『壹』 五年級下冊數學課堂作業本的全部答案
答案不好找,你可以考慮把題發上來做。
希望對你有所幫助,有不會的可以再問,祝學習進步!
您的及時採納是對答題者的尊重!O(∩_∩)O
『貳』 五年級數學課堂作業的答案
一、我會算(10分)
0.75÷= 0.8×125= 4÷20= 728÷7=
0.36+1.54= 362-97= 0.8×0.5= 1.01×99=
0.3÷1.5= 7×1.3+7×6.7=
二、我會填空(25分)
1、一個長方體的長、寬、高分別是6分米、4分米、3分米,這個長方體的棱長總和是( )。
2、4.5升=( )毫升=( )立方厘米=( )立方米
3、正方體的表面積是底面積的( )倍。
4、統計中常用( )的方法收集收據。
5、強強上學期期末成績語文、數學、英語三門的總成績是272分,語文和英語的平均分是89.8分,數學成績是( )。
6、36÷9=4我們說( )能整除( ),36是9的( )9是36( )。
7、12的約數有( )個。最大的約數是( )。
8、100以內12的倍數有( )。
9、X·X·X=( ) 3X·X=( ) 3X+2X+X=( )
10、液體的體積可以用( )和( )來量。
11、把60分解質因數是( )。
12、一個合數至少有( )個約數。
13、如果非0自然數a和b互質,那麼a和b的最大公約數是( ),最小公倍數是( )。
14、能同時被2、3和5整除的最小三位數是( )。
三、我會判斷。錯的打「×」對的打「√」(10分)
1、一個數的約數一定比它的倍數小。 ( )
2、一個正方體的棱長是6厘米,則它的表面積和體積一樣大( )。
3、一個長方體最多有兩個面是正方形。 ( )
4、一個自然數不是質數就是合數。 ( )
5、如果兩個數是互質數,這兩個數一定是互質數。( )
四、我會選擇(12分)
1、一個數是36的約數,同時又是4的約數,這個數可能是( )。
A、12 B、4 C、36
2、12個棱長1分米的正方體,拼成長方體有( )種拼法。
A、2 B、3 C、4 D、5
3、長方體大小是由( )決定的
A、長 B、寬 C、高 D、長、寬、高
4、養雞場養了15隻母雞,2隻公雞,每隻雞平均每月下蛋25個,一個月共下( )個蛋。
A、375 B、425 C、405
5、 6能被4( )。
A、整除 B、除盡 C、除不盡
6、一個長方體的長、寬、高都擴大2倍,它的體積擴大( )。
A、2倍 B、4倍 C、6倍 D、8倍
五、我會統計(10分)
下面是老年音樂班學員的年齡記錄單
64
70
58
67
64
56
72
69
57
65
65
71
68
59
63
81
58
66
59
73
63
76
68
59
65
68
61
68
51
62
(1)、根據以上數據分類整理後填寫下表(5分)
年齡
不滿60歲
60—69
70—79
80歲以上
人數
(2)、從以上統計表中得到什麼信息?(5分)
六、我會方程(8分)
1、X的3倍加上16與5的積,和是113,求X?
2、一個數的7.5倍與這個數的3倍之差是49.5,求這個數?
七、我會解決
1、一個蓄水池長6米,寬4米,深3米,它佔地面積是多少平方米?最多容納水為多少升?如果在四周抹上水泥,則抹水泥的面積是多少平方米?(9分)
2、用一個棱長是3分米的正方形鋼材鑄造成底面積是81平方米的長方體鋼材,這塊鋼材高多少分米?(5分)
3、一個長方體油箱,從裡面量長4.5分米,寬2.5分米,高2.8分米,如果每升柴油重0.8千克,這個油箱有柴油多少克? 5分)
4、植樹節時,華夏小學五年級兩個班參加植樹活動,一班35人,平均每人植3棵,二班37人,共植樹183棵,五年級平均每班植樹多少棵?平均每人植樹多少棵?(6分)
附參考答案:
二、我會填空
1、(52分米) 2、(4500=4500=0.0045) 3、(6 )
4、(畫「正」字) 5、(92.4) 6、(9 36 倍數 約數 )
7、(6 12) 8、(12、24、36、48、60、72、84、96)
9、(X3 3X2 6X)
10、(升 毫升) 11、(60=2×2×3×5)
12、(3) 13、(1 ab) 14、(120)
三、我會判斷
1、(×) 2(×) 3、(√) 4、(×) 5(√)
四、我會選擇
1、(B) 2、(C)3、(D)4、(A)5、(B)6、(D)
六、我會方程
1、3X+16×5=113
2、解:設這個數是X 7.5X-3X=49.5
七、我會解決
1、(1)6×4=24(平方米) (2)24×3或(6×4×3)
(3) (6×3+4×3)×2
2、2×2×2÷81
3、0.8千克=800克 4.5×2.5×2.8×800
4、(1)(35×3+183)÷2
(2)(35×3+183)÷(37+35)
『叄』 小學生五年級奧數題及答案 …… { 急 }
http://..com/question/82690413.html?si=1
裡面來絕對源有100道了。(附答案)
『肆』 五年級下冊數學課堂作業本73~79答案
小學五年級下學期數學試題及答案
一、填空題(28分)
1.8.05 dm3=( )L( )ml 695000px3=( )dm3=( )m3
2.1~20中奇數有( ),偶數有( ),質數有( ),合數有( ),既是合數又是奇數有( ),既是合數又是偶數有( ),既不是質數又不是合數有( )
3.一瓶綠茶容積約是500( )
4.493至少增加( )才是3的倍數,至少減少( )才是5的倍數。
5.2A2這個三位數是3的倍數,A可能是( )、( )、( )。
6.用24dm的鐵絲做一個正方體櫃架,它的表面積是( )dm2。體積是( )dm3
7. 寫出兩個互質的數,兩個都是質數( ),兩個都是合數( ),一個質數一個合數。( )
8. 兩個連續的偶數和是162,這兩個數分別是( )和( )。它們的最大公約數是( ),最小公倍數是( )。
9. 寫出一個有約數2,是3的倍數,又能被5整除的最大三位數( )。
10. 用4、5、9三個數字排列一個三位數,使它是2的倍數,再排成一個三位數,使它是5的倍數,各有( )種排法。
11.把棱長為1分米的正方體切成棱長是1厘米的小正方體塊,一共可以切( )塊,如果把這些小正方體塊擺成一行,長( )米。
二、選擇(12分)
1.如果a是質數,那麼下面說法正確的是( )。
A.a只有一個因數。 B. a一定不是2的倍數。
C. a只有兩個因數。 D.a一定是奇數
2.一個合數至少有 ( )個因數。
A. 3 B. 4 C. 1 D. 2
3. 下面( )是2、5、3的倍數。
A. 70 B. 18 C. 30 D. 50
4. 一個立方體的棱長擴大2倍,它的體積就擴大( )。
A. 2倍 B. 4倍 C. 8倍
5. 下面的圖形中,那一個是正方體的展開圖,它的編號是( )。
6.五年級某班排隊做操,每個隊都剛好是13人。這個班可能有( )人。
A.48 B.64 C.65 D.56
三、判斷,對的在( )里畫「√」,錯誤的畫「×」(6分)
1.如果兩個長方體的體積相等,它們的表面積也相等( )
2.一個數的因數總比它的倍數小。 ( )
3.棱長是6 cm的正方體,體積和表面積相等。( )
4.在自然數里,不是奇數就是偶數。( )
5.個位上是3、6、9的數,都是3的倍數。( )
6.因為12÷3=4,所以12是倍數,3是因數。( )
四、動手試一試(10分)
2.算一算。右圖是一個無蓋長方體鐵盒的兩個面,請你根據有關數據計算。
五、解決問題。(44分)
1.一種葯液箱的容積14L,如果每分鍾噴出葯液700ml,噴完一箱葯液需用多少分鍾?
2.學校運來7.6立方米沙土,把這些沙土鋪在一個長5米,寬3.8米的沙坑裡,可以鋪多厚?
3.粉刷一間長8米、寬6米,高3.5米的長方體教室,除去門窗面積27平方米。已知每平方米用塗料0.3千克。這間教室一共要用多少千克塗料?
4.一個長方體容器,從裡面量長、寬均為2dm,向容器中倒入5.9L水後,再把一個西紅杮放入水中,這時量得容器內的水深是400px,這個西紅杮的體積是多少?
5.把長1m的長方體木棍截成3段,表面積增加500px2,這根木棍原來的體積是多少cm3?
6.某健身館計劃新建一個游泳池,該游泳池的長是25m,寬12m,深1.4m.請完成下面問題。
(1)游泳池佔地面積多少平方米?
(2)現在要在池的四周和底面都貼上邊長為2分米的正方形白瓷磚,一共要用多少塊?
(3)如果游泳池全裝滿水,能裝多少升水?
7.一塊長方形鐵皮,長是750px,寬625px,怎樣從四個角切掉一個邊長為125px的正方形,然後做成一個盒子。
(1)請你畫出一個草圖
(2)這個盒子用了多少平方厘米的鐵皮?
(3)它的容積是多少?
『伍』 五年級奧數題及答案200道
1、甲乙兩車同時從AB兩地相對開出。甲行駛了全程的5/11,如果甲每小時行駛4.5千米,乙行了5小時。求AB兩地相距多少千米 ?
解:AB距離=(4.5×5)/(5/11)=49.5千米
2、一輛客車和一輛貨車分別從甲乙兩地同時相向開出。貨車的速度是客車的五分之四,貨車行了全程的四分之一後,再行28千米與客車相遇。甲乙兩地相距多少千米?
解:客車和貨車的速度之比為5:4
那麼相遇時的路程比=5:4
相遇時貨車行全程的4/9
此時貨車行了全程的1/4
距離相遇點還有4/9-1/4=7/36
那麼全程=28/(7/36)=144千米
3、甲乙兩人繞城而行,甲每小時行8千米,乙每小時行6千米。現在兩人同時從同一地點相背出發,乙遇到甲後,再行4小時回到原出發點。求乙繞城一周所需要的時間?
解:甲乙速度比=8:6=4:3
相遇時乙行了全程的3/7
那麼4小時就是行全程的4/7
所以乙行一周用的時間=4/(4/7)=7小時
4、甲乙兩人同時從A地步行走向B地,當甲走了全程的1\4時,乙離B地還有640米,當甲走餘下的5\6時,乙走完全程的7\10,求AB兩地距離是多少米?
解:甲走完1/4後餘下1-1/4=3/4
那麼餘下的5/6是3/4×5/6=5/8
此時甲一共走了1/4+5/8=7/8
那麼甲乙的路程比=7/8:7/10=5:4
所以甲走全程的1/4時,乙走了全程的1/4×4/5=1/5
那麼AB距離=640/(1-1/5)=800米
5、甲,乙兩輛汽車同時從A,B兩地相對開出,相向而行。甲車每小時行75千米,乙車行完全程需7小時。兩車開出3小時後相距15千米,A,B兩地相距多少千米?
解:一種情況:此時甲乙還沒有相遇
乙車3小時行全程的3/7
甲3小時行75×3=225千米
AB距離=(225+15)/(1-3/7)=240/(4/7)=420千米
一種情況:甲乙已經相遇
(225-15)/(1-3/7)=210/(4/7)=367.5千米
6、甲,已兩人要走完這條路,甲要走30分,已要走20分,走3分後,甲發現有東西沒拿,拿東西耽誤3分,甲再走幾分鍾跟已相遇?
解:甲相當於比乙晚出發3+3+3=9分鍾
將全部路程看作單位1
那麼甲的速度=1/30
乙的速度=1/20
甲拿完東西出發時,乙已經走了1/20×9=9/20
那麼甲乙合走的距離1-9/20=11/20
甲乙的速度和=1/20+1/30=1/12
那麼再有(11/20)/(1/12)=6.6分鍾相遇
7、甲,乙兩輛汽車從A地出發,同向而行,甲每小時走36千米,乙每小時走48千米,若甲車比乙車早出發2小時,則乙車經過多少時間才追上甲車?
解:路程差=36×2=72千米
速度差=48-36=12千米/小時
乙車需要72/12=6小時追上甲
8、甲乙兩人分別從相距36千米的ab兩地同時出發,相向而行,甲從a地出發至1千米時,發現有物品以往在a地,便立即返回,去了物品又立即從a地向b地行進,這樣甲、乙兩人恰好在a,b兩地的終點處相遇,又知甲每小時比乙多走0.5千米,求甲、乙兩人的速度?
解:
甲在相遇時實際走了36×1/2+1×2=20千米
乙走了36×1/2=18千米
那麼甲比乙多走20-18=2千米
那麼相遇時用的時間=2/0.5=4小時
所以甲的速度=20/4=5千米/小時
乙的速度=5-0.5=4.5千米/小時
9、兩列火車同時從相距400千米兩地相向而行,客車每小時行60千米,貨車小時行40千米,兩列火車行駛幾小時後,相遇有相距100千米?
解:速度和=60+40=100千米/小時
分兩種情況,
沒有相遇
那麼需要時間=(400-100)/100=3小時
已經相遇
那麼需要時間=(400+100)/100=5小時
10、甲每小時行駛9千米,乙每小時行駛7千米。兩者在相距6千米的兩地同時向背而行,幾小時後相距150千米?
解:速度和=9+7=16千米/小時
那麼經過(150-6)/16=144/16=9小時相距150千米
11、甲乙兩車從相距600千米的兩地同時相向而行已知甲車每小時行42千米,乙車每小時行58千米兩車相遇時乙車行了多少千米?
解:
速度和=42+58=100千米/小時
相遇時間=600/100=6小時
相遇時乙車行了58×6=148千米
或者
甲乙兩車的速度比=42:58=21:29
所以相遇時乙車行了600×29/(21+29)=348千米
12、兩車相向,6小時相遇,後經4小時,客車到達,貨車還有188千米,問兩地相距?
解:將兩車看作一個整體
兩車每小時行全程的1/6
4小時行1/6×4=2/3
那麼全程=188/(1-2/3)=188×3=564千米
13、甲乙兩地相距600千米,客車和貨車從兩地相向而行,6小時相遇,已知貨車的速度是客車的3分之2 ,求二車的速度?
解:二車的速度和=600/6=100千米/小時
客車的速度=100/(1+2/3)=100×3/5=60千米/小時
貨車速度=100-60=40千米/小時
14、小兔和小貓分別從相距40千米的A、B兩地同時相向而行,經過4小時候相聚4千米,再經過多長時間相遇?
解:速度和=(40-4)/4=9千米/小時
那麼還需要4/9小時相遇
15、甲、乙兩車分別從a b兩地開出 甲車每小時行50千米 乙車每小時行40千米 甲車比乙車早1小時到 兩地相距多少?
甲車到達終點時,乙車距離終點40×1=40千米
甲車比乙車多行40千米
那麼甲車到達終點用的時間=40/(50-40)=4小時
兩地距離=40×5=200千米
16、兩輛車從甲乙兩地同時相對開出,4時相遇。慢車是快車速度的五分之三,相遇時快車比慢車多行80千米,兩地相距多少?
解:快車和慢車的速度比=1:3/5=5:3
相遇時快車行了全程的5/8
慢車行了全程的3/8
那麼全程=80/(5/8-3/8)=320千米
17、甲乙兩人分別從A、B兩地同時出發,相向而行,甲每分鍾行100米,乙每分鍾行120米,2小時後兩人相距150米。A、B兩地的最短距離多少米?最長距離多少米?
解:最短距離是已經相遇,最長距離是還未相遇
速度和=100+120=220米/分
2小時=120分
最短距離=220×120-150=26400-150=26250米
最長距離=220×120+150=26400+150=26550米
18、甲乙兩地相距180千米,一輛汽車從甲地開往乙地計劃4小時到達,實際每小時比原計劃多行5千米,這樣可以比原計劃提前幾小時到達?
解:
原來速度=180/4=45千米/小時
實際速度=45+5=50千米/小時
實際用的時間=180/50=3.6小時
提前4-3.6=0.4小時
19、甲、乙兩車同時從AB兩地相對開出,相遇時,甲、乙兩車所行路程是4:3,相遇後,乙每小時比甲快12千米,甲車仍按原速前進,結果兩車同時到達目的地,已知乙車一共行了12小時,AB兩地相距多少千米?
解:設甲乙的速度分別為4a千米/小時,3a千米/小時
那麼
4a×12×(3/7)/(3a)+4a×12×(4/7)/(4a+12)=12
4/7+16a/7(4a+12)=1
16a+48+16a=28a+84
4a=36
a=9
甲的速度=4×9=36千米/小時
AB距離=36×12=432千米
算術法:
相遇後的時間=12×3/7=36/7小時
每小時快12千米,乙多行12×36/7=432/7千米
相遇時甲比乙多行1/7
那麼全程=(432/7)/(1/7)=432千米
20、甲乙兩汽車同時從相距325千米的兩地相向而行,甲車每小時行52千米,乙車的速度是甲車的1.5倍,車開出幾時相遇?
解:乙的速度=52×1.5=78千米/小時
開出325/(52+78)=325/130=2.5相遇
21、甲乙兩車分別從A,B兩地同時出發相向而行,甲每小時行80千米,乙每小時行全程的百分之十,當乙行到全程的5/8時,甲再行全程的1/6可到達B地。求A,B兩地相距多少千米?
解:乙行全程5/8用的時間=(5/8)/(1/10)=25/4小時
AB距離=(80×25/4)/(1-1/6)=500×6/5=600千米
22、甲乙兩輛汽車同時從兩地相對開出,甲車每小時行駛40千米,乙車每小時行駛45千米。兩車相遇時,乙車離中點20千米。兩地相距多少千米?
解:甲乙速度比=40:45=8:9
甲乙路程比=8:9
相遇時乙行了全程的9/17
那麼兩地距離=20/(9/17-1/2)=20/(1/34)=680千米
23、甲乙兩人分別在A、B兩地同時相向而行,與E處相遇,甲繼續向B地行走,乙則休息了14分鍾,再繼續向A地行走,甲和乙分別到達B和A後立即折返,仍在E處相遇。已知甲每分鍾走60米,乙每分鍾走80米,則A和B兩地相距多少米?
解:把全程看作單位1
甲乙的速度比=60:80=3:4
E點的位置距離A是全程的3/7
二次相遇一共是3個全程
乙休息的14分鍾,甲走了60×14=840米
乙在第一次相遇之後,走的路程是3/7×2=6/7
那麼甲走的路程是6/7×3/4=9/14
實際甲走了4/7×2=8/7
那麼乙休息的時候甲走了8/7-9/14=1/2
那麼全程=840/(1/2)=1680米
24、甲乙兩列火車同時從AB兩地相對開出,相遇時,甲.乙兩車未行的路程比為4:5,已知乙車每小時行72千米,甲車行完全程要10小時,問AB兩地相距多少千米?
解:相遇時未行的路程比為4:5
那麼已行的路程比為5:4
時間比等於路程比的反比
甲乙路程比=5:4
時間比為4:5
那麼乙行完全程需要10×5/4=12.5小時
那麼AB距離=72×12.5=900千米
25、甲乙兩人分別以每小時4千米和每小時5千米的速度從A、B兩地相向而行,相遇後二人繼續往前走,如果甲從相遇點到達B地又行2小時,A、B兩地相距多少千米?
解:甲乙的相遇時的路程比=速度比=4:5
那麼相遇時,甲距離目的地還有全程的5/9
所以AB距離=4×2/(5/9)=72/5=14.4千米
2、一項工作,甲5小時先完成4分之1,乙6小時又完成剩下任務的一半,最後餘下的工作有甲乙合作,還需要多長時間能完成?
解:甲的工作效率=(1/4)/5=1/20
乙完成(1-1/4)×1/2=3/8
乙的工作效率=(3/8)/6=1/16
甲乙的工作效率和=1/20+1/16=9/80
此時還有1-1/4-3/8=3/8沒有完成
還需要(3/8)/(9/80)=10/3小時
3、工程隊30天完成一項工程,先由18人做,12天完成了工程的3/1,如果按時完成還要增加多少人?
解:每個人的工作效率=(1/3)/(12×18)=1/648
按時完成,還需要做30-12=18天
按時完成需要的人員(1-1/3)/(1/648×18)=24人
需要增加24-18=6人
4、甲乙兩人加工一批零件,甲先加工1.5小時,乙再加工,完成任務時,甲完成這批零件的八分之五.已知甲乙的共效比是3:2.問:甲單獨加工完成著批零件需多少小時?
解:甲乙工效比=3:2
也就是工作量之比=3:2
乙完成的是甲的2/3
乙完成(1-5/8)=3/8
那麼甲和乙一起工作時,完成的工作量=(3/8)/(2/3)=9/16
所以甲單獨完成需要1.5/(5/8-9/16)=1.5/(1/16)=24小時
5、一項工程,甲、乙、丙三人合作需要13天,如果丙休息2天,乙要多做4天,或者由甲、乙合作多做1天。問:這項工程由甲單獨做需要多少天?
解:丙做2天,乙要做4天
也就是說並做1天乙要做2天
那麼丙13天的工作量乙要2×13=26天完成
乙做4天相當於甲乙合作1天
也就是乙做3天等於甲做1天
設甲單獨完成需要a天
那麼乙單獨做需要3a天
丙單獨做需要3a/2天
根據題意
1/a+1/3a+1/(3a/2)=1/13
1/a(1+1/3+2/3)=1/13
1/a×2=1/13
a=26
甲單獨做需要26天
算術法:丙做13天相當於乙做26天
乙做13+26=39天相當於甲做39/3=13天
所以甲單獨完成需要13+13=26天
6、解:乙做60套,甲做60/(4/5)=75套
甲三天做165-75=90套
甲的工作效率=90/3=30套
乙每天加工30×4/5=24套
7、甲、乙兩人生產一批零件,甲、乙工作效率的比是2:1,兩人共同生產了3天後,剩下的由乙單獨生產2天就全部完成了生產任務,這時甲比乙多生產了14個零件,這批零件共有多少個?
解:將乙的工作效率看作單位1
那麼甲的工作效率為2
乙2天完成1×2=2
乙一共生產1×(3+2)=5
甲一共生產2×3=6
所以乙的工作效率=14/(6-5)=14個/天
甲的工作效率=14×2=28個/天
一共有零件28×3+14×5=154個
或者設甲乙的工作效率分別為2a個/天,a個/天
2a×3-(3+2)a=14
6a-5a=14
a=14
一共有零件28×3+14×5=154個
8、一個工程項目,乙單獨完成工程的時間是甲隊的2倍;甲乙兩隊合作完成工程需要20天;甲隊每天工作費用為1000元,乙每天為550元,從以上信息,從節約資金角度,公司應選擇哪個?應付工程隊費用多少?
解:甲乙的工作效率和=1/20
甲乙的工作時間比=1:2
那麼甲乙的工作效率比=2:1
所以甲的工作效率=1/20×2/3=1/30
乙的工作效率=1/20×1/3=1/60
甲單獨完成需要1/(1/30)=30天
乙單獨完成需要1/(1/60)=60天
甲單獨完成需要1000×30=30000元
乙單獨完成需要550×60=33000元
甲乙合作完成需要(1000+550)×20=31000元
很明顯
甲單獨完成需要的錢數最少
選擇甲,需要付30000元工程費。
9、一批零件,甲乙兩人合做5.5天可以超額完成這批零件的0.1,現在先由甲做2天,後由後由甲乙合作兩天,最後再由乙接著做4天完成任務,這批零件如果由乙單獨做幾天可以完成?
解:將全部零件看作單位1
那麼甲乙的工作效率和=(1+0.1)/5.5=1/5
整個過程是甲工作2+2=4天
乙工作2+4=6天
相當於甲乙合作4天,完成1/5×4=4/5
那麼乙單獨做6-4=2天完成1-4/5=1/5
所以乙單獨完成需要2/(1/5)=10天
10、有一項工程要在規定日期內完成,如果甲工程隊單獨做正好如期完成,如果乙工程隊單獨做就要超過5天才能完成。現由甲、乙兩隊合作3天,餘下的工程由乙隊單獨做正好按期完成,問規定日期是多少天?
解:甲做3天相當於乙做5天
甲乙的工作效率之比=5:3
那麼甲乙完成時間之比=3:5
所以甲完成用的時間是乙的3/5
所以乙單獨完成需要5/(1-3/5)=5/(2/5)=12.5天
規定時間=12.5-5=7.5天
11、一項工程,甲隊單獨做20天完成,乙隊單獨做30天完成,現在乙隊先做5天後,剩下的由甲、乙兩隊合作,還需要多少天完成?
解:乙5天完成5×1/30=1/6
甲乙合作的工作效率=1/20+1/30=1/6
那麼還需要(1-1/6)/(1/6)=(5/6)/(1/6)=5天
12、一項工程 甲獨完成要10天,乙獨做需15天,丙隊要20天,3隊一起干,甲隊因事走了,結果共用了六天,甲隊實際幹了多少天?
解:乙丙的工作效率和=1/15+1/20=7/60
乙丙都做6天,完成7/60×6=7/10
甲完成全部的1-7/10=3/10
那麼甲實際幹了(3/10)/(1/10)=3天
12、加工一個零件,甲需要4小時,乙需要2.5小時,丙需要5小時。現在有187個零件需要加工,如果規定三人用同樣多的時間完成,那麼各應該加工多少個?
解:甲乙丙加工1個零件分別需要1/4小時,2/5小時,1/5小時
那麼完成的時間=187/(1/4+2/5+1/5)=187/0.85=220小時
那麼甲加工1/4×220=55個
乙加工2/5×220=88個
丙加工1/5×220=44個
13、一項工程,由甲先做5/1,再由甲乙兩隊合作,又做了16天完成。已知甲乙兩隊的工效比是2:3,甲乙兩隊獨立完成這項工程各需多少天?
解:甲乙的工作效率和=(1-1/5)/16=(4/5)/16=1/20
甲的工作效率=1/20×2/(2+3)=1/50
乙的工作效率=1/20-1/50=3/100
那麼甲單獨完成需要1/(1/50)=50天
乙單獨完成需要1/(3/100)=100/3天=33又1/33天
14、一項工程,甲隊20人單獨做要25天,如果要20天完成,還需再加多少人?
解:將每個人的工作量看作單位1
還需要增加1×25×20/(1×20)-20=25-20=5人
15、一項工程,甲先做3天,然後乙加入,4天後完成的這項工程的3分之1,10天後完成的這項工程的4分之3。甲因有事調走,剩餘全都讓乙做。一共做了多少天?
解:根據題意
甲乙合作開始是4天完成1/3,後來是10天完成3/4
所以甲乙合作10-4=6天完成3/4-1/3=5/12
所以甲乙的工作效率和=(5/12)/6=5/72
那麼甲的工作效率=(1/3-5/72×4)/3=(1/3-5/18)/3=1/54
乙的工作效率=5/72-1/54=11/216
那麼乙完成剩下的需要(1-3/4)/(11/216)=54/11天
一共做了3+10+54/11=17又10/11天
16、甲乙做相同零件各做了16天後甲還需64個乙還需384個才能完成乙比甲的工作效率少百分之40,求甲的效率?
解:設甲的工作效率為a個/天,則乙為(1-40%)a=0.6a個/天
根據題意
16a+64=0.6a×16+384
16×0.4a=320
0.4a=20
a=50個/天
甲的工作效率為50個/天
算術法:
乙比甲每天少做40%
那麼16天少做384-64=320個
每天少做320/16=20個
那麼甲的工作效率=20/40%=50個/天
17、張師傅每工作6天休息1天,王師傅每工作5天休息2天。現有一項工程,張師傅獨做需97天,李師傅需75天,如果兩人合作,一共需多少天?
解:
97除以7等於13餘6,13*6=78,78+6=84個工作日
75除以7等於10餘5,10*5=50,50+5=55個工作日
張師傅每工作日完成1/84,每周完成6/84=1/14
王師傅每工作日完成1/55,每周完成5/55=1/11
兩人合作每工作日完成139/4620,每周完成25/154
6周完成150/154,還剩4/154
(4/154)/(139/4620)=120/139
所以,6周零一天,43天
18、甲乙丙三人共同完成一項工程,3天完成了全部的1/5,然後甲休息了3天,乙休息了2天,丙沒休息,如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天工作量的4倍,那麼這項工作從開始算起多少天完成?
解:甲乙丙的工作效率和=(1/5)/3=1/15
丙的工作效率=(1/15)/(3+4+1)=1/120
甲的工作效率=1/120×3=1/40
乙的工作效率=1/120×4=1/30
這里把丙的工作效率看作1倍數
甲休息3天,乙休息2天這段時間一共完成
1/30+1/120×3=7/120
那麼剩下的還需要(1-1/5-7/120)/(1/15)=89/8天
一共需要3+3+89/8=17又1/8天
19、一項工程,甲獨做30天,乙獨做20天完成,甲先做了若干天後,由乙接替,甲乙共做22天,甲乙各做幾天?
解:乙的工作效率=1/20
乙22天完成1/20×22=11/10
多完成11/10-1=1/10
乙的工作效率和甲的工作效率之差=1/20-1/30=1/60
所以甲做了(1/10)/(1/60)=6天
乙做了22-6=12天
按照雞兔同籠問題考慮
20、一項工程甲乙合做需12天完成,若甲先做3天後,再由乙工作8天,共完成這項工作的5/12,如果這件工作由甲單獨做,需()天完成?
解:甲3天乙8天看作甲乙合作3天,乙獨做8-3=5天
這是解決問題的關鍵
乙獨做5天完成5/12-1/12×3=1/6
乙的工作效率=(1/6)/5=1/30
甲的工作效率=1/12-1/30=1/20
甲單獨完成需要1/(1/20)=20天
21、一項工作,甲乙要4小時完成,乙丙要6小時完成。現在甲丙合作2小時,剩下的乙7小時完成。甲乙丙單獨要多久完成?
解:甲丙合作2小時,乙獨做7小時
相當於甲乙可做2小時,乙丙合作2小時,乙獨做7-2-2=3小時
那麼乙獨做完成1-1/4×2-1/6×2=1-1/2-1/3=1/6
乙的工作效率=(1/6)/3=1/18
甲的工作效率=1/4-1/18=7/36
丙的工作效率=1/6-1/18=1/9
甲單獨完成需要1/(7/36)=36/7天=5又1/7天
乙單獨完成需要1/(1/18)=18天
丙單獨完成需要1/(1/9)=9天
22、一項工程,甲隊單獨完成需12天,乙隊單獨完成需18天,現要求在10天內完成,則甲乙兩隊至少合作多少天?
解:此題考慮
至少一個隊工作10天,另一個隊作為補充
假如甲工作10天,完成1/12×10=5/6
那麼乙需要幫助(1-5/6)/(1/18)=(1/6)/(1/18)=3天
假如乙工作10天,完成1/18×10=5/9
甲需要幫助(1-5/9)/(1/12)=(4/9)/(1/12)=48/9天=5又1/3天
由此,很明顯甲乙至少合作3天就可以了。
23、某市日產垃圾700噸,甲乙合作要7小時,兩廠合作2.5小時後,乙廠單獨處理要10小時,已知甲每小時550元,乙每小時495元,要求費用不得超過7370元,那麼甲至少處理多少小時?
解:甲乙的工作效率和=1/7
甲乙合作2.5小時完成1/7×5/2=5/14
乙的工作效率=(1-5/14)/10=9/140
甲的工作效率=1/7-9/140=11/140
設甲至少處理a小時
那麼甲完成a×11/140=11a/140
還剩下1-11a/140需要乙完成
則乙工作的時間=(1-11a/140)/(9/140)=(140-11a)/9小時
根據題意
550a+495×(140-11a)/9≤7370
4950a+69300-5445a≤66330
495a≥2970
a≥6
甲至少要工作6小時
24、正在修建中的高速公路要招標,現有甲、乙兩個工程隊,若甲、乙兩隊合作,24天可以完成;需費用120萬元;若甲單獨做20天後,剩下的工程由乙做,還需40天才能完成,這樣需費用110萬元。問:
(1)甲、乙兩隊單獨完成此項工程各需多少天?
(2)甲、乙兩隊單獨完成此項工程,各需費用多少萬元?
解:甲乙的工作效率和=1/24
20天完成1/24×20=5/6
乙的工作效率=(1-5/6)/(40-20)=1/120
乙單獨完成需要1/(1/20)=120天
甲的工作效率=1/24-1/120=1/30
甲單獨完成需要1/(1/30)=30天
(2)甲乙工作一天需要費用120/24=5萬元
合作20天需要5×20=100萬元
乙單獨工作20天需要110-100=10萬元
乙工作一天需要10/20=0.5萬元
那麼甲工作一天需要5-0.5=4.5萬元
甲單獨完成需要4.5×30=135萬元
乙單獨完成需要0.5×120=60萬元
25、生產一批零件,甲每小時可做18個,乙單獨做要12小時成。現在由甲乙二人合做,完成任務時,甲乙生產的數量之比是3:5,甲一共生產零件多少個?
解:乙的工作效率=1/12
完成任務時乙工作了(5/8)/(1/12)=15/2小時
那麼甲一共生產18×15/2=135個
26、一項工程,甲獨做10天完成,乙獨做20完成,現在甲乙合作,甲休息一天,乙休息5天,完成這項工程要多少天?
解:甲休息1天,乙休息5天,相當於甲乙休息1天後,乙又休息4天
那麼甲4天完成4/10=2/5
甲乙的工作效率和=1/10+1/20=3/20
那麼剩下的需要(1-2/5)/(3/20)=(3/5)/(3/20)=4天
完成全部工程需要4+5=9天
27、一條長1200M的小巷進行路面修理,計劃由甲乙共同完成,若甲、乙合做24天可完成,若甲乙合做16天後,剩下由乙獨做20天完成,求甲乙每天修路多少M?若每天用70元,乙每天用40元,要使工程費用不超過2500元,問:甲隊至多施工幾天?
解:
甲乙的工作效率和=1/24
16天完成1/24×16=2/3
那麼乙的工作效率=(1-2/3)/20=1/60
甲的工作效率=1/24-1/60=1/40
甲單獨完成需要1/(1/40)=40天
乙單獨完成需要1/(1/60)=60天
甲每天修1200/40=30米
乙每天修1200/60=20米
設甲至多施工a天
那麼乙工作(1200-30a)/20=60-3a/2天
70a+(60-3a/2)×40≤2500
70a+2400-60a≤2500
10a≤100
a≤10天
甲至多工作10天
篇幅有限,僅供參考
『陸』 五年級上冊數學課堂作業本的全部答案
我是5年級上冊的,書也一樣,我們都學完了,可是在老師那
『柒』 小學五年級分數奧數(附答案)
1.五年級三個班共有學生164人,如果把乙班的一個學生調到甲班,甲班就比乙班多版2人,如果權把丙班的一個學生調到乙班,兩班人數正好相等.原來三個班各有學生多少人?
1。
乙=甲=丙-2
所以
甲=乙=(164-2)/3=54
丙=56
2.大,中,小三籃水果共重15.7千克,中籃與小籃共比大籃重0.7千克,中籃比小籃重1.8千克.三籃水果各重多少千克?
2。
中-小=1.8
中+小-大=0.7
中+小+大=15.7
大=7。5
中+小=8.2
小=3.2
中=5
『捌』 五年級奧數題及答案40道
您好!
問題1 如果一個四位數與一個三位數的和是1999,並且四位數和三位數是由7個不同的數字組成的。那麼,這樣的四位數最多能有多少個?
這是北京市小學生第十五屆《迎春杯》數學競賽決賽試卷的第三大題的第4小題,也是選手們丟分最多的一道題。
得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。
為了計算這樣的四位數最多有多少個,由題設條件a,b,c,d,e,f,g互不相同,可知,數字b有7種選法(b≠1,8,9),c有6種選法(c≠1,8,b,e),d有4種選法(d≠1,8,b,e,c,f)。於是,依乘法原理,這樣的四位數最多能有(7×6×4=)168個。
在解答完問題1以後,如果再進一步思考,不難使我們聯想到下面一個問題。
問題2 有四張卡片,正反面各寫有1個數字。第一張上寫的是0和1,其他三張上分別寫有2和3,4和5,7和8。現在任意取出其中的三張卡片,放成一排,那麼一共可以組成多少個不同的三位數?
此題為北京市小學生第十四屆《迎春杯》數學競賽初賽試題。其解為:
後,十位數字b可取其他三張卡片的六種數字;最後個位數c可取剩餘兩張卡片的四種數字。綜上所述,一共可以組成不同的三位數共(7×6×4=)168個。
如果從甲倉庫搬67噸貨物到乙倉庫,那麼甲倉庫的貨物正好是乙倉庫的2倍;如果從甲倉庫搬17噸貨物到乙倉庫,那麼甲倉庫的貨物正好是乙倉庫的5倍,原來兩倉庫各存貨物多少噸?
67×(2+1)-17×(5+1)
=201-102
=99(噸)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(噸)答:原來的乙有33噸。
(33+67)×2+67
=200+67
=267(噸)答:原來的甲有267噸。
分析:
1、如果從甲倉庫搬67噸貨物到乙倉庫,那麼甲倉庫的貨物正好是乙倉庫的2倍;
甲和乙總的數量沒有變,總的數量包括2+1=3個現在的乙,現在的乙是原來的乙加上67得來。所以總的數量就包括3個原來的乙和3個67〔67×(2+1)=201〕。
2、如果從甲倉庫搬17噸貨物到乙倉庫,那麼甲倉庫的貨物正好是乙倉庫的5倍,
理由同上,總的數量包括5+1=6個原來的乙和6個17(即17×(5+1)=102)
3、從1和2可看出,原來3個乙和原來6個乙只相差3個乙,而這三個乙正好相差201-102=99噸。可求出原來的乙是多少,99÷3=33噸。
4、再求原來的甲即可。
甲每小時行12千米,乙每小時行8千米.某日甲從東村到西村,乙同時從西村到東村,以知乙到東村時,甲已先到西村5小時.求東西兩村的距離
甲乙的路程是一樣的,時間甲少5小時,設甲用t小時
可以得到
1. 12t=8(t+5)
t=10
所以距離=120千米
小明和小芳圍繞著一個池塘跑步,兩人從同一點出發,同向而行。小明:280米/分;小芳:220/分。8分後,小明追上小芳。這個池塘的一周有多少米?
280*8-220*8=480
這時候如果小明是第一次追上的話就是這樣多
這時候小明多跑一圈...
1.用3.5.7.0組成一個兩位數,( )乘( )的積最大.( )乘( )的積最小.
2.有一些積木的塊數比50多,比70少,每7個一堆,多了一塊,每9個一堆,還是多1塊,這些積木有多少塊?
3.6盆花要擺成4排,每排3盆,應該怎樣擺?
4.4(1)班有4個人參加4X50米接力賽,問有多少種不同的安排方法?
5.能否從右圖中選出5個數,使它們的和為60?為什麼? 15 25 35
25 15 5
5 25 45
6.5餓連續偶數的和是240,這5個偶數分別是多少?
7.某人從甲地到乙地,先騎12小時摩托車,再騎9小時自行車正好到達.返回時,先騎21小時自行車,再騎8小時摩托車也正好到達.從甲地到乙地如果全騎摩托車需要多少時間?
1 70*53最大 30*75最小
2 64塊
3 五角星形
4 4*3*2*1=24
5不能,因為都是奇數,奇數個奇數相加不可能得偶數
6.240/5=48,則其餘偶數是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托車的速度是xkm/h,自行車速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托車共需12+9/3=15小時
數出圖中含有"*"號的長方形個數(含一個或二個都可以)
* * *
第1題兒子算出來是8+16+8=32個,答案卻是30個.
第2題兒子算出來是(12+24+24+12)*2,然後減去2*重復的,9+18+9=36,答案說應該減去48個,為什麼呢?
一、填空題
1.有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
2.某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度.
3.現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米.如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長.
4.一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?
5.小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表.小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒.已知兩電線桿之間的距離是100米.你能幫助小英和小敏算出火車的全長和時速嗎?
6.一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒.求這列火車的速度與車身長各是多少米.
7.兩人沿著鐵路線邊的小道,從兩地出發,以相同的速度相對而行.一列火車開來,全列車從甲身邊開過用了10秒.3分後,乙遇到火車,全列火車從乙身邊開過只用了9秒.火車離開乙多少時間後兩人相遇?
8. 兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
9.某人步行的速度為每秒鍾2米.一列火車從後面開來,越過他用了10秒鍾.已知火車的長為90米,求列車的速度.
10.甲、乙二人沿鐵路相向而行,速度相同,一列火車從甲身邊開過用了8秒鍾,離甲後5分鍾又遇乙,從乙身邊開過,只用了7秒鍾,問從乙與火車相遇開始再過幾分鍾甲乙二人相遇?
二、解答題
11.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
12.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
13.一人以每分鍾120米的速度沿鐵路邊跑步.一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度.
14.一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
———————————————答 案——————————————————————
一、填空題
120米
102米
17x米
20x米
尾
尾
頭
頭
1. 這題是「兩列車」的追及問題.在這里,「追及」就是第一列車的車頭追及第二列車的車尾,「離開」就是第一列車的車尾離開第二列車的車頭.畫線段圖如下:
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 畫段圖如下:
頭
90米
尾
10x
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
3. (1)車頭相齊,同時同方向行進,畫線段圖如下:
則快車長:18×12-10×12=96(米)
(2)車尾相齊,同時同方向行進,畫線段圖如下:
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
則慢車長:18×9-10×9=72(米)
4. (1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)
5. (1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
6. 設火車車身長x米,車身長y米.根據題意,得
①②
解得
7. 設火車車身長x米,甲、乙兩人每秒各走y米,火車每秒行z米.根據題意,列方程組,得
①②
①-②,得:
火車離開乙後兩人相遇時間為:
(秒) (分).
8. 解:從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+60)¸(15+20)=8(秒).
9. 這樣想:列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
答:列車的速度是每秒種11米.
10. 要求過幾分鍾甲、乙二人相遇,就必須求出甲、乙二人這時的距離與他們速度的關系,而與此相關聯的是火車的運動,只有通過火車的運動才能求出甲、乙二人的距離.火車的運行時間是已知的,因此必須求出其速度,至少應求出它和甲、乙二人的速度的比例關系.由於本問題較難,故分步詳解如下:
①求出火車速度 與甲、乙二人速度 的關系,設火車車長為l,則:
(i)火車開過甲身邊用8秒鍾,這個過程為追及問題:
故 ; (1)
(i i)火車開過乙身邊用7秒鍾,這個過程為相遇問題:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火車頭遇到甲處與火車遇到乙處之間的距離是:
.
③求火車頭遇到乙時甲、乙二人之間的距離.
火車頭遇甲後,又經過(8+5×60)秒後,火車頭才遇乙,所以,火車頭遇到乙時,甲、乙二人之間的距離為:
④求甲、乙二人過幾分鍾相遇?
(秒) (分鍾)
答:再過 分鍾甲乙二人相遇.
二、解答題
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列車的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:從車頭進入隧道到車尾離開隧道共需80秒.
平均數問題
1. 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?
2. 甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?
3. 已知八個連續奇數的和是144,求這八個連續奇數。
4. 甲種糖每千克8.8元,乙種糖每千克7.2元,用甲種糖5千克和多少乙種糖混合,才能使每千克糖的價錢為8.2元?
5. 食堂買來5隻羊,每次取出兩只合稱一次重量,得到十種不同的重量(千克):47、50、51、52、53、54、55、57、58、59.問這五隻羊各重多少千克?
等差數列
1、下面是按規律排列的一串數,問其中的第1995項是多少?
解答:2、5、8、11、14、……。 從規律看出:這是一個等差數列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984
2、在從1開始的自然數中,第100個不能被3除盡的數是多少?
解答:我們發現:1、2、3、4、5、6、7、……中,從1開始每三個數一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數,共有50×3=150,那麼第100個不能被3除盡的數就是150-1=149.
3、把1988表示成28個連續偶數的和,那麼其中最大的那個偶數是多少?
解答:28個偶數成14組,對稱的2個數是一組,即最小數和最大數是一組,每組和為: 1988÷14=142,最小數與最大數相差28-1=27個公差,即相差2×27=54, 這樣轉化為和差問題,最大數為(142+54)÷2=98。
4、在大於1000的整數中,找出所有被34除後商與余數相等的數,那麼這些數的和是多少?
解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數的和為35×(29+30+31+32+33)=5425
5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,並算出這若干張卡片上各數的和除以17的余數,再把這個余數寫在另一張黃色的卡片上放回盒內,經過若干次這樣的操作後,盒內還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數分別是19和97,求那張黃色卡片上所寫的數。
解答:因為每次若干個數,進行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設有2個數20和30,它們的和除以17得到黃卡片數為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數16,也就是說不管幾個數相加,總和除以17的余數不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數的和除以17的余數為0,而19+97=116,116÷17=6……14, 所以黃卡片的數是17-14=3。
6、下面的各算式是按規律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那麼其中第多少個算式的結果是1992?
解答:先找出規律: 每個式子由2個數相加,第一個數是1、2、3、4的循環,第二個數是從1開始的連續奇數。 因為1992是偶數,2個加數中第二個一定是奇數,所以第一個必為奇數,所以是1或3, 如果是1:那麼第二個數為1992-1=1991,1991是第(1991+1)÷2=996項,而數字1始終是奇數項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。
7、如圖,數表中的上、下兩行都是等差數列,那麼同一列中兩個數的差(大數減小數)最小是多少?
解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。
8、有19個算式:
那麼第19個等式左、右兩邊的結果是多少?
解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數? 各式用數分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數相加? 各式左邊用數分別為3、4、5、……、第19個應該是3+1×18=21個, 所以第19個式子結果是397+398+399+……+417=8547。
9、已知兩列數: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數中相同的項數共有多少對?
解答:易知第一個這樣的數為5,注意在第一個數列中,公差為3,第二個數列中公差為4,也就是說,第二對數減5即是3的倍數又是4的倍數,這樣所求轉換為求以5為首項,公差為12的等差數的項數,5、17、29、……, 由於第一個數列最大為2+(200-1)×3=599; 第二數列最大為5+(200-1)×4=801。新數列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續派相同人數的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那麼,這月由總廠派到分廠工作的工人共多少人?
解答:11月份有30天。 由題意可知,總廠人數每天在減少,最後為240人,且每天人數構成等差數列,由等差數列的性質可知,第一天和最後一天人數的總和相當於8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明讀一本英語書,第一次讀時,第一天讀35頁,以後每天都比前一天多讀5頁,結果最後一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以後每天都比前一天多讀5頁,結果最後一天只需讀40頁就可以讀完,問這本書有多少頁?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調整如下: 第一方案:40、45、50、55、……35+35(第一天放到最後惶熘腥ィ?/P>第二方案:40、45、50、55、……(最後一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。
13、7個小隊共種樹100棵,各小隊種的查數都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?
解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫