❶ 三年級下冊數學的知識點
三年級數學(下冊)知識要求歸納
第一單元 位置與方向
1、(東與西)相對,(南與北)相對,
(東南與西北)相對,(西南與東北)相對。
面南左為東,面北左為西,面東左為北,面西左為南。
2、地圖通常是按(上北、下南、左西、右東)來繪制的。
通常所說的八個方向:東、西、南、北、東南、西北、西南、東北。
3、會看簡單的路線圖,會描述行走路線。(做題時先標出東 南 西 北。)
一定寫清楚從哪兒向哪個方向走,走了多少米,到哪兒再向哪個方向走就到了哪裡。(在轉彎處要注意方向的變化)
判斷一個地方在什麼方向,先要找到一個為中心點(觀測點) 處畫「米」字元號,再進行判斷。
4、指南針是用來指示方向的,它的一個指針永遠指向(南方),另一端永遠指向(北方)。
5、生活中的方位知識:
①北斗星永遠在北方。 ②影子與太陽的方向相對。
③早上太陽在東方,中午在南方,傍晚在西方。
④風向與物體傾斜的方向相反。
(刮風時的樹朝風向相對的方向彎,煙朝風向相對的方向飄……)
我國地處北半球,樹葉茂盛的一面是南方,樹葉稀疏的一面是北方。
第二單元 除數是一位數的除法
1、只要是平均分就用(除 法)計算。
2、除數是一位數的豎式除法法則:
(1)從被除數的高位除起,每次用除數先試被除數的前一位數,如果它比除數小,再試除前兩位數。
(2)除到被除數的哪一位,就把商寫在那一位上。
(3)每求出一位商,餘下的數必須比除數小。
順口溜:除數是一位,先看前一位,一位不夠看兩位,除到哪位商那位,每次除後要比較,余數要比除數小。
3、被除數末尾有幾個0,商的末尾不一定就有幾個0。(如:30÷5 = 6)
4、筆算除法:
(1)余數一定要比除數小。在有餘數的除法中:最小的余數是1;最大的余數是除數減去1;最小的除數是余數加1;
最大的被除數=商×除數+最大的余數; 最小的被除數=商×除數+1;
(2)除法驗算:→ 用乘法
沒有餘數的除法 有餘數的除法
被除數÷除數=商 被除數÷除數=商……余數
商×除數=被除數 商×除數+余數=被除數
被除數÷商=除數 (被除數-余數)÷商=除數
0除以任何不是0的數(0不能為除數)都等於0;0乘以任何數都得0;
0加任何數都得任何數本身,任何數減0都得任何數本身。
5、筆算除法順序:確定商的位數,試商,檢查,驗算。
6、筆算除法時,哪一位上不夠商1,就添0佔位。(最高位不夠除,就向後退一位再商。)
7、多位數除以一位數(判斷商是幾位數):
用被除數最高位上的數跟除數進行比較,當被除數最高位上的數大於或等於除數時,被除數是幾位數商就是幾位數;當被除數最高位上的數小於除數時,商的位數就是被除數的位數減去1。
第三單元 復式統計表
復式統計圖的特點:有利於數據的比較,更容易分辨相同項目的區別。
第四單元 兩位數乘兩位數
1、兩位數乘兩位數,積可能是(三)位數,也可能是(四)位數。
2、口算乘法:整十、整百的數相乘,只需把前面數字相乘,再看兩個因數一共有幾個0,就在結果後面添上幾個0。
3、估算:18×22,可以先把因數看成整十、整百的數,再去計算。
→(可以把一個因數看成近似數,也可以把兩個因數都同時看成近似數。)
4、有大約字樣的一般要估算。
5、凡是問夠不夠,能不能等的題目,都要三大步:
①計算、②比較、③答題。→ 別忘了比較這一步。
6、筆算乘法:先把第一個因數同第二個因數個位上的數相乘,再與第二個因數十位上的數相乘。
7、相關公式: 因數×因數=積 積÷因數=另一個因數
運算順序:先乘除,再算加減;同級運算,應按從左到右的順序進行計算;如果有括弧,要先算括弧內的運算。
第五單元 面 積
1、物體的表面或封閉圖形的大小,就是它們的面積。
封閉圖形一周的長度叫周長。長度單位和面積單位的單位不同,無法比較。
2、比較兩個圖形面積的大小,要用統一的面積單位來測量。
3、①邊長1厘米的正方形,面積是1平方厘米;
②邊長1分米的正方形,面積是1平方分米;
③邊長1米的正方形,面積是1平方米;
4、長方形:
長方形的面積=長×寬 長方形的周長=(長+寬)×2
求長:長=長方形面積÷寬 已知周長求長:長=長方形周長÷2-寬
求寬:寬=長方形面積÷長 已知周長求寬:寬=長方形周長÷2-長
正方形:
正方形的面積=邊長×邊長 正方形的周長=邊長×4
邊長:邊長=正方形面積÷邊長 已知周長求邊長:邊長=正方形周長÷4
5、長度單位之間的進率:
1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米
6、周長相等的兩個長方形,面積不一定相等。面積相等的兩個長方形,周長也不一定相等。
7、在生活中找出接近於1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲蓋)、1平方分米(電腦A盤或電線插座)、1平方米(教室側面的小展板)。
8、區分長度單位和面積單位的不同:長度單位測量線段的長短,面積單位測量面的大小。
(二)長方形、正方形的面積計算
1、歸類:
什麼樣的問題是求周長?(縫花邊、圍柵欄、圍欄桿、池塘或花壇周圍小路長度、圍操場跑步的長度等等)
什麼樣的問題是求面積?或與面積有關?(課本等封面大小、刷牆、花壇周圍小路面積、給餐桌配玻璃、給課桌配桌布、灑水車灑到的地面、某物品佔地面積、買玻璃、買鏡子、買布、買地毯、鋪地磚、裁手帕等等)
2、長方形或正方形紙的剪或拼。
有兩個或兩個以上長方形或正方形拼成新的圖形後的面積與周長。從一個圖形中(通常是長方形)剪掉一個圖形(最大的正方形等)求剪掉部分的面積或周長、求剩下部分的面積或周長。要求先畫圖,再標上所用數據,最後列式計算。
3、刷牆的(有的中間有黑板、窗戶等):求要用到的面積等於大面積減去小面積。
4、常用的面積單位有:平方厘米、平方分米、平方米。
相鄰兩個常用的面積單位之間的進率是 100 。
測量房間、菜園、教室、操場的面積通常用平方米為單位 。
6、面積單位換算:1平方米 = 100平方分米
1平方分米 = 100平方厘米 1平方米 = 10000平方厘米
第六單元 年、月、日
1、重要的日子:1月1日元旦節,3月8日婦女節,3月12日植樹節,5月1日勞動節,5月4日青年節,6月1日兒童節,7月1日建黨節,8月1日建軍節,9月10日教師節,10月1日國慶節。
2、一、三、五、七、八、十、臘,三十一天永不差,四、六、九、冬三十整,平年二月二十八,閏年二月把一加。
3、季度: 一年分四季度,每3個月為一季度。
一、二、三月是 第一季度(平年有90天,閏年有91天)
四、五、六月是 第二季度(有91天)
七、八、九月是 第三季度(92天)
十、十一、十二月是 第四季度(有92天)。
平年上半年181天,閏年上半年182天,下半年都是184天。
4、求有多少個星期?用天數÷7。→ 如:31天 31÷7=4(個)……3(天)
平年一年有52個星期零1天,閏年一年有52個星期零2天。
5、判斷平年、閏年的方法:
① 一般用公歷年份÷4,正好余數是0,就是閏年;
② 公歷年份是整百的÷400,余數是0,就是閏年。
公歷年份是整百的閏年有:1200年,1600年,2000年,2400年;
6、經過的天數的計算:公式→結束時間—開始時間+1=經過的天數;
(二)24計時法
1、普通計時法轉化為24時計時法: ①從凌晨0時到中午12時,時刻相同,去掉時刻前的時間限制詞。 ②下午1時到晚上12時,時刻加上12,並去掉時刻前的時間限制詞。 2、24時計時法轉化為普通計時法: ①從凌晨0時到中午12時在時間前加上凌晨、早上或上午等時間限制詞。 ②13時到24時,用時刻減去12,再加下午、傍晚或晚上等時間限制詞。 3、計算經過時間:用結束時刻—開始時刻=經過時間。時刻—時刻=時間段
4、時間單位進率:1世紀=100年 1年=12個月 1天=24小時
1時=60分 1分=60秒
第七單元 小數的初步認識
1、比較兩個小數的大小,先比較小數的整數部分,整數部分大的數就大,如果整數部分相同就比較小數的小數部分,小數部分要從小數點後最高位比起,十分位上的數大的小數就大;十分位上的數相同的,再比較百分位上的數,以此類推。
2、計算小數加、減法時,一定要先對齊小數點再相加、減。
3、分母是10的分數寫成一位小數,分母是100的分數寫成兩位小數。
4、小數讀寫法:① 讀法→漢字形式;② 寫法→阿拉伯數字。
5、小數不一定比整數小。
第八單元 數學廣角----搭配
有順序地組數、搭配連線,才能保證不重復、不遺漏。
❷ 最新小學三年級下冊數學知識點總結(完整版)
十八歲的天空。🏌🏏⛳️⛳️⛳️⛳️⛳️
❸ 小學三年級數學下冊知識點梳理
一、 植樹問題:
這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:
沿線段植樹
棵樹=總路程÷株距+1
棵樹=段數+1
株距=總路程÷(棵樹-1)
總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
棵樹=段數
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
二、分數和百分數的應用
1 分數加減法應用題:
分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本相同,所不同的只是在已知數或未知數中含有分數。
2分數乘法應用題:
是指已知一個數,求它的幾分之幾是多少的應用題。
特徵:已知單位「1」的量和分率,求與分率所對應的實際數量。
解題關鍵:准確判斷單位「1」的量。找准要求問題所對應的分率,然後根據一個數乘分數的意義正確列式。
3 分數除法應用題:
求一個數是另一個數的幾分之幾(或百分之幾)是多少。
特徵:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾。「一個數」是比較量,「另一個數」是標准量。求分率或百分率,也就是求他們的倍數關系。
解題關鍵:從問題入手,搞清把誰看作標準的數也就是把誰看作了「單位一」,誰和單位一的量作比較,誰就作被除數。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標准量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關系式(甲數減乙數)/乙數或(甲數減乙數)/甲數 。
已知一個數的幾分之幾(或百分之幾 ) ,求這個數。
特徵:已知一個實際數量和它相對應的分率,求單位「1」的量。
解題關鍵:准確判斷單位「1」的量把單位「1」的量看成x根據分數乘法的意義列方程,或者根據分數除法的意義列算式,但必須找准和分率相對應的已知實際
數量。
三、度量
一、 長度
(一) 什麼是長度
長度是一維空間的度量。
(二) 長度常用單位
公里(km) 、 米(m) 、 分米(dm)、 厘米(cm)、毫米(mm) 、 微米(um)
(三) 單位之間的換算
1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米
二、 面積
(一)什麼是面積
面積,就是物體所佔平面的大小。對立體物體的表面的多少的測量一般稱表面積。
(二)常用的面積單位
平方毫米 、平方厘米 、 平方分米、平方米 、平方千米
(三)面積單位的換算
1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米
1公傾 =10000 平方米 , 1平方公里 =100 公頃
三、 體積和容積
(一)什麼是體積、容積
體積,就是物體所佔空間的大小。
容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。
(二)常用單位
1、 體積單位
立方米 、 立方分米、立方厘米
2 、容積單位: 升、毫升
(三)單位換算
(1) 體積單位
1立方米=1000立方分米
1立方分米=1000立方厘米
(2) 容積單位
1升=1000毫升
1升=1立方米
1毫升=1立方厘米
四、 質量
(一)什麼是質量
質量,就是表示表示物體有多重。
(二)常用單位
噸 :t 千克: kg 克: g
(三)常用換算
一噸=1000千克
1千克=1000克
五、 時間
(一)什麼是時間
是指有起點和終點的一段時間
(二)常用單位
世紀、 年 、 月 、 日 、 時 、 分、 秒
(三)單位換算
1世紀=100年
1年=365天 (平年)
1年=366天 (閏年)
一、三、五、七、八、十、十二是大月, 大月有31 天
四、六、九、十一是小月,小月有30天
平年2月有28天, 閏年2月有29天
1天= 24小時
1小時=60分
1分=60秒
六、 貨幣
(一)什麼是貨幣
貨幣是充當一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。
(二)常用單位
元 、 角 、 分
(三)單位換算
1元=10角
1角=10分