多少秒?
快車上的人看見慢車的速度與慢車上的人看見快車的速度相同,所以兩車的車長比等於兩車經過對方的時間比,故所求時間為11
31、甲、乙二人練習跑步,若甲讓乙先跑10米,則甲跑5秒可追上乙;若乙比甲先跑2秒,則甲跑4秒能追上乙。問:兩人每秒各跑多少米?
甲乙速度差為10/5=2
速度比為(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
32、一隻野兔逃出80步後獵狗才追它,野兔跑 8步的路程獵狗只需跑3步,獵狗跑4步的時間兔子能跑9步。獵狗至少要跑多少步才能追上野兔?
狗跑12步的路程等於兔跑32步的路程,狗跑12步的時間等於兔跑27步的時間。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
33、甲、乙兩人在鐵路旁邊以同樣的速度沿鐵路方向相向而行,恰好有一列火車開來,整個火車經過甲身邊用了18秒,2分後又用15秒從乙身邊開過。問:
(1)火車速度是甲的速度的幾倍?
(2)火車經過乙身邊後,甲、乙二人還需要多少時間才能相遇?
(1)設火車速度為a米/秒,行人速度為b米/秒,則由火車的 是行人速度的11倍;
(2)從車尾經過甲到車尾經過乙,火車走了135秒,此段路程一人走需1350×11=1485(秒),因為甲已經走了135秒,所以剩下的路程兩人走還需(1485-135)÷2=675(秒)。
34、長江沿岸有A,B兩碼頭,已知客船從A到B每天航行500千米,從B到A每天航行400千米。如果客船在A,B兩碼頭間往返航行5次共用18天,那麼兩碼頭間的距離是多少千米?
800千米
35、客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
10秒.
———————————————答 案——————————————————————
一、填空題
120米
102米
17x米
20x米
尾
尾
頭
頭
1. 這題是「兩列車」的追及問題.在這里,「追及」就是第一列車的車頭追及第二列車的車尾,「離開」就是第一列車的車尾離開第二列車的車頭.畫線段圖如下:
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 畫段圖如下:
頭
90米
尾
10x
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
則快車長:18×12-10×12=96(米)
則慢車長:18×9-10×9=72(米)
4. (1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)
5. (1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
6. 設火車車身長x米,車身長y米.根據題意,得
①②
解得
7. 設火車車身長x米,甲、乙兩人每秒各走y米,火車每秒行z米.根據題意,列方程組,得
①②
①-②,得:
火車離開乙後兩人相遇時間為:
(秒) (分).
8. 解:從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+60)¸(15+20)=8(秒).
9. 這樣想:列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
答:列車的速度是每秒種11米.
10. 要求過幾分鍾甲、乙二人相遇,就必須求出甲、乙二人這時的距離與他們速度的關系,而與此相關聯的是火車的運動,只有通過火車的運動才能求出甲、乙二人的距離.火車的運行時間是已知的,因此必須求出其速度,至少應求出它和甲、乙二人的速度的比例關系.由於本問題較難,故分步詳解如下:
①求出火車速度 與甲、乙二人速度 的關系,設火車車長為l,則:
(i)火車開過甲身邊用8秒鍾,這個過程為追及問題:
故 ; (1)
(i i)火車開過乙身邊用7秒鍾,這個過程為相遇問題:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火車頭遇到甲處與火車遇到乙處之間的距離是:
.
③求火車頭遇到乙時甲、乙二人之間的距離.
火車頭遇甲後,又經過(8+5×60)秒後,火車頭才遇乙,所以,火車頭遇到乙時,甲、乙二人之間的距離為:
④求甲、乙二人過幾分鍾相遇?
(秒) (分鍾)
答:再過 分鍾甲乙二人相遇.
二、解答題
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列車的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:從車頭進入隧道到車尾離開隧道共需80秒.
平均數問題
1. 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?
2. 甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?
3. 已知八個連續奇數的和是144,求這八個連續奇數。
4. 甲種糖每千克8.8元,乙種糖每千克7.2元,用甲種糖5千克和多少乙種糖混合,才能使每千克糖的價錢為8.2元?
5. 食堂買來5隻羊,每次取出兩只合稱一次重量,得到十種不同的重量(千克):47、50、51、52、53、54、55、57、58、59.問這五隻羊各重多少千克?
等差數列
1、下面是按規律排列的一串數,問其中的第1995項是多少?
解答:2、5、8、11、14、……。 從規律看出:這是一個等差數列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984
2、在從1開始的自然數中,第100個不能被3除盡的數是多少?
解答:我們發現:1、2、3、4、5、6、7、……中,從1開始每三個數一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數,共有50×3=150,那麼第100個不能被3除盡的數就是150-1=149.
3、把1988表示成28個連續偶數的和,那麼其中最大的那個偶數是多少?
解答:28個偶數成14組,對稱的2個數是一組,即最小數和最大數是一組,每組和為: 1988÷14=142,最小數與最大數相差28-1=27個公差,即相差2×27=54, 這樣轉化為和差問題,最大數為(142+54)÷2=98。
4、在大於1000的整數中,找出所有被34除後商與余數相等的數,那麼這些數的和是多少?
解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數的和為35×(29+30+31+32+33)=5425
5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,並算出這若干張卡片上各數的和除以17的余數,再把這個余數寫在另一張黃色的卡片上放回盒內,經過若干次這樣的操作後,盒內還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數分別是19和97,求那張黃色卡片上所寫的數。
解答:因為每次若干個數,進行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設有2個數20和30,它們的和除以17得到黃卡片數為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數16,也就是說不管幾個數相加,總和除以17的余數不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數的和除以17的余數為0,而19+97=116,116÷17=6……14, 所以黃卡片的數是17-14=3。
6、下面的各算式是按規律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那麼其中第多少個算式的結果是1992?
解答:先找出規律: 每個式子由2個數相加,第一個數是1、2、3、4的循環,第二個數是從1開始的連續奇數。 因為1992是偶數,2個加數中第二個一定是奇數,所以第一個必為奇數,所以是1或3, 如果是1:那麼第二個數為1992-1=1991,1991是第(1991+1)÷2=996項,而數字1始終是奇數項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。
7、如圖,數表中的上、下兩行都是等差數列,那麼同一列中兩個數的差(大數減小數)最小是多少?
解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。
8、有19個算式:
那麼第19個等式左、右兩邊的結果是多少?
解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數? 各式用數分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數相加? 各式左邊用數分別為3、4、5、……、第19個應該是3+1×18=21個, 所以第19個式子結果是397+398+399+……+417=8547。
9、已知兩列數: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數中相同的項數共有多少對?
解答:易知第一個這樣的數為5,注意在第一個數列中,公差為3,第二個數列中公差為4,也就是說,第二對數減5即是3的倍數又是4的倍數,這樣所求轉換為求以5為首項,公差為12的等差數的項數,5、17、29、……, 由於第一個數列最大為2+(200-1)×3=599; 第二數列最大為5+(200-1)×4=801。新數列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續派相同人數的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那麼,這月由總廠派到分廠工作的工人共多少人?
解答:11月份有30天。 由題意可知,總廠人數每天在減少,最後為240人,且每天人數構成等差數列,由等差數列的性質可知,第一天和最後一天人數的總和相當於8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明讀一本英語書,第一次讀時,第一天讀35頁,以後每天都比前一天多讀5頁,結果最後一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以後每天都比前一天多讀5頁,結果最後一天只需讀40頁就可以讀完,問這本書有多少頁?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調整如下: 第一方案:40、45、50、55、……35+35(第一天放到最後惶熘腥ィ?/P>第二方案:40、45、50、55、……(最後一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。
13、7個小隊共種樹100棵,各小隊種的查數都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?
解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫
8. 小學五年級奧數題,及答案
1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?
2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?
3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?
4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?
5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
五年級試題三答案
1,因為10人2組都參加,所以只參加數學的5人,只參加航模的8人,加上那10人就是23人,40-23=17,2個小組都不參加的17人
2,同理,數學滿分10人,2科都滿分的3人,於是只是數學滿分的7人,45-7-29=9,這個就是語文滿分的人(如果說只是語文滿分的則需要減去3)
3,50÷4取整12,50÷6取整8,但是要注意,報4倍數的同時可能是6的倍數,所以還要算出4和6的公倍數,有50÷12(4和6的最小公倍數)=4(取整),所以,應該是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),還是算出2和3的公倍數100÷6=16(取整),然後找出即沒不被2整除,也不被3整除的數的個數100-50-33+16=28,所以,准備鉛筆為50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2個劃線劃在一起,也就是要算出他們的公倍數,180÷3÷4=15,所以應該為60+45-15=90