❶ 六年級數學題列方程解應用題
解:設四年級同學植樹的棵樹為x,六年級同學植樹的棵樹為y
則由題意可回知 y=58*1.5-12
1.3x+6=58
解得x=40,y=75
答:四年級和答六年級的同學分別植樹40棵與75棵.
❷ 急要小學六年級數學方程應用題12道 要解題
1.一旅客乘坐的火車以每小時40千米的速度前進,他看見迎面來的火車用了6秒時間從他身邊駛過.已知迎面而來的火車長150米,求迎面來的火車速度.
2.已知某一鐵路橋長1000米.現有一列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鍾,整列火車完全在橋上的時間為40秒.求火車的速度.
3.如果汽車以每小時40千米的速度從甲地開往乙地,正好在預定時間到達.實際上汽車在行駛了3小時後,速度減慢為30千米/小時,因此比預定時間遲到1小時,求甲、乙兩地的距離.
4.某連隊從駐地出發前往某地執行任務,行軍速度是6千米/小時.18分鍾後,駐地接到緊急命令,派遣通訊員小王必須在一刻鍾(15分鍾)內把命令傳達給該連隊.小王騎車以14千米/小時的速度沿同一路線追趕連隊.問是否能在規定時間內完成任務?
5.一架飛機飛行於甲、乙兩城之間,順風時需要5小時30分鍾,逆風時需要6小時,若風速是每小時24千米,求兩城之間的距離.
6.甲、乙兩人在一條長400米的環形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分
(1)兩人同時同地同向跑,問第一次相遇時,兩人一共跑了多少圈?
(2)兩人同時同地反向跑,問幾秒後兩人第一次相遇?
7.一列客車長200米,一列貨車長280米,在平行的軌道上相向行駛,從相遇到車尾離開經過15秒,客車與火車的速度比是5:3,問兩車每秒各行駛多少米?
❸ 小學6年級數學解方程應用題!急需~~
1.小麗同學用5千米/小時的速度步行,可以及時從家到達學校。一次,她走了全程的1/3後,搭上速度是20千米/小時的公共汽車,因此比原定時間提前15到達學校。求他離學校多遠?
2.甲、乙二人同時從A地去相距51千米的B地,甲騎車,乙步行,甲的速度比乙的速度的3倍還多1千米/小時,甲到達B地後停留 1又1/2小時,然後從B地返回A地,在途中遇到乙,這時距他們出發的時間恰好6個小時,求二人速度各是多少?
3.從A城到B城,甲汽車用6小時,從B城到A城,乙汽車用4小時,現在甲、乙分別從A、B兩城同時出發相對而行,相遇時甲車行駛了96千米,A、B兩城相距多遠?
4、一項工程,甲乙合作每小時完成這項工程的1/6,如果讓甲先做4小時,乙再做3小時。還剩下全部工程的2/5沒完成,若讓甲單獨完成全部工程需幾小時?
5、小青過生日那天,點燃相同長度的紅黃兩支蠟燭,紅蠟燭可以燃5小時,黃蠟燭可以燃四小時。晚上8點,兩支蠟燭同時點燃,到一定時刻兩只蠟燭同時熄滅,這時紅蠟燭所剩部分是黃蠟燭的所剩部分的2倍,問熄滅蠟燭時是晚上幾點鍾?
6.商店以每隻6元的價錢進購一批排球,零售價為8元,賣到還剩10隻時,除去成本獲利潤200元,問這批排球有幾只?
7、管道隊鋪設2620米的天然氣管道,前四天平均每天鋪80米,剩下的要求每天比原來多鋪12米,問還需要幾天才能鋪完?
8.今年父親的年齡是兒子的9倍,9年後父親和兒子年齡和是60歲,問今年父子倆各幾歲?
❹ 同步奧數培優六年級 列方程解應用題
1、設甲 x元,乙則有(108-x)元。
(1-2/5)x:(108-x)-12=1:1
X =60 乙為108-60=48元
2、設5年級x人,六年級23/20x,四年回級4/5x人(四年級佔五年答級的1/(1+1/4)
23/20x-91=4/5x
7/20X=91
x=260 四年級:260*4/5=208(人)
{不信演算}!260*23/20=299(人),299-91=208(人)
對了,那個「song jia hao 9"的第二個錯了!!
❺ 小學六年級數學應用題(用方程解)
解:設兩個書架上各存x本書。(所存數量相等嘛)
3×(x-200)=x+40
3x-600 =x+40
2x=640
x=320
答:原來各存有專320本書。
我再屬解釋一下,因為兩個書架上所存的本數相等,所以可以都設為「X」;從第一個書架里取出200本,那就是從第一個「x」里減去200,就是「x-200」,第二個書架再放入40本,就是「x+40」,這個時候,「x+40」就是「x-200」的三倍了,所以「x-200」乘上3就和」x+40「一樣多了,式子列出來了,方程就好解了。
純手打!樓主選我!
❻ 小學六年級數學20道列方程解應用題
1)購一年期債券,到期後本利只獲2700元,如果債券年利率12.5%,&127;那麼利息是多少元?
(2)騎自行車翻越一個坡地,上坡1千米,下坡1千米,如果上坡的速度是25千米/時,那麼下坡要保持什麼速度才能使全程的平均速度是30千米/時?
❼ 40道小學六年級上奧數題,要應用題哦
工程問題
1.甲乙兩個水管單獨開,注滿一池水,分別需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時後,再打開排水管丙,問水池注滿還是要多少小時?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小時後進水量
1-45/80=35/80表示還要的進水量
35/80÷(9/80-1/10)=35表示還要35小時注滿
答:5小時後還要35小時就能將水池注滿。
2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由於彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九。現在計劃16天修完這條水渠,且要求兩隊合作的天數盡可能少,那麼兩隊要合作幾天?
解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因為,要求「兩隊合作的天數盡可能少」,所以應該讓做的快的甲多做,16天內實在來不及的才應該讓甲乙合作完成。只有這樣才能「兩隊合作的天數盡可能少」。
設合作時間為x天,則甲獨做時間為(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現在先請甲、丙合做2小時後,餘下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?
解:
由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量
(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。
根據「甲、丙合做2小時後,餘下的乙還需做6小時完成」可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。
所以1-9/10=1/10表示乙做6-4=2小時的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小時表示乙單獨完成需要20小時。
答:乙單獨完成需要20小時。
4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那麼恰好用整數天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那麼完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?
解:由題意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最後結束必須如上所示,否則第二種做法就不比第一種多0.5天)
1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)
得到1/甲=1/乙×2
又因為1/乙=1/17
所以1/甲=2/17,甲等於17÷2=8.5天
5.師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?
答案為300個
120÷(4/5÷2)=300個
可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那麼徒弟第二次後共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。
6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鍾可將滿池水放完,丙管也是出水管,30分鍾可將滿池水放完。現在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鍾放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鍾將水放完?
答案45分鍾。
1÷(1/20+1/30)=12 表示乙丙合作將滿池水放完需要的分鍾數。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作將漫池水放完後,還多放了6分鍾的水,也就是甲18分鍾進的水。
1/2÷18=1/36 表示甲每分鍾進水
最後就是1÷(1/20-1/36)=45分鍾。
8.某工程隊需要在規定日期內完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規定日期為幾天?
答案為6天
解:
由「若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,」可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分別做全部的的工作時間比是2:3
時間比的差是1份
實際時間的差是3天
所以3÷(3-2)×2=6天,就是甲的時間,也就是規定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鍾後來點了,小芳將兩支蠟燭同時熄滅,發現粗蠟燭的長是細蠟燭的2倍,問:停電多少分鍾?
答案為40分鍾。
解:設停電了x分鍾
根據題意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
二.雞兔同籠問題
1.雞與兔共100隻,雞的腿數比兔的腿數少28條,問雞與兔各有幾只?
解:
4*100=400,400-0=400 假設都是兔子,一共有400隻兔子的腳,那麼雞的腳為0隻,雞的腳比兔子的腳少400隻。
400-28=372 實際雞的腳數比兔子的腳數只少28隻,相差372隻,這是為什麼?
4+2=6 這是因為只要將一隻兔子換成一隻雞,兔子的總腳數就會減少4隻(從400隻變為396隻),雞的總腳數就會增加2隻(從0隻到2隻),它們的相差數就會少4+2=6隻(也就是原來的相差數是400-0=400,現在的相差數為396-2=394,相差數少了400-394=6)
372÷6=62 表示雞的只數,也就是說因為假設中的100隻兔子中有62隻改為了雞,所以腳的相差數從400改為28,一共改了372隻
100-62=38表示兔的只數
三.數字數位問題
1.把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9餘數是多少?
解:
首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那麼這個數也能被9整除;如果各個位數字之和不能被9整除,那麼得的余數就是這個數除以9得的余數。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數的個位上的數字之和可以被9整除
10~19,20~29……90~99這些數中十位上的數字都出現了10次,那麼十位上的數字之和就是10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數字之和為4500 同樣被9整除
也就是說1~999這些連續的自然數的各個位上的數字之和可以被9整除;
同樣的道理:1000~1999這些連續的自然數中百位、十位、個位 上的數字之和可以被9整除(這里千位上的「1」還沒考慮,同時這里我們少200020012002200320042005
從1000~1999千位上一共999個「1」的和是999,也能整除;
200020012002200320042005的各位數字之和是27,也剛好整除。
最後答案為余數為0。
2.A和B是小於100的兩個非零的不同自然數。求A+B分之A-B的最小值...
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不會變了,只需求後面的最小值,此時 (A-B)/(A+B) 最大。
對於 B / (A+B) 取最小時,(A+B)/B 取最大,
問題轉化為求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
3.已知A.B.C都是非0自然數,A/2 + B/4 + C/16的近似值市6.4,那麼它的准確值是多少?
答案為6.375或6.4375
因為A/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由於A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。
當是102時,102/16=6.375
當是103時,103/16=6.4375
4.一個三位數的各位數字 之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.
答案為476
解:設原數個位為a,則十位為a+1,百位為16-2a
根據題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7 16-2a=4
答:原數為476。
5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.
答案為24
解:設該兩位數為a,則該三位數為300+a
7a+24=300+a
a=24
答:該兩位數為24。
6.把一個兩位數的個位數字與十位數字交換後得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?
答案為121
解:設原兩位數為10a+b,則新兩位數為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因為這個和是一個平方數,可以確定a+b=11
因此這個和就是11×11=121
答:它們的和為121。
7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.
答案為85714
解:設原六位數為abcde2,則新六位數為2abcde(字母上無法加橫線,請將整個看成一個六位數)
再設abcde(五位數)為x,則原六位數就是10x+2,新六位數就是200000+x
根據題意得,(200000+x)×3=10x+2
解得x=85714
所以原數就是857142
答:原數為857142
8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.
答案為3963
解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9
根據「新數就比原數增加2376」可知abcd+2376=cdab,列豎式便於觀察
abcd
2376
cdab
根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立。
先取d=3,b=9代入豎式的百位,可以確定十位上有進位。
根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知只有當c=6,a=3時成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數,所以不成立。
9.有一個兩位數,如果用它去除以個位數字,商為9餘數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5餘數為3,求這個兩位數.
解:設這個兩位數為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由於a、b均為一位整數
得到a=3或7,b=3或8
原數為33或78均可以
10.如果現在是上午的10點21分,那麼在經過28799...99(一共有20個9)分鍾之後的時間將是幾點幾分?
答案是10:20
解:
(28799……9(20個9)+1)/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鍾,所以現在時間是10:20
四.排列組合問題
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
解:
根據乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。
2 若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有 ( )
A 119種 B 36種 C 59種 D 48種
解:
5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正確的所以60-1=59
五.容斥原理問題
1. 有100種赤貧.其中含鈣的有68種,含鐵的有43種,那麼,同時含鈣和鐵的食品種類的最大值和最小值分別是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根據容斥原理最小值68+43-100=11
最大值就是含鐵的有43種
2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)只解出第一題的學生比餘下的學生中解出第一題的人數多1人;(4)只解出一道題的學生中,有一半沒有解出第一題,那麼只解出第二題的學生人數是( )
A,5 B,6 C,7 D,8
解:根據「每個人至少答出三題中的一道題」可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設各類的人數為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然後將④⑤⑥代入①中,整理得到
a2×4+a3=26
由於a2、a3均表示人數,可以求出它們的整數解:
當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22
又根據a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2。
然後可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。
故只解出第二題的學生人數a2=6人。
3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那麼這次考試的合格率至少是多少?
答案:及格率至少為71%。
假設一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯的最多人數)
87÷3=29(表示5題中有3題做錯的最多人數,即不及格的人數最多為29人)
100-29=71(及格的最少人數,其實都是全對的)
及格率至少為71%
❽ 小學六年級奧數題數學的解方程應用題!解出加分!(過程全要)
你好!
甲堆煤原來有x噸
(x+24)×1/5=x-¾x
乘以20得
4(x+24)=5x
4x+96=5x
x=96
甲堆煤原來有96噸
僅代表個人觀點,不喜勿噴,謝謝。