㈠ 小學數學六年級公式
一.用字母表示運算定律或性質
加法交換律: a+b=b+a 加法結合律: (a+b)+c=a+(b+c)
乘法交換律: ab=ba 乘法結合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
二.幾何圖形計算公式
(1)周長:即圍繞物體一周的長度.
①長方形周長=(長+寬)×2 C=(a+b)×2 ②正方形周長=邊長×4 C=4a
③圓的周長=圓周率×直徑 =圓周率×半徑×2 C=πd C =2πr
(2)面積:即物體的表面或封閉圖形的大小
①長方形的面積=長×寬 S=ab ②正方形的面積=邊長×邊長 S=a•a=a2
③平行四邊形的面積=底×高 S=ah ④三角形的面積=底×高÷2 S=ah÷2
⑤梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圓的面積=圓周率×半徑S=πr2
⑦直徑d=2r 半徑=直徑÷2 r= d÷2 ⑧環形面積=外圓面積-內圓面積S環=S外-S內
【相互聯系】 平面圖形的面積公式是以長方形面積計算公式為基礎的.如兩個完全相同的三角形、梯形可拼成一個平行四邊形.圓拼成長方形的長時1/2C,寬是R.
(3)表面積:立體圖形的所有面的面積之和叫做它的表面積
①長方體的表面積=(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
②正方體的表面積=棱長×棱長×6 S=a×a×6 =6a2
③圓柱體的側面積=底面周長×高 S=Ch =2πrh
④圓柱體的表面積=側面積+底面積×2 S= Ch+2πr2 = 2πrh+2πr2
注意:圓柱的底面周長與高相等時側面展開是正方形,C=h 2πr=h
(4)體積:物體所佔空間的大小叫體積
①長方體的體積=長×寬×高 V=abh ②正方體的體積=棱長×棱長×棱長 V=a×a×a=a3
③圓柱的體積=底面積×高V=sh=πr2h ④圓錐的體積=底面積×高÷3 V=1/3sh= 1/3πr2h
【相互聯系】長方體、正方體和圓柱體的體積公式可統一成:V=sh即底面積×高..
等體積等底的長、正、圓柱體和圓錐體,圓錐高是長方體、正方體、圓柱體高的3倍.
三.數量關系式
1每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4 工效×工時=工作總量 工作總量÷工效=工時 工作總量÷工時=工效
5、 加數+加數=和 和-一個加數=另一個加數
6、 被減數-減數=差 被減數-差=減數 差+減數=被減數
7、 因數×因數=積 積÷一個因數=另一個因數
8、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 被除數=除數×商+余數
注意:0.3÷0.2=1 .0.1 除數與被除數同時擴大100倍,商不變,余數也擴大100倍.
9 平均數=總數÷總份數 平均速度=總路程÷總時間
10.相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間 一個人的速度=相遇路程÷相遇時間-另一個人的速度
11.平均速度問題 平均速度=總路程÷(順流時間+逆流時間)注意: 折(往)返=路程×2
12.濃度問題: 溶質(葯)+溶劑(水)=溶液(葯水) 溶質(葯)÷溶液(葯水)=濃度
溶液(葯水)×濃度=溶質(葯) 溶質(葯)÷濃度=溶液(葯水)
13.折扣問題: 折扣=現價÷原價 (折扣<1) 現價=原價×折扣 原價=現價÷折扣
利息=本金×年利率×時間(年) =本金×月利率×時間(月)
14比例尺=圖上距離÷實際距離 實際距離=圖上距離÷比例尺 圖上距離=實際距離×比例尺
稅後利息=本金×利率×時間×(1-5%)
15追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
易錯題:1、周長和面積不相等. 2、圓的面積與半徑不成比例. 3、增加和擴大、縮小與減少的區別 4、地磚塊數與面積的計算. 5、時間的進率60,平方米與公頃的進率是10000 6、一種立體圖形轉化為另一種立體圖形,體積不變. 7、填空、應用題要注意單位的統一(易錯);要求保留時,無要求用什麼法,要結合實際用「四捨五入」還是「進一法」. 8、計算表面積時結合實際求哪些面. 9、 車輪、壓路機前進的距離就是周長×轉數. 10、數的改寫用小數點表示,再添單位;精確到(保留時)看下一位並用「四捨五入」法表示,再添單位. 11、等底等高的三角形是平行四邊形面積的一半;等底等高的圓柱體積是圓錐的3倍. 12、路程一定,速度和時間成反比.如A、B同走一段路時間比是5:4,A、B的速度比是4:5.(工作總量類似). 13、看到高和垂線想到直角(符號). 14、兩點之間直線最短,點線之間垂線段最短;繞一點旋轉就是以這點為頂點,作與這個點相關的兩條邊的垂線,定出另兩個點.旋轉時逆時針是向左. 15、確定方向要注意觀測點. 16、計算時要留意跟整數相差一點的數.如9.9 ;10.1. 17、應用題分析時注意抓共同量或不變數分析.如實際與計劃中的總量,男生轉入人數時的女生人數;同一面積中換不同邊長的地磚. 18、兩個圓的面積比是半徑比的平方倍;圖形面積擴大的倍數是邊長擴大的平方倍.
㈡ 求小學六年級全部公式 單位換位單位計算
三角形的面積=底×高÷。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
小學數學定義定理公式(二)
一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
㈢ 小學六年級所有數學公式
^圓的標准方程
(x-a)^2+(y-b)^2=r^2
註:(a,b)是圓心坐標
圓的一般方程
x^2+y^2+Dx+Ey+F=0
註:△=D^2+E^2-4F>0
拋物線標准方程
y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
直稜柱側面積
S=c*h
斜稜柱側面積
S=c'
*h
正棱錐側面積
S=1/2c*h'
正稜台側面積
S=1/2(c+c')h'
圓台側面積
S=1/2(c+c')l=pi(R+r)l
球的表面積
S=4π*r2
圓柱側面積
S=c*h=2π*h
圓錐側面積
S=1/2*c*l=π*r*l
弧長公式
l=a*r
a是圓心角的弧度數r
>0
扇形面積公式
s=1/2*l*r
錐體體積公式
V=1/3*S*H
圓錐體體積公式
V=1/3*pi*r2h
斜稜柱體積
V=S'L
註:其中,S'是直截面面積,
L是側棱長
柱體體積公式
V=s*h
圓柱體
V=π*r2h
圖形周長
面積
體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=
√[p(p
-
a)(p
-
b)(p
-
c)]
(海倫秦九韶公式)
(p=
(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
直徑=2
r
圓的周長=πd=
2πr
圓的面積=
πr^2
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積
=長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
柱體體積=底面積×高
平面圖形
名稱
符號
周長C和面積S
正方形
a—邊長
C=4a
S=a2
長方形
a和b-邊長
C=2(a+b)
S=ab
三角形
a,b,c-三邊長
其中s=(a+b+c)/2
S=ah/2
h-a邊上的高
=ab/2×sinC
s-周長的一半
=[s(s-a)(s-b)(s-c)]1/2
A,B,C-內角
=a^2sinBsinC/(2sinA
㈣ 小學數學六年級
-----公式定義
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
-----公理定理
一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
㈤ 六年級,分配律,結合律,交換律,簡便計算,求學霸,過程寫在紙上
我給你答案,必須採納
㈥ 一至六年級所有運算律
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用。
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。
㈦ 小學階段一到六年級有沒有減法結合律和減法分配律
小學數學四則運算交換律、結合律、分配律及去括弧匯總
一、交換律:
①加法:a+b+c=a+c+b
例子:9+6+1=9+1+6
②減法:a-b-c=a-c-b
例子:15-9-5=15-5-9
③乘法:a×b×c=a×c×b
例子:1×2×3=1×3×2
④除法:a÷b÷c=a÷c÷b
例子:6÷2÷3=6÷3÷2
二、結合律:
①加法:a+b+c=a+(b+c)
例子:6+9+1=6+(9+1)
②減法:a-b-c=a-(b+c)
例子:15-1-4=15-(1+4)
③結合律:a×b×c=a×(b×c)
例子:9×5×2=9×(5×2)
④結合律:a÷b÷c=a÷(b×c)
例子:90÷5÷2=90÷(5×2)
三、分配律:
①乘法:
a×(b+c)=a×b+a×c
例子:
5×(6+8)=5×6+5×8
a×b+a×c=a×(b+c)
5×17+5×3=5×(17+3)
a×(b-c)=a×b-a×c
例子:
5×(8-6)=5×8-5×6
a×b-a×c=a×(b-c)
5×24-5×4=5×(24-4)
②除法::
(a+b)÷c=a÷c+b÷c
例子:
(9+6)÷3=9÷3+6÷3
a÷c+b÷c=(a+b)÷c
例子:
9÷3+6÷3=(9+6)÷3
(a-b)÷c=a÷c-b÷c
例子:
(9-6)÷3=9÷3-6÷3
a÷c-b÷c=(a-b)÷c
例子:
9÷3-6÷3=(9-6)÷3
㈧ 乘法交換律三道六年級應用題,急用
不給題目怎麼做?!