1. 求小學五年級數學手抄報資料
1.填空
(1)一個數是由五個十萬、六個萬、七個千和八個十組成的,這個數寫作(567080 ),讀作( 五十六萬七千零八十 ),省略「萬」位後面的尾數約是(57 )萬。
(2)在同一個平面內,不香蕉的兩條直線叫做( 平行線 ),或者說這兩條直線( 相互 )平行。
(3)平行四邊形的對邊( 平行 )且( 相等 ),對角(相等 )。
(4)在( )填上「〈」、「〉」或「=」。
850000( = )85萬
統計學家
有個從未管過自己孩子的統計學家,在一個星期六下午妻子要外出買東西時,勉強答應照看一下4個年幼好動的孩子。當妻子回家時,他交給妻子一張紙條,上寫:
「擦眼淚11次;系鞋帶15次;給每個孩子吹玩具氣球各5次,每個氣球的平均壽命10秒鍾;警告孩子不要橫穿馬路26次;孩子堅持要穿過馬路26次;我還想再過這樣的星期六0次。」
http://myok.blogchina.com/4605953.html
數學笑話-比他多一點
爸爸:「這次數學考試,大明考了九十五分,小明,你考了多少分?」
小明:「我比大明多一點。」
爸爸:「你考了九十六分還是九十七分?」
小明:「都不是,我考了9.5分。」
(caihong提供)
無題
從前有個不學無術的富家子弟,有一次,父母出遠門去辦事,把他交給廚師照看,廚師問他:「我每天三餐每頓給你做兩個饅頭,夠嗎?」他哭喪著臉說:「不夠,不夠!」廚師又問:「那我就一天給你吃六個,怎麼樣?」他馬上欣喜地說:「夠了!夠了!」
(lalala提供)
無題
老師問學生:「6乘9等於多少?『
「54。」
「對了。9乘6呢?」
「45。」
「......」
(lalala提供)
時間
在一堂數學課上,老師問同學生們:"誰能出一道關於時間的問題?"話音剛落,有一個學生舉手站起來問:"老師,什麼時候放學?"
(lalala提供)
不識數
水果攤上貼著:大鴨梨4元1斤,10元3斤。
小明對媽媽說:「快買!這個賣梨的不識數,3斤應該是12元才對。
(caihong提供)
計算器
數學考試的考場上,同學們用計算器演算各種試題。這時突然從考場的一個角落裡傳來了一聲驚呼:「天哪,我怎麼把家裡的遙控器帶來了
49999( < )5萬
10101010( > )9900999
8公頃( < )800平方千米
24萬( = )240000
98425( < )100000
(5)不計算,直接寫出下面幾題的積或商。
25X32=800 714÷42=17
250×32= 800 357÷21=17
25×320= 800 1428÷84=17
(6)鍾表上的指針指示的時間為4時,時針和分針之間的夾角是( 120 )度.
2. 5年級數學手抄報內容資料
高斯(1777~1855)生於,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」質數分布定理、及算術幾何平均。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究,這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹同餘的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」。
1802年,他又准確預測了小行星二號--智神星的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數,並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 ,涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210
3. 五年級數學報內容
1.數學的范圍:
按照復傳統的定義,制數學 是指研究數量關系和空間結構的一門學科。
數學大體包括代數、幾何、分析學、函數論、方程、概率、數論、數理邏輯、圖論、組合論等幾大類。
2.數學家:
專門以此為研究對象的成功人士就是我們所說的數學家。
例如:
外國數學家:歐幾里得,畢達哥拉斯,笛卡兒,歐拉,高斯,柯西,牛頓,萊布尼茨,貝努利,拉格朗日,傅里葉,阿貝爾,希爾伯特等等
中國數學家:蘇步青 熊慶來 陳省身 許寶騄 林家翹 吳文俊 陳景潤 丘成桐 楊輝 姜立夫 陳建功 江澤涵 華羅庚。
數學家大會:國際數學家大會ICM是由國際數學聯盟(IMU)主辦的, 每四年舉行一次,至今已有百餘年的歷史。國際數學家大會的召開對全世界的數學家來說,都是頭等重要的大事。
4. 數學小報(五年級)的內容
其實你可以現在上面寫我們現在暫時學到的公式
然後再畫些圖片
你可以在網路那裡查
看看別人是怎麼畫的
自己仿照一下
再寫下本學期學的內容(到網上查)
再塗上顏色
就OK了
5. 五年級數學小報內容!急急急!!
數學手抄小報與數學教學
多年來,我在小學中高年級學生中進行了學辦數學手抄小報的嘗試,將數學教學與辦報活動有機結合,取得了一定的成效。下面談談我的具體做法和體會。
一、正確引導,以報促學
為了豐富學生的課餘生活,當我宣布要學生每個月辦出一張數學手抄小報時,學生既感興趣又無從下手,這時我趁機專門給學生上了一節數學手抄小報指導課,講清辦數學手抄小報的目的和要求、注意事項、怎樣辦等,讓學生有個大概眉目。為了給學生提供更具體的指導,我特別編制了數學手抄小報內容、形式、版面要求提示表(略)各一份,供學生辦報時參照。
在指導學生辦數學手抄小報的過程中,我注意做到以下幾個「結合」。
1.個人努力與團體協作相結合。
讓學生辦數學手抄小報,一般要求通過個人努力來完成,但是不排除三五人協作和小組的幫與帶,以便充分發揮團體協作的優勢。
2.學習數學與反映思想相結合。
學生辦數學手抄小報所用的稿件,除了選摘外,還要求學生自撰、徵集。學生在辦數學手抄小報時,我並不刻意要求他們一律用數學內容,凡是與學習數學有關的內容都可以採用。例如,介紹一個學習數學的經驗或教訓、反映學習上的疑難和困惑、記一堂有趣的數學活動課。這樣一來,學生既學到了數學知識,又反映了思想狀況,有利於教和學。
3.開展活動與美化環境相結合。
學生交來的數學手抄小報,我每期都要組織學生或品嘗、閱讀,或提出修改建議,或評選優秀作品,或交流辦報經驗。與此同時,我還有意組織學生開展「手抄報評比」「優秀作品欣賞」「優秀作品展」等活動。學生在活動中增長了見識,培養了興趣,提高了學習數學的自主性和自覺性,而且這一期又一期、一張又一張圖文並茂的、迷人的數學手抄小報在展覽的同時裝飾了教室,美化了校園。學生從中可以受到潛移默化的思想情感熏陶和審美教育。
4.長期堅持與精神鼓勵相結合。
任何事物的發展和提高都不是一朝一夕所能辦到的,辦數學手抄小報也不例外,它是在長期堅持的情況下,逐漸產生效果和提高辦報水平的。如有的學生對辦報開始很不感興趣,馬虎了事,這時我及時給予鼓勵和督促,久而久之,他們也能辦出張像樣的數學手抄小報來,並且在學習態度上發生了奇跡般的變化。有的學生甚至在排版、繪圖、書寫等方面很有創意。
二、長期實踐,體會深刻
經過一段時間的嘗試和訓練,我感到學生在辦報的過程中,增長了見識,活躍了思維,端正了學習態度,增強了綜合素質。全班大多數學生的數學作業做得規范整潔了,不少學生對數學產生了濃厚的興趣,有的學生經常向我詢問辦報時遇到的一些數學難題。特別是有一次,我在講「0能被任何自然數整除」這道判斷題是對的時,有個學生對它提出了質疑:「假如這道題是對的,也就是說0是任何自然數的倍數,任何自然數是0的約數。而課本上講一個數最小的倍數是它本身,最大的約數也是它本身。0比任何自然數都小,不可能是自然數的倍數。任何自然數都比0大,不可能是0的約數。所以我認為這道題是錯的。」我當時便表揚了這個學生敢於質疑,並做了解釋:「這道題應該是對的,這是整除的含義所規定的,課本上的兩個結論是有前提的,是在自然數范圍內討論得到的。」課後我詢問這個學生為什麼能提出這樣的見解,這個學生說:「辦數學手抄小報時曾經看到過這種想法。」我暗暗吃驚的同時,驚喜辦報帶給學生的間接效應。
總之,堅持辦數學手抄小報,無論是對學生數學意識的形成,還是數學學習方法的改進;無論是對數學知識的掌握,還是數學能力的提高;無論是對學生競爭意識的培養,還是團結協作意識的形成,都有其獨特的功能和作用。經過多年的實踐,我深深地體會到,指導學生辦數學手抄小報有以下幾點好處。
1.有利於學生綜合素質的提高。
數學手抄小報是以學生為主體,或「獨立創業」 或「團體協助」而創作出來的能反映思想教育、數學教育和美育的綜合藝術。學生必須具備多種文化知識和能力才能辦出一張張圖文並茂的並能獲得大家好評的小報。堅持辦數學手抄小報,既培養了學生的動手操作能力、審美能力、思維能力和創新能力等,又使得學生在美術、寫作、書法等方面的技能有了明顯的進步。
2.有利於非智力因素的培養和形成,從而促進課堂教學。
(1)激發學生學習數學的興趣,增強求知慾,配合數學教學。
學生在辦報過程中,不斷積累數學知識,豐富想像力,促使學生對數學產生濃厚的興趣。這些都將有力地促進數學教學,使學生輕松地掌握數學知識。
(2)促進課外閱讀,形成優良學風。
學生為了辦出一張張迷人的數學手抄小報,必須廣采博聞,進行大量的文字摘抄、圖畫剪貼和文章的寫作。他們常常廢寢忘食地查閱、聚精會神地選擇、 一絲不苟地謄抄、認真負責地校對……這些都標志著優良學風的初步形成。
(3)促進團結友愛,形成優良班風。
在辦報過程中,學生之間的幫與帶、學習與協作,可以促進學生相互了解,加深友誼。隨著時間的推移,班級逐漸達到內部的和諧,形成強烈的班集體意識。
(4)培養良好的學習習慣,促進數學學習。
辦數學手抄小報是一項認真細致的工作。從打格子、收集材料、篩選材料到編輯、排版、繪圖、謄抄等一系列工作都要求學生要認真仔細、書寫整潔、自覺檢查、嚴格要求、克服困難。而這些良好的學習習慣的養成,都會轉移到對數學的學習上去。
3.有利於陶冶情操,美化生活。
一張好的數學手抄小報不僅能使人增長數學知識、陶冶情操,而且能給人一種美的藝術享受.
6. 數學手抄報的內容可以寫什麼小學五年級
1.數學知識(如:5年級奧數概念……)
2.數學小故事(和數學有關的故事)
3.數學家的故事、簡介(劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是中國最早明確主張用邏輯推理的方式來論證數學命題的人.劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富。 祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是 π的漸近分數。
還有些資料,,
華 羅 庚
華羅庚,中國現代數學家。1910年11月12日生於江蘇省金壇縣。1985年6月12日在日本東京逝世。華羅庚1924年初中畢業之後,在上海中華職業學校學習不到一年,因家貧輟學,他刻苦自修數學,1930年在《科學》上發表了關於代數方程式解法的文章,受到專家重視,被邀到清華大學工作,開始了數論的研究,1934年成為中華教育文化基金會研究員。1936年作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應蘇聯普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年始,他為伊利諾伊大學教授。
1950年回國,先後任清華大學教授、中國科技大學數學系主任、副校長,中國科學院數學研究所所長、中國科學院應用數學研究所所長、中國科學院副院長等。華羅庚還是第一、二、三、四、五屆全國人大常委會委員和政協第六屆全國委員會副主席。
華羅庚是國際上享有盛譽的數學家,他在解析數論、矩陣幾何學、多復變函數論、偏微分方程等廣泛數學領域中都做出卓越貢獻,由於他的貢獻,有許多定理、引理、不等式與方法都用他的名字命名。為了推廣優選法,華羅庚親自帶領小分隊去二十七個省普及應用數學方法達二十餘年之久,取得了明顯的經濟效益和社會效益,為我國經濟建設做出了重大貢獻。思考題;某店來了三位顧客,急於要買餅趕火車,限定時間不能超過16分鍾。幾個廚師都說無能為力,因為要烙熟一個餅的兩面各需要五分鍾,一口鍋一次可放兩個餅,那麼烙熟三個餅就得2O分鍾。這時來了廚師老李,他說動足腦筋只要15分鍾就行了。你知道該怎麼來烙嗎? ……)
希望可以幫到你
7. 小學五年級數學小報
數學家小時候的故事——高斯
2004-12-22 16:54:07 網路 閱讀1622次
印象中曾聽過一個故事:高斯是位小學二年級的學生,有一天他的數學老師因為事情已處理了一大半,雖然上課了,仍希望將其完成,因此打算出一題數學題目給學生練習,他的題目是:1+2+3+4+5+6+7+8+9+10=?,因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算蠻久的,才有可能算出來,也就可以藉此利用這段時間來處理未完的事情,但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡,老師看到了很生氣的訓斥高斯,但是高斯卻說他已經將答案算出來了,就是55,老師聽了下了一跳,就問高斯如何算出來的,高斯答道,我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又11+11+11+11+11=55,我就是這么算的。高斯長大後,成為一位很偉大的數學家。
高斯小的時候能將難題變成簡易,當然資質是很大的因素,但是他懂得觀察,尋求規則,化難為簡,卻是值得我們學習與效法的。
2、大海邊的阿基米德
2005-5-29 18:21:39 來 源:《中國校外教育》 網路資源 閱讀517次
阿基米德11歲那年,離開了父母,來到了古希臘最大的城市之一的亞歷山大里亞求學。當時的亞歷山大里亞是世界聞名的貿易和文化交流中心,城中圖書館異常豐富的藏書,深深地吸引著如飢似渴的阿基米德。
當時的書是訂在一張張的羊皮上的,也有用莎草莖剖成薄片壓平後當作紙,訂成後粘成一大張再卷在圓木棍上。那時沒有發明印刷術,書是一個字一個字抄成的,十分寶貴。阿基米德沒有紙筆,就把書本上學到的定理和公式,一點一點地牢記在腦子里。阿基米德攻讀的是數學,需要畫圖形、推導公式、進行演算。沒有紙,就用小樹枝當筆,把大地當紙,因為地面太硬,寫上去的字跡看不清楚,阿基米德苦想了幾天,又發明了一種"紙",他把爐灰扒出來,均勻地鋪在地面上,然後在上面演算。可是有時天公不作美,風一刮,這種"紙"就飛了。
一天,阿基米德來到海濱散步,他一邊走一邊思考著數學問題。無邊無垠的沙灘,細密而柔軟的沙粒平平整整地鋪展在腳下,又伸向遠方。他習慣地蹲下來,順手撿起一個貝殼,便在沙灘上演算起來,又好又便捷。回到住地,阿基米德十分興奮地告訴他的朋友們說:"沙灘,我發現沙灘是最好的學習地方,它是那麼廣闊,又是那麼安靜,你的思想可以飛翔到很遠的地方,就象是飛翔在海面上的海鷗一樣。"神奇的沙灘、博大的海洋,給人智慧,給人力量。打那以後,阿基米德喜歡在海灘上徜洋徘徊,進行思考和學習。從求學的少年時代開始一直保持到生命的最後一息。公元前212年,羅馬軍隊攻佔了阿基米德的家鄉敘拉古城。當時,已75歲高齡的阿基米德正在沙灘上聚精會神地演算數學,對於敵軍的入侵竟絲毫未覺察。當羅馬士兵拔出劍來要殺他的時候,阿基米德安靜地說:"給我留下一些時間,讓我把這道還沒有解答完的題做完,免得將來給世界留下一道尚未證完的難題。"
由於阿基米德孜孜不倦、刻苦鑽研,終於成為古希臘偉大的數學家、物理學家、天文學家和發明家,後人將他與牛頓、歐拉、高斯並稱為"數壇四傑"、"數學之神"。我國數學泰斗華羅庚說:"天才在於積累。聰明在於勤奮。"面對知識的大海,人們應該象阿基米德那樣,信念是羅盤,執著和勇毅作雙漿,不懈追求,畢生探索。揚帆遠航!
3、國際象棋發明人的報酬
2004-11-23 11:40:32 選自《 數海鉤沉——世界數學名題選輯》 作者:高希堯 閱讀419次
這是印度的一個古老傳說,舍罕王打算重賞象棋發明人、宰相西薩·班·達依爾。這位聰明的大臣的胃口看來並不大,他跪在國王面前說:
『陛下,請您在這張棋盤的第一個小格內,賞給我一粒麥子,在第二個小格內給兩粒,第三格內給四粒,用這樣下去,每一小格內都比前一小格加一倍。陛下,把這樣擺滿棋盤上所有64格的麥粒,都賞給您的僕人吧!』
『愛卿,你所求的並不多啊。」國王說道,心裡為自己對這樣一件奇妙的發明賞賜的許諾不致破費太多而暗喜。「你當然會如願以償的,」國王命令如數付給達依爾。
計數麥粒的工作開始了,第一格內放1粒,第二格內放2粒第三格內放2』粒,…還沒有到第二十格,一袋麥子已經空了。一袋又一袋的麥子被扛到國王面前來。但是,麥粒數一格接一格飛快增長著,國王很快就看出,即便拿全印度的糧食,也兌現不了他對達依爾的諾言。
原來,所需麥粒總數
1+2+2^2+2^3+2^4+……+2^63=2^64-1 =18446744073709551615。
這些麥子究竟有多少?打個比方,如果造一個倉庫來放這些麥子,倉庫高4公尺,寬10公尺,那麼倉庫的長度就等於地球到太陽的距離的兩倍。而要生產這么多的麥子,全世界要兩千年。盡管印度舍罕王非常富有,但要這樣多的麥子他是怎麼也拿不出來的。這么一來,舍罕王就欠了宰相好大一筆債。要麼是忍受達依爾沒完沒了的討債,要麼是乾脆砍掉他的腦袋。結果究竟如何,可惜史書上沒有記載。
從這個故事中,不難看出,印度古代對等比級數已有相當的研究。
類似印度「國際象棋發明人的報酬」問題還出現在別的國度。十八世紀初期,俄國馬格尼茨的《算術》一書中的「賣馬』問題,就與「國際象棋發明人的報酬」相類似,有異曲同工之妙。
「賣馬」原題如下:
某人賣馬一匹,得錢156盧布。但是買主買到馬以後又懊悔了,要把馬退還給賣主,他說這匹馬根本不值這么多錢。於是賣主向買主提出了另一種計算馬價的方案說,如果你嫌馬太貴了,那末就只買馬蹄上的釘子好了,馬就算白送給你。每個馬蹄鐵上有6枚釘子,第一枚釘子只賣1/4個戈比(1盧布等於100戈比),第二枚賣半個戈比,第三枚一個戈比,後面每個釘子價格依此類椎。買主認為釘子的價值總共也花不了10個盧布,還能白得一匹好馬,於是就欣然同意丁。結果買主算賬後才明白上當。試問買主在這筆交易中要虧損多少?
8. 五年級《小學數學報》的內容
放棄吧。你找不到的。。