⑴ 小學生六年級數學圓規律
3.
(對不起,只能寫那麼多了🐶️)
⑵ 圓的概念和公式,不要太深奧,小學六年級的~
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑 Ѕ=πr
圓形回
S面積 C周長 ∏ d=直徑答 r=半徑
周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
面積=半徑×半徑×∏
圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高
表面積=側面積+底面積×2 體積=底面積×高
體積=側面積÷2×半徑
圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
⑶ 小學六年級 圓的認識整理的資料
〖圓的定義〗
幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等於定長的點的集合叫做圓。
〖圓的相關量〗
圓周率:圓周長度與圓的直徑長度的比叫做圓周率,值是3.14159265358979323846…,通常用π表示,計算中常取3.1416為它的近似值。
圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
〖圓和圓的相關量字母表示方法〗
圓—⊙ 半徑—r 弧—⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S
〖圓和其他圖形的位置關系〗
圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
【圓的平面幾何性質和定理】
〖有關圓的基本性質與定理〗
圓的確定:不在同一直線上的三個點確定一個圓。
圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的弧。
〖有關圓周角和圓心角的性質和定理〗
在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩條弧,兩條弦中有一組量相等,那麼他們所對應的其餘各組量都分別相等。
一條弧所對的圓周角等於它所對的圓心角的一半。
直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
〖有關外接圓和內切圓的性質和定理〗
一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
最多就這么多。。。還有些是你沒學的。。你看著學吧
給我分哦
⑷ 關於圓的知識點(小學六年級)
圓的特徵:圓是抄由一條曲線構成的封閉圖形,圓上任意一點到圓心的距離相等。
圓心和半徑的作用:圓心決定圓的位置,半徑決定圓的大小
圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數條對稱軸
同一圓中直徑是半徑的2倍
圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用π表示,計算時通常取3.14
圓的周長:C=2πr或C=πd
面積計算公式:πr²
⑸ 小學6年級圓形所有公式
面積=圓周率乘以半徑的平方,周長=直徑乘以圓周率=2個半徑乘以圓周率,直徑=2個半徑的和=周長除以圓周率,半徑=直徑除以2=周長除以2個圓周率。
⑹ 關於小學六年級圓
1.平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S
.圓的周長C=2πr=πd 2.圓的面積S=πr² 3.扇形弧長l=nπr/180
4.扇形面積S=nπr²/360=rl/2 5.圓錐側面積S=πrl
⑺ 小學六年級上冊人教版11條圓的概念
1.圓是以圓心為對稱中心的中心對稱圖形;圍繞圓心旋轉任意一個角度α,都能夠與原來的重合.
2.頂點在圓心的角叫做圓心角.圓心到弦的距離叫做弦心距.
3.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
4.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等.
5.把整個圓周等分成360份,每一份弧是1°的弧.圓心角的度數和它所對的弧的度數相等.
6.圓是中心對稱圖形,即圓繞其對稱中心(圓心)旋轉180°後能夠與原來圖形重合,這一性質不難理解.圓和其他中心對稱圖形不同,它還具有旋轉不變性,即圍繞圓心旋轉任意一個角度,都能夠與原來的圖形重合.
7.垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
8.(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
9.圓的兩條平行弦所夾的弧相等
10.(1)一條弧所對的圓周角等於它所對的圓心角的一半.
(2)同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等.
(3)半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.
(4)如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形.
11.(1)圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
(2)垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
(3)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.
(4)弦的垂直平分線經過圓心,並且平分弦所對的兩條弦.
(5)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧.
(6)圓的兩條平行弦所夾的弧度數相等.
12.圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
13.平分弦(不是直徑)的直徑垂直與弦,並且平分弦所對的兩條弧.
14.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等,所對的弦的弦心距也相等.
15.在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角相等,所對的弦的弦心距也相等.
16.同一個弧有無數個相對的圓周角.
17.弧的比等於弧所對的圓心角的比.
18.圓的內接四邊形的對角互補或相等.
19.不在同一條直線上的三個點能確定一個圓.
20.直徑是圓中最長的弦.
21.一條弦把一個圓分成一個優弧和一個劣弧
⑻ 你六年級圓所有的公式,
與圓相關的公式:
1、圓面積:S=πr²,S=π(d/2)²。(d為直徑,r為半徑)。
2、半圓的面積:回S半圓=(πr^2)/2。(r為半徑)。
3、圓環答面積:S大圓-S小圓=π(R^2-r^2)(R為大圓半徑,r為小圓半徑)。
4、圓的周長:C=2πr或c=πd。(d為直徑,r為半徑)。
5、半圓的周長:d+(πd)/2或者d+πr。(d為直徑,r為半徑)。
(8)小學六年級圓的概念擴展閱讀:
在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合{M||MO|=r},圓的標准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。
圓形是一種圓錐曲線,由平行於圓錐底面的平面截圓錐得到。
圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。對稱軸是直徑所在的直線。
同時,圓又是「正無限多邊形」,而「無限」只是一個概念。當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。所以,世界上沒有真正的圓,圓實際上只是概念性的圖形。
⑼ 小學六年級關於圓的概念
圓是軸對稱圖形,任何一條(直徑 )所在的直線都是圓的對稱軸。
⑽ 小學六年級 圓 的 重難點提示 總共有26條 要有答案哦
第四單元 圓概念總結
1.圓的定義:平面上的一種曲線圖形。
2.將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等.
3.半徑:連接圓心到圓上任意一點的線段叫做半徑。半徑一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4.圓心確定圓的位置,半徑確定圓的大小。
5.直徑:通過圓心並且兩端都在圓上的線段叫做直徑。直徑一般用字母d表示。
6.在同一個圓內,所有的半徑都相等,所有的直徑都相等。
7.在同一個圓內,有無數條半徑,有無數條直徑。
8.在同一個圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的一半。
用字母表示為:d=2r或r =
9.圓的周長:圍成圓的曲線的長度叫做圓的周長。
10.圓的周長總是直徑的3倍多一些,這個比值是一個固定的數。我們把圓的周長和直徑的比值叫做圓周率,用字母 表示。圓周率是一個無限不循環小數。在計算時,取π ≈ 3.14。世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
11.圓的周長公式:C= πd 或C=2π r
12、圓的面積:圓所佔面積的大小叫圓的面積。
13.把一個圓割成一個近似的長方形,割拼成的長方形的長相當於圓周長的一半,寬相當於圓的半徑,因為長方形的面積=長×寬,所以圓的面積=π×r×r。
14.圓的面積公式:S=πr²或者S= π( )² 或者S= π(C÷π÷2)²
15.在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。
16.在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
17.一個環形,外圓的半徑是R,內圓的半徑是r,它的面積是S=πR²-πr²
或S=π(R²-r²)。(其中R=r+環的寬度.)
18.環形的周長=外圓周長+內圓周長
19.半圓的周長等於圓的周長的一半加直徑。
半圓的周長公式:C=πd ÷ 2+d或C=πr+2r
20.半圓面積=圓的面積÷2公式為:S=πr²÷ 2
21.在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小以上倍數的平方倍。
例如:在同一個圓里,半徑擴大4倍,那麼直徑和周長就都擴大4倍,而面積擴大16倍。
22.兩個圓的半徑比等於直徑比等於周長比,而面積比等於以上比的平方。
例如:兩個圓的半徑比是2:3,那麼這兩個圓的直徑比和周長比都是2:3,而面積比是4:9。
23.當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;
當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
24.在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾.
25.當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小。
26.扇形弧長公式:L=πd÷360×n
扇形的面積公式: S= πr²÷360×n
(n為扇形的圓心角度數,r為扇形所在圓的半徑)
27.軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
28.只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是:長方形
只有3條對稱軸的圖形是:等邊三角形
只有4條對稱軸的圖形是:正方形;
……
有無數條對稱軸的圖形是:圓、圓環。
29.直徑所在的直線是圓的對稱軸。