⑴ 小學五年級的數學可能性
不公平
因為差是奇數有8種可能
是偶數有4種可能
乙不一定會輸
因為差也有為偶數的可能
將0換成1游戲公平
⑵ 北師大版:五年級上冊中,「可能性的大小」中「摸球游戲」的詳細教案
教學內容:
北師大版小學五年級數學上冊,第六單元「可能性的大小」中的第一課時「摸球游戲」。
教學目標:
1、過試驗操作,進一步認識客觀事件發生的可能性的大小。
2、能用分數表示可能性的大小。
教學重點:
認識客觀事件發生的要能性的大小,能用分數表示可能性的大小。
教學難點:
能用分數准確表示可能性的大小。
教具准備:
一個透明的盒子,不同顏色的平乒乓球10個。一個用來做摸獎游戲的圓盤。
教學過程:
揭示課題導入:
1、這節課我們學習可能性的大小(並板書課題)
2、想一想,可能性的大小我們以前接觸過嗎?接觸過什麼?(學生自由回答)
二、摸球游戲
1、教師出示兩個白球,放入透明的盒子里,問:老師每次摸一個球,每幾次能從這個盒子里摸出一個黑球?(指生答:「不可能」,師板書)
2、為什麼摸不到黑球呢?(生自由回答)
3、想一想,「不可能」這種可能性可以用哪個數來表示?(0)
4、看一看,老師每次摸一個球,第幾次能摸到白球?(並板書「一定能」。)
5、想一想「一定能」這種可能性可能用哪個數來表示?(1)
6、說一說生活中有哪些事發生的可能性為「0」?哪些事發生的可能性為「1」。
7、那麼有沒有在「0」和「1」之間的可能性呢?師拿出一個白球一個黑球,放入盒中,問學生每次摸一個球,摸到白球的可能性和剛才比變化了嗎?變大了還是小了?用分數表示摸到白球的可能性是多少?並說明理由。
8、師向盒子里分別放入不同顏色不同數量的球,讓學生說出摸出其中一種球的可能性是幾分之幾。如2個白球,1個黑球;5個黑球2個白球;8個白球,1個黑球等,分別讓學生說出摸出其中一種球的可能性是幾分之幾。從而突出重點,突破難點。明確:一種顏色的球占所有球的幾分之幾,摸出這種球的可能性就是幾分之幾。
⑶ 五年級數學可能性問題
1.
摸第一個,是紅球的可能性是3/6=1/2
摸第二個的時候,只剩下了5個球,其中紅球2個
摸出紅球的可能性是2/5
兩個都是紅球的可能性:1/2×2/5=1/5
2.
同理,兩個都是白球的可能性也是1/5
3.
摸兩個球,要麼都是紅,要麼都是白,要麼一紅一白
全紅或全白的可能性各佔1/5
那麼一紅一白的可能性就是1-1/5-1/5=3/5
這是不考慮紅白的順序
如果考慮紅白的順序,即先1個白,再1個紅,可能性就是
3/6*3/5=3/10或者3/5÷2=3/10
⑷ 五年級可能性。
2面塗黑,三面塗紅,1面塗藍
⑸ 五年級可能性
1、不公平,方方猜對的概率是1/13,而猜錯的概率是12/132、選擇②不是5的倍數①是2的倍數,13張牌中有2、4、6、8、10、Q六張牌是2的倍數,概率6/13②不是5的倍數,13張牌中有5、10兩張牌是5的倍數,不是5的倍數概率11/13③比8大的數,13張牌中有9、10、J、Q、K五張牌比8大,概率5/13④有畫的牌,13張牌中有J、Q、K三張牌,概率3/1311/13>6/13>5/13>3/13所以選擇②3、拿出A—K共13張牌中的7,然後再剩餘的12牌中,明明拿牌,方方猜大於7還是小於7,猜對方方贏,猜錯明明贏
⑹ 五年級的可能性
至少3個 因為一年12個月,就算有12個小朋友的生日在不同的月份,那麼第13個小朋友的生日肯定和前面12個小朋友中的1個在同一個月份,以此類推,第25個小朋友的生日肯定和前面24個小朋友中的2個重復。
⑺ 五年級上可能性
五張卡片,任意抽出兩張的抽法是10種
五張卡片,任意抽出兩張組成的和是20是(11 9)(12 8) 兩種情況
2/10=20%