A. 誰能提供小學五年級100道奧數題(50道計算題+50道應用題)和答案
題1、營業員把一張5元的人民幣和一張5角的人民幣換成了28張票面為1元和1角的人民幣,求換來的這兩種人民幣各多少張?
題2、有一元,二元,五元的人民幣共50張,總面值為116元,已知一元的比二元的多2張,問三種面值的人民幣各多少張?
題3、有3元,5元和7元的電影票400張,一共價值1920元,其中7元和5元的張數相等,三種價格的電影票各多少張?
題4、用大、小兩種汽車運貨,每輛大汽車裝18箱,每輛小汽車裝12箱,現在有18車貨,價值3024元,若每箱便宜2元,則這批貨價值2520元,問:大、小汽車各有多少輛?
題5、一輛卡車運礦石,晴天每天可運20次,雨天每天可運12次,它一共運了112次,平均每天運14次,這幾天中有幾天是雨天?
題6、運來一批西瓜,准備分兩類賣,大的每千克0.4元,小的每千克0.3元,這樣賣這批西瓜共值290元,如果每千克西瓜降價0.05元,這批西瓜只能賣250元,問:有多少千克大西瓜?
題7、甲、乙二人投飛鏢比賽,規定每中一次記10分,脫靶每次倒扣6分,兩人各投10次,共得152分,其中甲比乙多得16分,問:兩人各中多少次?
題8、某次數學競賽共有20條題目,每答對一題得5分,錯了一題不僅不得分,而且還要倒扣2分,這次競賽小明得了86分,問:他答對了幾道題?
1.解:設有1元的x張,1角的(28-x)張
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3張,一角的25張。
2.解:設1元的有x張,2元的(x-2)張,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20張,2元18張,5元12張。
3.解:設有7元和5元各x張,3元的(400-2x)張
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160張,7元、5元各120張。
4.解:貨物總數:(3024-2520)÷2=252(箱)
設有大汽車x輛,小汽車(18-x)輛
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽車6輛,小汽車12輛。
5.解:天數=112÷14=8天
設有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜數:(290-250)÷0.05=800千克
設有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
設甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
設乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:設他答對x道題
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答對了18題。
1.甲、乙兩地相距465千米,一輛汽車從甲地開往乙地,以每小時60千米的速度行駛一段後,每小時加速15千米,共用了7小時到達乙地。每小時60千米的速度行駛了幾小時?
2.籠中裝有雞和兔若干只,共100隻腳,若將雞換成兔,兔換成雞,則共92隻腳。籠中原有兔、雞各多少只?
3.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀。蟬有6條腿和1對翅膀。現在這三種小蟲共18隻,有118條腿和20對翅膀,每種小蟲各幾只?
4.學雷鋒活動中,同學們共做好事240件,大同學每人做好事8件,小同學每人做好事3件,他們平均每人做好事6件。參加這次活動的小同學有多少人?
5.某班42個同學參加植樹,男生平均每人種3棵,女生平均每人種2棵,已知男生比女生多種56棵,男、女生各有多少人?
答案:
1.解:設每小時60千米的速度行駛了x小時。
60x+(60+15)(7-x)=465
60x+525-75x=465
525-15x=465
15x=60
x=4
答:每小時60千米的速度行駛了4小時。
2.解:兔換成雞,每隻就減少了2隻腳。
(100-92)/2=4隻,
兔子有4隻。
(100-4*4)/2=42隻
答:兔子有4隻,雞有42隻。
3.解:設蜘蛛18隻,蜻蜓y只,蟬z只。
三種小蟲共18隻,得:
x+y+z=18……a式
有118條腿,得:
8x+6y+6z=118……b式
有20對翅膀,得:
2y+z=20……c式
將b式-6*a式,得:
8x+6y+6z-6(x+y+z)=118-6*18
2x=10
x=5
蜘蛛有5隻,
則蜻蜓和蟬共有18-5=13隻。
再將z化為(13-y)只。
再代入c式,得:
2y+13-y=20
y=7
蜻蜓有7隻。
蟬有18-5-7=6隻。
答:蜘蛛有5隻,蜻蜓有7隻,蟬有6隻。
4.解:同學們共做好事240件,他們平均每人做好事6件,
說明他們共有240/6=40人
設大同學有x人,小同學有(40-x)人。
8x+3(40-x)=240
8x+120-3x=240
5x+120=240
5x=120
x=24
40-x=16
答:大同學有24人,小同學有16人。
5.解:設男生x人,女生(42-x)人。
3x-2(42-x)=56
3x+2x-84=56
5x=140
x=28
42-x=14
答:男生28人,女生14人
牛吃草問題
發布日期:[2007-6-4 21:58:05] 共閱[342]次
1. 一個牧場,草每天勻速生長,每頭牛每天吃的草量相同,17頭牛30天可以將草吃完,19頭牛隻需要24天就可以將草吃完,現有一群牛,吃了6天後,賣掉4頭牛,餘下的牛再吃2天就將草吃完。問沒有賣掉4頭牛之前,這一群牛一共有多少頭?
2. 一個蓄水池,每分鍾流入4立方米水。如果打開5個水龍頭,2小時半就把水池中的水放光;如果打開8個水龍頭,1小時半就把池中的水放光,現打開13個水龍頭,問要多少時間才能把水池中的水放光(每個水龍頭每小時放走的水量相同)?
3. 甲、乙、丙3個倉庫,各存放著同樣數量的化肥,甲倉庫用皮帶輸送機一台和12個工人,需要5小時才能把甲倉庫搬空;乙倉庫用一台皮帶輸送機和28個工人,需要3小時才能把乙倉庫搬空;丙倉庫有兩台皮帶輸送機,如果要求2小時把丙倉庫搬空,同時還需要多少工人(皮帶輸送機的功效相同,每個工人每小時的搬運量相同,皮帶輸送機與工人同時往處搬運化肥)?
4. 快、中、慢3輛車同時從同一地點出發,沿同一條公路追趕前面的一個騎車的小偷,這3輛車分別用6分鍾、10分鍾、12分鍾,追上小偷,現在知道快車的速度是每小時24千米,中車的速度是每小時20千米,問慢車的速度是多少?。
公約公倍和同餘
發布日期:[2007-7-28 21:00:27] 共閱[150]次
1.今天是星期六,再過1000天是星期幾?
2.已知兩個自然數a和b(a>b),已知a和b除以13的余數分別是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余數。
3.2100除以一個兩位數得到的余數是56,求這個兩位數。
4.被除數、除數、商與余數之和是903,已知除數是35,余數是2,求被除數。
5.用一個整數去除345和543所得的余數相同,且商相差9,求這個數。
6.有一個整數,用它去除312,231,123得到的三個余數之和是41,求這個數。
1.答:根據題意不難看出,這個大班小朋友的人數是115-7=108,148-4=144,74-2=72的最大公約數.所以,這個大班的小朋友最多有36人.
2.答:與上題類似,依題意,正方體的棱長應是9,6,7的最小公倍數,9,6,7的最小公倍數是126.所以,至少需要這種長方體木塊 126×126×126÷(9×6×7)=5292(塊)
3、答:此數為28。方法同例題。
4、答:這兩個數為4與120,或8與60,或12與40,或20與24。方法同例題。
5答:所求的兩個數為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。
6、答:因為1+2+…+9=5×9,所以無論這些九位數的值如何,它們的數字之和總可以被9整除,因而9是所有這些九位數的公約數.現任取這些九位數中的兩個相差9的數,如413798256和413798265。
7、答:1925=5×5×7×11 兩個商為5和11, 1925÷5=385 ; 1925÷11=175 答:根據1。題意不難看出,這個大班小朋友的人數是115-7=108,148-4=144,74-2=72的最大公約數.所以,這個大班的小朋友最多有36人.
2.答:與上題類似,依題意,正方體的棱長應是9,6,7的最小公倍數,9,6,7的最小公倍數是126.所以,至少需要這種長方體木塊 126×126×126÷(9×6×7)=5292(塊)
3.答:此數為28。方法同例題。
4.答:這兩個數為4與120,或8與60,或12與40,或20與24。方法同例題。
5.答:所求的兩個數為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。
6.答:因為1+2+…+9=5×9,所以無論這些九位數的值如何,它們的數字之和總可以被9整除,因而9是所有這些九位數的公約數.現任取這些九位數中的兩個相差9的數,如413798256和413798265。
答:1925=5×5×7×11 兩個商為5和11, 1925÷5=385 ; 1925÷11=175
7.幼兒園有糖115顆、餅干148塊、桔子74個,平均分給大班小朋友,結果糖多出7顆,餅干多出4塊,桔子多出2個.這個大班的小朋友最多有幾個人?
8.用長是9厘米、寬是6厘米、高是7厘米的長方體木塊疊成一個正方體,至少需要這種長方體木塊多少塊.
9.已知某數與24的最大公約數為4,最小公倍數為168,求此數。
10.已知兩個自然數的最大公約數為4,最小公倍數為120,求這兩個數。
11.已知兩個自然數的和為165,它們的最大公約數為15,求這兩個數。
選做題
12.把1,2,3,4,5,6,7,8,9九個數依不同的次序排列,可以得到362880個不同的九位數,求所有這些九位數的最大公約數.
13.兩個整數的最小公倍數是1925,這兩個整數分別除以他們的最大公約數,得到兩個商的和是16,請寫出這兩個整數(第七屆華杯賽試題)。
(必做)第五講 奇數與偶數及奇偶性的應用
發布日期:[2007-4-22 17:23:11] 共閱[376]次
1.能否在下式中填入適當的「+」,「-」,使等式成立?
9□8□7□6□5□4□3□2□1=28
2.在a、b、c三個數中,有一個是2003,一個是2004,一個是2005。問(a-1)(b-2)(c-3)是奇數還是偶數。
3.用代表整數的字母a、b、c、d寫成等式組:
a×b×c×d-a=1983
a×b×c×d-b=1993
a×b×c×d-c=2003
a×b×c×d-d=2013
試說明:符合條件的整數a、b、c、d是否存在。
4.有一串數,最前面的四個數依次是1、9、8、7.從第五個數起,每一個數都是它前面相鄰四個數之和的個位數字.問:在這一串數中,會依次出現1、9、8、8這四個數嗎?
5.任意改變某一個三位數的各位數字的順序得到一個新數.試證新數與原數之和不能等於999。
最大公約數和最小公倍數(閆老師班)
發布日期:[2007-10-16 19:01:58] 共閱[154]次
一、填空
1、用96朵紅花和72朵白花做成花束,如果每束花里紅花的朵數相同,白花的朵數也相同,每束花里最少有 朵花?
2、7月6日,寶珠從避暑山莊打電話向拴柱問好,賈六來看望拴柱,喜子在打掃房間。如果喜子每隔3天打掃一次,寶珠每隔6天打一次電話,賈六每隔5天看望一次,至少經過
天,問好、看望、打掃這三件事才能同時發生。
3、一筐梨,按每份兩個梨分多1個,每份3個梨分多2個,每份5個梨分多4個,則筐里至少有 個梨。
二、解答題
1、 為了搞試驗,將一塊長為75米,寬為60米的長方形土地分為面積相等的小正方形土地,那麼小正方形土地的面積最大是多少平方米?
2、 兩個數的最大公約數是18,最小公倍數是180,兩個數相差54,求這兩個數各是多少?
3、有一種新型的電子鍾,每到正點和半點都響一次鈴,每過9分鍾亮一次燈,如果中午12點時,它既響了鈴,又亮了燈,那麼下一次既響鈴又亮燈要到什麼時間?
回答者: 知道100℃ - 千總 四級 1-14 18:49
周期問題
1.有249朵花,按5朵紅花,9多黃花,13朵綠花的順序排列著,最後一朵是什麼顏色的花?
根據題意可知,者寫按5紅,9黃,13綠的順序輪流排列著,即5+9+13=27(朵)花為一個周期,不斷循環。因為249除以27等於9餘6,也就是經過9個周期還餘下6朵花,是黃花。
2.1除以7等於0.142857142857.....小數點後的第一百位是多少?
142857,有6個數在循環,就用100除以6等於16餘4,是8。
B. 小學三年級奧數題100道
、 人民路小學操場長90米,寬45米,改造後,長增加10米,寬增加5米。現在操場面積比原來增加多少平方米?
【思路導航】用操場現在的面積減去操場原來的面積,就得到增加的面積,操場現在的面積是:(90+10)×(45+5)=5000(平方米),操場原來的面積是:90×45=4050(平方米)。所以現在比原來增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)
練習(1)有一塊長方形的木板,長22分米,寬8分米,如果長和寬分別減少10分米,3分米,面積比原來減少多少平方分米?
練習(2)一塊長方形地,長是80米,寬是45米,如果把寬增加5米,要使面積不變,長應減少多少米?
2、 一個長方形,如果寬不變,長增加6米,那麼它的面積增加54平方米,如果長不變,寬減少3米,那麼它的面積減少36平方米,這個長方形原來的面積是多少平方米?
【思路導航】由:「寬不變,長增加6米,那麼它的面積增加54平方米」可知它的寬是54÷6=9(米);又由「長不變,寬減少3米,那麼它的面積減少了36平方米」,可知它的長為:36÷3=12(米),所以,這個長方形的面積是12×9=108(平方米)。 (36÷3)×(54÷9)=108(平方米)
練習(1)一個長方形,如果寬不變,長減少3米,那麼它的面積減少24平方米,如果長不變,寬增加4米,那麼它的面積增加60平方米,這個長方形原來的面積是多少平方米?
練習(2)一個長方形,如果寬不變,長增加5米,那麼它的面積增加30平方米,如果長不變,寬增加3米,那麼它的面積增加48平方米,這個長方形的面積原來是多少平方米?
練習(3)一個長方形,如果它的長減少3米,或它的寬減少2米,那麼它的面積都減少36平方米,求這個長方形原來的面積。
3、 下圖是一個養禽專業戶用一段長16米的籬笆圍成的一個長方形養雞場,求佔地面積有多大。
【思路導航】根據題意,因為一面利用牆,所以兩條長加上一條寬等於16米,而寬是4米,那麼長是(16-4)÷2=6(米)。因此,佔地面積是6×4=24(平方米)
(16-4)÷2×4=24(平方米)
練習(1)下圖是某個養禽專業戶用一段長13米的籬笆圍成一個長方形的養雞場,求養雞場的佔地面積有多大?
練習(2)用56米長的木欄圍成一個長或寬是20米的長方形,其中一邊利用圍牆,怎樣才能使圍成的面積最大?
4、 一塊正方形的鋼板,先截去寬5分米的長方形,又截去寬8分米的長方形(如下圖),面積比原來的正方形減少181平方分米,原正方形的邊長是多少?
【思路導航】把陰影的部分剪下來,並把剪下的兩個小正方形拼合起來(如下圖),再補上長,長和寬分別是8分米、5分米的小長方形,這個拼合成的長方形的面積是:181+8×5=221(平方分米),長是原來正方形的邊長,寬是:8+5=13(分米)。所以,原正方形的邊長是221÷13=17(分米)
(181+8×5)÷(8+5)=17(分米)
C. 四年級奧數題100道
四年級:平均數問題思維訓練題
1.在一次登山活動中,梓涵上山每分鍾行50米,18分鍾到達山頂。然後按原路下山,每分鍾行75米。梓涵上山和下山平均每分鍾行多少米?
2.四年級有60名同學去栽樹,平均每人栽4棵,恰好栽完。隨後又派來一部分同學,這時平均每人栽樹3棵就可完成任務,又派來幾名同學?
3.有幾位同學一起計算他們語文考試的平均分,梓涵的得分如果再提高13分,他們的平均分就達到90分,梓涵的得分如果降低5分,他們的平均分就只有87分,那麼這些同學共有多少人?
4.九湖中心小學有100名學生參加數學競賽,平均得分63分,其中男學生平均分是60分,女學生平均分是70分,男女生各有多少人?
5.甲、乙的平均數是26,乙、丙的平均數是28,甲、丙的平均數是21,求甲、乙、丙三數的平均數。
6.梓涵參加體育達標測試,五項平均成績是85分,如果投擲成績不算在內,平均成績是83分,梓涵投擲得了多少分?
7.如果四個人的平均年齡是23歲,且沒有小於18歲的,那麼年齡最大的可能多少歲?
8.五個數的平均數是45,將5個數從小到大排列,前三個數的平均數是39,後三個數的平均數是53,第三個數是多少?
9. 梓涵參加了三次數學競賽,平均分是84分,已知前兩次平均分是82分,求他的三次得了多少分?
10. 梓涵期末考試時,數學成績公布前他四門功課的平均分數是92分,數學成績公布後,他的平均成績下降了1分。梓涵數學考了多少分?
11. 如果三個人的平均年齡是22歲,且沒有小於18歲的,那麼年齡最大的可能是多少歲?
12. . 如果四個人的平均年齡是25歲,且沒有小於16歲的,且這四個人的年齡互不相等,那麼年齡最大的可能是多少歲?年齡最小的可能是多少歲?
13. 在一次登山活動中,梓涵上山每分鍾行50米,然後按原路下山,每分鍾行75米。梓涵上山和下山平均每分鍾行多少米?
14. 一個同學讀一本故事書,前4天每天讀25頁,以後每天讀40頁,又讀了6天正好讀完。這個同學平均每天讀多少頁?
15. 梓涵同學讀一本故事書,前4天每天讀25頁,以後6天又讀了200頁正好讀完。這個同學平均每天讀多少頁?
16.琦涵五次考試平均分為96分(滿分100分),那麼她每次考試的分數不得低於多少分?
四年級應用題1
1、奶奶去買水果,她買4千克梨和5千克荔枝,需花68元,買1千克梨和3千克荔枝的價錢相等,問1千克梨和1千克荔枝各多少元?
2、3筐蘋果和5筐橘子共重330千克,每筐蘋果重量是每筐橘子重量的2倍,一筐蘋果和一筐橘子各重多少千克?
3、張老師為閱覽室買書,他買了6本童話書和7本故事書需102元,買3本童話書和5本故事書價錢相等,買1本童話書和1本故事書各需多少元?
4、糧店運來一批糧食,4袋大米和5袋麵粉共重600千克,4袋大米和7袋麵粉共重680千克,一袋大米和一袋麵粉各重多少千克?
1、一個標准油桶,桶連油共重7千克。司機馬叔叔已經用去一半油,現在連桶還重4千克。桶里還有多少千克油?這桶油原來有多少千克油?桶重多少千克?
2、一瓶香水連瓶重50克,用去一半的香水後,連瓶還重30克,原來有香水多少克?瓶重多少克?
3、一瓶酒連瓶重80克,喝了一半的酒後,連瓶還重50克,原來有酒多少克?瓶重多少克?
4、一瓶汽水連瓶重45克,用去一半的汽水後,連瓶還重25克,原來有汽水多少克?瓶重多少克?
1、有6箱雞蛋,每箱雞蛋個數相等,如果從每箱中拿出50個,那麼6箱剩下的雞蛋個數正好和原來5箱的個數相等,原來每箱雞蛋多少個?
2、有7筐蘋果,每筐蘋果個數相等,如果從每筐中拿出40個,那麼7筐剩下的蘋果個數正好和原來5筐的個數相等,原來每筐蘋果多少個?
3、有5箱餅干,每箱雞蛋重量相等,如果從每箱中拿出40克,那麼5箱剩下的總克數正好和原來3箱的克數相等,原來每箱餅干多少克?
4、一年級有6班,每班人數相等,如果從每班中調出30個,那麼6班剩下的人數正好和原來2班的人數相等,原來每班多少人?
1、韓琦練寫字,計劃每天寫100字,實際每天比計劃多寫4字,結果提前一天完成任務。原計劃要寫多少字?
2、張梓涵看一本書,計劃每天看15頁,實際每天比計劃多看3頁,結果提前兩天完成任務。這本書有多少頁?
3、修一條路,計劃每天修60米,實際每天比計劃多修8米,結果提前4天完成任務。這條路多少米?
4、陳赫做千紙鶴,計劃每天做30個,實際每天比計劃多做6個,結果提前3天完成任務。原計劃要做多少個千紙鶴?
1、琦涵有10張畫片,鄭潔有4 張畫片。琦涵給鄭潔多少張畫片後,她倆的畫片張數相等?
2、紅盒子里有52個玻璃球,藍盒子里有34個玻璃球,每次從多的盒子里取出3個放到少的盒子里,拿幾次才能使兩個盒子里的玻璃球的個數相等?
3、大袋子里有68粒糖,小袋子里有28粒糖,每次從多的袋子里取出4個放到少的袋子里,拿幾次才能使兩個袋子里的糖的粒數相等?
4、書架的上層有25本書,下層有27本書,爸爸又買回10本書,怎樣放才能使書架上、下兩層的書同樣多?
四年級應用題2
1、電視機廠裝一批電視,每天裝80台,15天可完成任務,如果要提前3天完成,每天要裝多少台?
2、某廠每天節約煤40千克,如果每8千克煤可以發電16度,照這樣計算,該廠9月份(按25天計算)節約的煤可發電多少度?
3、某車間計劃20人每天工作8小時,8天完成一批訂貨,後來要提前交貨,該批貨由32人工作,限4天內完成,每天需工作幾小時?
4、學校總務處張老師去商店采購學生用練習本,練習本定價4元8角,帶去買900本的錢。由於買得多,可以優惠,每本便宜了3角錢,張老師一共買回多少本練習本?
5、某工程隊預計用20人,14天挖好一條水渠,挖了2天後,又增加20人,每人工作效率相同,可以提前幾天完工?
6、鍋爐房按照每天3600千克的用量儲備了140天的供暖煤,供暖40天後,由於進行技術改造,每天能節約600千克煤,問這些煤共可以供暖多少天?
7、學校食堂管理員去農貿市場買雞蛋,原計劃每千克5元的雞蛋買96千克,結果雞蛋價格下調,用這筆錢多買了24千克的雞蛋。問雞蛋價格下調後每千克是多少元?
8、18個人參加搬一堆磚的勞動,計劃8小時可以搬完,實際勞動2小時後,有6個人被調走,餘下的磚還需多少小時才能搬完?
9、24輛卡車一次能運貨物192噸,現在增加同樣的卡車6輛,一次能運貨物多少噸?
10、張師傅計劃加工552個零件。前5天加工零件345個,照這樣計算,這批零件還要幾天加工完?
11、 3台磨粉機4小時可以加工小麥2184千克。照這樣計算,5台磨粉機6小時可加工小麥多少千克?
12、一個機械廠4台機床5小時可以生產零件720個。照這樣計算,再增加6台同樣的機床生產3600個零件,需要多少小時?
13、一個修路隊計劃修路126米,原計劃安排7個工人6天修完。後來又增加了54米的任務,並要求在6天完工。如果每個工人每天工作量一定,需要增加多少工人才如期完工?
14、九湖中心小學買了一批粉筆,原計劃25個班可用40天,實際用了10天後,有10個班外出,剩下的粉筆,夠在校的班級用多少天?
15、揚棟發電廠有10200噸煤,前十天每天燒煤300噸,後來改進爐灶,每天燒煤240噸,這堆煤還能燒多少天?
16、師傅和徒弟同時開始加工各200個零件,師傅每小時加工25個,完成任務時,徒弟還要做2小時才能完成任務。徒弟每小時加工多少個?
17、甲乙兩地相距200千米,汽車行完全程要5小時,步行要40小時。澤奇同學從甲地出發,先步行8小時後該乘汽車,還需要幾小時到達乙地?
18、旭婷築路隊修一條長4200米的公路,原計劃每人每天修4米,派21人來完成,實際修築時增加了4人,可以提前幾天完成任務?
19、舒琪自行車廠計劃每天生產自行車100輛,可按期完成任務,實際每天生產120輛,結果提前8天完成任務,這批自行車有多少輛?
20、德韜同學計劃30天做完一些計算題,實際每天比原計劃多算80題,結果25天就完成了任務,這些計算題有多少題?
四年級和差問題
一、1、 學校有排球、足球共50個,排球比足球多4個,排球、足球各多少個?
2、甲、乙兩車間共有工人260人,甲車間比乙車間少30人,甲、乙兩車間各有工人多少人?
3、甲乙兩個工程隊合挖一條長48千米的水渠,甲隊比乙隊多挖了6千米,求甲、乙工程隊各挖了多少千米?
4、小寧與小芳今年的年齡和是28歲,小寧比小芳小2歲,小芳今年多少歲?
5、小敏和他爸爸的平均年齡是29歲,爸爸比他大26歲。小敏和他爸爸的年齡各是多少歲?
6、小蘭期末考試時語文和數學的平均分是96分,數學比語文多4分。小蘭語文、數學各得多少分?
二、1、甲、乙兩個書架共有書480本,如果從甲書架中取出40本放入乙書架,這時兩個書架上書的本數正好相等。甲、乙兩個書架原來各有多少本?
2、兩個桶里共盛水30千克,如果把第一桶里的水倒6千克到第二個桶里,兩個桶里的水就一樣多。原來每桶各有水多少千克?
3、甲、乙兩個倉庫共存大米58噸,如果從甲倉調3噸大米到乙倉,兩個倉庫所存的大米正好相等。甲、乙兩個倉庫各存大米多少噸?
4、甲、乙兩人共有150元錢,如果甲增加13元,而乙減少27元,那麼兩人的錢數就相等。甲、乙兩人各有多少元?
三、1、甲、乙兩堆貨物共180噸,甲堆貨物運走30噸仍比乙堆貨物多12噸,求甲乙兩堆貨物各多少噸?
2、甲、乙兩堆貨物共180噸,如果從甲堆貨物調運30噸到乙堆貨物,甲堆貨物仍比乙堆貨物多10噸,求甲乙兩堆貨物各多少噸?
3、甲、乙兩筐蘋果共64千克,從甲筐里取出5千克放到乙筐里去,結果甲筐的蘋果反而比乙筐的蘋果還少2千克。甲、乙兩筐原有蘋果各多少千克?
4、甲乙兩個學校共有學生2008人,如果從甲校調走20人,乙校調走15人,甲校比乙校還多5人,兩校原各有學生多少人?
5、學校食堂共有三種蔬菜,其中黃瓜、番茄共重50千克,青菜、黃瓜共重70千克,青菜、番茄共重60千克。這三種蔬菜各有多少千克?
6、《紅樓夢》分上、中、下三冊,全書共108元。上冊比中冊貴11元,下冊比中冊便宜5元。上、中、下三冊各是多少元?
7、四個人年齡之和是77歲,最小的10歲,他和最大的人的年齡之和比另外二人年齡之和大7歲,最大的年齡是幾歲?
8、小諾沿長與寬相差30米的游泳池跑了5圈,做下水前的准備活動。已知小諾共跑了700米,問:游泳池的長和寬各是多少米?
9、曾老師比琪晗重30千克,曾老師比陳赫重25千克,琪晗陳赫共重75千克,琪晗陳赫各重多少千克?
10、苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵?
四年級和倍問題
1、小紅和媽媽的年齡加在一起是40歲,媽媽的年齡是小紅年齡的4倍,小紅和媽媽各是多少歲?
2、甲乙兩數和是150,甲數除以乙數的商是4,甲乙兩數各是多少?
3、一塊長方形木板,長是寬的2倍,周長54厘米,這塊長方形木塊的面積是多少?
4、一筐蘋果、一筐梨和一筐葡萄共重42千克,知道蘋果重量是葡萄的2倍,梨的重量是葡萄的3倍,蘋果、梨、葡萄各是多少千克?
5、三年級三個班共植樹200棵,二班植樹棵數是一班的2倍,三班植樹棵數和二班一樣多,三個班各植樹多少棵?
6、有三堆煤,甲堆是乙堆的3倍,丙堆是甲堆的2倍,三堆煤共重240千克,那麼甲堆、乙堆、丙堆煤各重多少千克?
7、有三隊修路隊合修一條長240千米的路,甲隊修的是乙隊的3倍,丙隊修的是甲隊的2倍,那麼甲隊、乙隊、丙隊各修多少千米?
8、張老師買回籃球足球共83個球,其中籃球比足球的2倍多5個,這兩種球各有多少個?
9、張老師買回籃球足球排球共83個球,其中籃球比足球的2倍多5個,排球比足球的2倍少7個,這三種球各有多少個?
10、張老師買回籃球足球排球共83個球,其中籃球是足球的2倍,足球比排球多5個,這三種球各有多少個?
11、小華有筆30枝,小明有筆15隻,問小明給幾枝給小華後,小華的枝數是小明的8倍?
12、小明有書18本,小芳有書8本,現在又買來16本,怎樣分配才能使小明的本數是小芳的2倍?
13、甲水池有水60噸,乙水池有水30噸,如果甲水池的水以每分鍾3噸的速度流入乙水池,那麼多少分鍾後,乙水池的水是甲水池的2倍?
14、一個除式,商是18,余數是4,被除數、除數、商、余數的和是292,除數與被除數各是多少?
四年級差倍問題
1、林下小學購買的排球是籃球的3倍,排球比籃球多18隻,購買的排球和籃球各有多少只?購買的排球和籃球共有多少只?
2、有大小兩個書架,大書架上書的本數是小書架上的4倍,如果從大書架上取出150本放到小書架上,這時,兩書架上的書的本數相等。大小書架原來各有多少本?
3、老貓和小貓去釣魚,老貓釣的是小貓的3倍。如果老貓給小貓3條後,小貓比老貓還少2條。兩只貓各釣多少條魚?
4、張老師買回籃球比足球多83個球,其中籃球比足球的2倍多5個,這兩種球各有多少個?
5、副食店中白糖的千克數比紅糖的3倍少35千克,已知白糖比紅糖多41千克。副食店有白糖、紅糖各多少千克?
6、張老師買回籃球足球排球,其中足球是籃球的3倍,足球比排球多7個,排球比籃球多11個。這三種球各有多少個?
7、梨比葡萄重2000千克,蘋果重量是葡萄的2倍,蘋果重量比梨多3000個,蘋果、梨、葡萄各是多少千克?
8、小明的存款數是小剛的3倍,現在小明取出380元,小剛取出110元,兩人的存款數變得同樣多。小明和小剛原來各存款多少元?
9、甲倉存糧噸數是乙倉的3倍,如果甲倉中取出60噸,乙倉中運進80噸,甲、乙兩個糧倉存糧噸數正好相等。甲、乙兩個糧倉各存糧多少噸?
10、甲、乙兩個糧倉各存糧若干噸,甲倉存糧的噸數是乙的3倍。如果甲倉中運進60噸,乙倉中運進260噸,則甲、乙兩個糧倉存糧的噸數相等。甲、乙兩個糧倉各存糧多少噸?
11、小張有36本課外書,小徐有24本課外書,兩人捐出同樣多的本數後,小張剩下的本數是小徐剩下本數的3倍,兩人各捐出多少本書?
12、師徒兩人加工同樣多的一批零件,師傅加工了102個,徒弟加工了40個,這時,徒弟剩下的個數是師傅的3倍。師徒要加工多少個零件?
用假設法解題
兔數=(總腳數—每隻雞腳數×雞兔總數)÷(每隻兔子腳數—每隻雞腳數)
雞數=雞兔總數-兔數 (假設雞,先求出兔)
或:雞數=(每隻兔腳數×雞兔總數—總腳數)÷(每隻兔子腳數—每隻雞腳數)
兔數=雞兔總數-雞數 (假設兔,先求出雞)
1、雞兔共30隻,共有腳70隻,雞兔各有多少只?
2、雞兔共20隻,共有腳50隻,雞兔各有多少只?
3、在一個停車場內,汽車、摩托車共停了48輛,其中每輛汽車有4個輪子,每輛摩托車有3個輪子,這些車共有172個輪子,停車場內有汽車、摩托車各多少輛?
4、體育老師買了運動服上衣和褲子共21件,共用了439元,其中上衣每件24元,褲子每件19元,問老師買上衣和褲子各多少件?
1、買甲、乙兩種戲票,甲種票每張6元,乙種票每張4元,兩種票買了11張,一共用去50元,兩種票各買了多少張?
2、揚棟有面值2元、5元紙幣共30張,一共是90元,面值2元、5元紙幣各有多少張?
3、有2角,5角和1元人民幣20張,共計12元,則1元有_______張,5角有______張,2角有_______張.
1、一批水泥,用小車裝載,要用20輛,用大車裝載,只要12輛,每輛大車比小車多裝4噸。這批水泥有多少噸?
2、一堆水泥,用小集裝車裝載,要用30輛,用大集裝車裝載,只要24輛,每輛大集裝車比小集裝車多裝5噸。這批水泥有多少噸?
1、某公司運輸襯衫400箱,規定每箱運費30元,若損失一箱,不但不給運費,並要賠償100元,運後的運費結算為8880元,問這次運輸損失了幾箱?
2、某小學進行英語競賽,每答對一題得10分,沒有做、答錯一題倒扣2分,共有15道題,小明得了102分,他做對了多少題?
3、九湖小學六年級舉行數學競賽,共20道試題.做對一題得5分,沒有做一題或做錯一題倒扣3分.劉剛得了60分,則他做對了幾題?
4、工人運青瓷花瓶250個,規定完整運一個到目的地給運費20元,損壞一個倒賠100元,運完這批花瓶後,工人共得4400元,則損壞了多少只?
1、李宇春演唱會售出30元、40元、50元的門票共600張,收入23400元,其中40元和50元的張數相等,每種票各售出多少張?
2、王舒琪演唱會售出30元、40元、50元的門票共200張,收入7800元,其中40元和50元的張數相等,每種票各售出多少張?
1、蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀。現在這三種小蟲16隻,共有110條腿和14對翅膀。問,每種昆蟲各幾只?
2、甲,乙,丙三種練習本每本價錢分別為7角,3角,2角。三種練習本一共賣了47本,付了21元2角,買的乙種練習本的本數是丙種練習本本數的2倍。就三種練習本各買了多少本?
3、買一些4分和8分的郵票,共花6元8角.已知8分的郵票比4分的郵票多40張,那麼兩種郵票各買了多少張?
4、有一元,五元和十元的人民幣共14張,共計66元,其中一元的張數比十元的多2張。問三種人民幣各多少張?
盈虧問題的關系式:
1、(盈+虧)÷兩次分配的差=份數
2、(大盈-小盈)÷兩次分配的差=份數
3、(大虧-小虧)÷兩次分配的差=份數
每次分的數量×份數+盈=總數量,每次分的數量×份數-虧=總數量,
解答盈虧問題的關鍵是要求出總差額和兩次分配的數量差,然後利用基本公式求出分配者人數,進而求出物品的數量。
1、幼兒園買來一些玩具,如果每班分8個玩具,則多出2個玩具,如果每班分10個玩具,則少12個玩具,幼兒園有幾個班?這批玩具有多少個?
2、小明帶了一些錢去買蘋果,如果買3千克,則多出2元,如果買6千克,則少了4元,問蘋果每千克多少元?小明帶了多少錢?
3、一個小組去山坡植樹,如果每人栽4棵,還剩12棵,如果每人栽8棵,則還缺4棵,這個小組有多少人?一共有多少棵樹?
4、一組學生去搬書,如果每人搬2本,還剩12本,如果每人搬4本,還缺6本,這組學生有幾人?這批書有多少本?
1、老師買來一些練習本分給優秀少先隊員,如果每人分5本,則多了14本;如果每人分7本,則多了2本;優秀少先隊員有幾人?買來多少本練習本?
2、把一袋糖分給小朋友們,如果每人分4粒,則多出12粒,如果每人分6粒,則多出2粒,問有幾個小朋友?有多少粒糖?
3、媽媽買來一些蘋果分給全家人,如果每人分6個,則多出了12個,如果每人分7個,則多出了6個,全家有幾人?媽媽買回多少個蘋果?
4、某學校有一些學生住校,每間宿舍住8人,空出床位24張,如果每間宿舍住10人,則空出床位2張,學校共有幾間宿舍?住宿學生有幾人?
1、學校派一些學生搬樹苗,如果每人搬6棵,則差4棵,如果每人搬8棵,則差18棵,學校派了多少名學生?這批樹苗有多少棵?
2、自然課上,老師給學生發樹葉,如果每人分5片樹葉,則差3片樹葉,如果每人分7片樹葉,則差25片樹葉,這節課有多少學生?老師一共帶了多少樹葉?
3、數學興趣小組同學做數學題,如果每人做6道題,則少4道,如果每人做8道題,則少16道,問有幾個同學?一共有多少道數學題?
4、學校排練節目,如果每行排8人,則有一行少2人,如果每行排9人,則有一行少7人,一共排了多少行?一共有多少人?
1、三(1)班學生去公園劃船,如果每條船坐4人,則多出4人;如果每條船坐6人,則多出了4條船;公園里有多少條船?三(1)班有多少名學生?
2、學校給新生分配宿舍,如果每間住8人,則少了2間房,如果每間住10人,則多出了2間房,一共有幾間房分給新生?新生有多少人住宿?
3、同學們去劃船,如果每條船坐5人,則有10人沒船坐,如果每條船多坐2人,則多出兩條船,共有幾條船?有多少個同學?
4、小明從家到學校,如果每分鍾走40米,則要遲到2分鍾,如果每分鍾走50米,則要早到4分鍾,小明家到學校有多遠?
1、三年級學生練習冊,如果每人發5冊還剩下32冊,如果其中10個學生每人發4冊,其餘每人發8冊,就恰好發完。那麼三年級學生有多少人?練習冊有多少本?
2、小明買了一本《趣味數學》,他計劃:如果每天做3題,則剩下16題,如果每天做5題,則最後一天只要做1題。那麼這本書共有幾道題?小明計劃做幾天?
3、三(2)班同學去植樹,如果每人植5棵,還有3棵沒有人植,如果其中4人每人植4棵,其餘每人植6棵,就恰好植完所有的樹。那麼參加植樹的有幾名同學?共植樹多少棵?
4、小明從家到學校,出發時看看錶,發現如果每分鍾步行80米,他將遲到5分鍾,如果先步行10分鍾後,再改成騎車每分鍾行200米,他就可以提前1分鍾到校。問小明從家出發時離上學時間有多少分鍾?
D. 六年級的奧數題與答案100道
1=1=1=1=1
1+1=2
2=2=2=2=2
2+2=4~~```````
六年級奧數卷子
一、計算(5×5=25分)
1、4 9 16 25 (36) (49) (64)
2、1 3 6 10 (15) (21) (28)
3、2 6 18 54 (162) (486) (1458)
4、654321×123456-654321×123455=654321
5、11111×11111=123454321
二、填空題。(3×25=75分)
1、小於400的自然數中不含數字8的數有(339)個。
2、有9枚銅錢,其中一枚是假的,真假只是質量不同,用無砝碼的天平,至少稱(8)次,就肯定能夠將假銅錢找出來。
3、在公路上每隔100千米有一個倉庫,共5個倉庫。1號倉庫存貨10噸,2號倉庫存貨20噸,5號倉庫存貨40噸,其餘兩個倉庫是空的,現在想把所有的貨物集中放在一個倉庫里,若每噸貨物運輸1千米要1元運費,那麼至少要花費(10000)元運費才行。
1號100千米2號100千米3號100千米4號100千米5號
10噸 20噸 40噸
4、六年級共有學生207人,選出男生的2/11 和7名女生參加數學競賽,剩下的男女生人數相同,六年級有女生(97)人。
5、小蘭和小麗玩猜數游戲,小蘭在直條上寫了一個四位小數,讓小麗猜。小麗問:「是6031嗎?」小蘭說:「猜對了一個數字,且位置正確。」小麗又問:「是5672嗎?」小蘭說:「猜對了兩個數字,且位置都不正確。」小麗再問:「是4796嗎?」小蘭說:「猜對了四個數字,但位置都不正確。」你能根據以上信息,推斷出小蘭寫的四位數嗎?6974
6、如果20隻兔子可以換2隻羊,8隻羊可以換2頭豬,8頭豬可以換2頭牛,那麼用4頭牛可以換多少只兔子?640
7、藍藍今年8歲,爸爸今年38歲,藍藍多少歲時,爸爸的年齡正好是藍藍的4倍? 10
8、為民冷飲店每3個空汽水瓶可以換1瓶汽水,藍藍在暑假裡買了99瓶汽水,喝完後又用空瓶換汽水,那麼她最多能喝到多少瓶汽水? 147
9、在一道除法算式里,被除數、除數、商、余數四個數的和為75,已知商是8,余數是2,被除數是多少,除數是多少?
58 7
10、有兩根同樣長的鐵絲,第一根減去30厘米,第二根減去18厘米,第二根餘下的是第一根所餘下長度的2倍,第二根鐵絲還剩多少厘米?24
11、有1,2,3,4,5,6,7,8,9的牌,甲、乙、丙各三張,甲說:「我的三張牌的積是48」,乙說:「我的三張牌之和是15」,丙說:「我的三張牌的積是63」,甲、乙、丙各拿什麼牌?
238 564 179
12 、用24厘米長的鐵絲可以圍成幾種不同的長方形(長與寬整厘米數且接頭處不計),面積分別是多少?再比較一下,你能發現什麼? 6
13、 張師傅習慣每工作5天休息2天。最近接到了生產330個零件的任務,他每天生產30個,那麼完成這批任務至少需要多少天?15
14、星期天,小輝乘計程車去看望8千米外的外婆。乘車時,他看了計程車上的車費牌價:5千米以內8元;5千米以上每千米2元。小輝到外婆家時,應付車費多少元?
14
15、 一個小數,如果把它的小數部分擴大4倍,就得到5.4;如果把它的小數部分擴大9倍,就得到8.4,那麼這個小數是多少?3、6
16、甲、乙二人的平均身高是1.66米,乙、丙二人的平均身高是1.7米,甲、丙二人的平均身高是1.65米,那麼甲乙丙三人的平均身高是多少?
1。67
17、 甲、乙、丙三個數之和為270,甲數是乙數的3倍,乙數是丙數的2倍,問甲、乙、丙三個數各是多少?
180 60 30
18、 有A、B兩個煤場,A煤場是B煤場存煤的3倍,若從A煤場運出180噸到B煤場,則兩煤場存煤相等,原來A、B兩煤場各存煤多少噸?
540 180
19、5個隊員排成一列做操,其中1個新來的隊員不能站在排首,有多少種不同的排法?
96
20、六(1)班有50人,會游泳的有25人,會體操的有28人,都不會的有5人,既會游泳又會體操的有多少人?8
21、青年號輪船在一條河裡順水而行120千米要用6小時,逆流而行280千米要用20小時。這只輪船在靜水中航行340千米要用多少小時?
20
22、將分母為15的所有最簡假分數由小到大依次排列,問第99個假分數的分子是多少?
214
23、用96朵紅花和72朵白花紮成花束,如果每個花束里紅花的朵數相同,白花的朵數也相同,每個花束里至少有多少朵花?
84
2、參加大型團體操的同學共有240名,他們面對教練站成一排,自左至右按1、2、3、4、……依次報數,教練讓每個同學記住自己報的數並做以下動作:先讓報數字3的倍數的同學向後轉,接著又讓報數是5的倍數同學向後轉,最後讓報數是7的倍數的學生向後轉,問此時還有多少學生面對教練?34+80+48-16-6-11=162-33=129
1. 山村郵遞員從郵局翻過山頂送郵件到用戶家共行23.5千米,用了6.5小時.他上山速度為每小時行3千米,下山速度為每小時行5千米.問用不變的上山下山速度原路返回,要用多少時間?
4.7
1. 8 8 3 3 用+ - * / ( )算出24.
2.3 3 7 7用+ - * / ( )算出24.
3.客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
AN:10秒.
4.計算1234+2341+3412+4123=?
5. 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
6. 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
7.現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
8.甲、乙兩地相距465千米,一輛汽車從甲地開往乙地,以每小時60千米的速度行駛一段後,每小時加速15千米,共用了7小時到達乙地。每小時60千米的速度行駛了幾小時?
9..籠中裝有雞和兔若干只,共100隻腳,若將雞換成兔,兔換成雞,則共92隻腳。籠中原有兔、雞各多少只?
10.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀。蟬有6條腿和1對翅膀。現在這三種小蟲共18隻,有118條腿和20對翅膀,每種小蟲各幾只?
11.學雷鋒活動中,同學們共做好事240件,大同學每人做好事8件,小同學每人做好事3件,他們平均每人做好事6件。參加這次活動的小同學有多少人?
12.某班42個同學參加植樹,男生平均每人種3棵,女生平均每人種2棵,已知男生比女生多種56棵,男、女生各有多少人?
13.書架上有6本不同的語文書,4本不同的外語書,3本不同的數學書,從中任取語文,外語,數學書各一本,有多少種不同的取法?
14.某班學生植樹,共有杉樹苗與楊樹苗100棵。每小組分杉樹苗6棵,楊樹苗8棵。這樣,杉樹苗正好分完,而楊樹苗還剩2棵。原來杉樹苗與楊樹苗各有多少棵?
15.用8千克絲可以織6分米寬的綢4米,現在有10千克絲,要織7.5分米寬的綢,可以織幾米?
16.下面是一個11位數,每三個相鄰數字之和都是15,你知道問號表示的數是幾嗎?這個11位數是多少?
17..甲、乙、丙三人一共買了8個麵包平均分著吃,甲付5個麵包的錢,乙付3個麵包的錢,丙沒帶錢。經計算,丙應該付4元錢,甲應收回多少錢?
18.有甲、乙、丙、丁、戊五個足球代表隊進行比賽,每個隊都要和其他隊賽一場,總共要塞多少場?
19.12枚硬幣的總值是1元,其中只有5分和1角兩種,問每種硬幣多少個?
20..甲乙兩人去商店買衣服,甲原有100元錢,乙原有70元錢,兩人買了同樣價格的衣服後,結果發現甲剩下的錢恰好是乙剩下的錢的4倍。問甲乙買衣服各用了多少元錢?
21.57輛軍車排成一列通過一座橋,前後兩輛車之間都保持2米的距離。橋長200米,每輛軍車長5米。從第一輛車頭到最末一輛車尾共長多少米?
22.買18張桌子和6把椅子共要1560元,10張桌子的價錢比6把椅子的價錢多680元,問每張桌子多少錢?每把椅子多少錢?
23. .甲.乙兩個儲油罐,甲比乙的儲油量少,把1/4乙中的1/6輸入甲,甲中儲油量比乙多2噸.乙原有油多少噸?
24.工廠組織400-450人參加植樹活動,平均每人植32棵.男職工平均每人植樹48棵,女職工平均每人植樹13棵.參加植樹的男.女職工各有多少人?(用比例求人數)
25.甲.乙.丙三倉庫存有救災物資,甲有120件,乙是甲.丙兩倉庫之和,丙是甲.乙倉庫的一半,救災物資一共有多少件?
26..甲.乙.丙三組共裝電視機500台.甲.乙兩組裝配台數的比是5:3,丙比乙少裝39台.丙裝了幾台?(假設丙多裝39台)
27.甲.乙兩地相距243KM,一輛貨車和客車同時從甲.乙兩地出發,相向而行,經過1.5小時相遇.貨車和客車的速度比是4:5,那麼,客車行完全程要多少小時?(兩種方法)
28.一個日用化工廠生產洗衣皂9800想,比生產的香皂多5/9.生產洗衣皂和香皂一共多少箱?(變分率巧解題)
29.小明和小聰分別在60米跑道兩端同時出發來回跑步,小明每秒跑2米,小聰每秒跑3米,他倆不停地跑了5分鍾,這期間他倆迎面相遇幾次?
30.小強買了三支鉛筆,三支圓珠筆,八本筆記本和十二塊橡皮,售貨員說共要付13元1角,已知鉛筆4角一支,圓珠筆2元8角一支,問售貨員的帳有沒有算錯
31.一項工程,甲獨做要3天,乙獨坐要5天。現甲先做1天剩下的甲乙合作還要幾天完成?
32.乙倉大米是甲倉的4/5,如果從甲倉調4噸大米到乙倉,則甲,乙兩倉大米重量的比是3:4,甲。乙兩倉原來各存大米多少噸?
33.7點什麼分的時候,分針落後時針100度?
34.兩輛汽車從A、B兩地同時出發、相向而行,甲每小行50千米,乙每小行60千米,經過3.5小時相遇。A、B兩地相距多少千米?(用兩種方法解答)
35.小明與小清家相距4.5千米,兩人同時騎車從家出發相向而行,小明每分鍾行50米,小青每分鍾行40米,經過幾分鍾兩人相遇?
36.小明與小清家相距4.5千米,兩人同時騎車從家出發相向而行,小明每分鍾行50米,小青每分鍾行40米,經過幾分鍾兩人相遇?
37.客車和貨車同時從兩城出發,相向而行,客車每小時行45千米,比貨車每小時多行3千米,經過4小時兩車相遇。兩城相距多少千米?
兩個工程隊同時從兩端開一條長850米的隧道,甲隊每天開鑿26米,乙隊每天開鑿24米,經過幾天就可以打通?
6、師徒兩個人合作加工一批零件,師傅每小時加工68個,徒弟每小時加工55個,合作6小時完成任務,這批零件一共有多少個?
7、加工廠用兩台磨面機同時磨面17280千克,第一台磨面機每小時磨面364千克,第二台磨面每小時磨面356千克,如果每天加工8小時,磨完這些麵粉需要多少天?
二、同時出發,相背而行
1、甲、乙兩人同時從學校出發向反方向行去。甲每分鍾走60米,乙每分鍾走70米,5分鍾後兩人相距多少米?(用兩種方法解答)
第一種方法: 第二種方法:
2、兩輛汽車同時從一個工廠出發,相背而行,一輛汽車每小時行33千米,另一輛汽車每小時行42千米。多少分鍾後兩車相距15千米?
三、同時出發、相向而行,不相遇
1、甲、乙兩站間的鐵路長560千米,兩列火車同時從兩站相對開出,一列火車每小時行63.5千米,另一列火車每小時行80.5千米,3小時後兩列火車還相距多少千米?
2、貨車和客車同時從甲、乙兩地相對開出,貨車每小時行57.5千米,客車每小時行45.8千米,3小時後兩車相距100千米,甲、乙兩地相距多少千米?
3、師徒兩人共同加工312個零件,師傅每小時加工45個,徒弟每小時加工35個,加工幾小時後還剩40個?
四、不同時出發,相向而行
1、甲、乙兩列火車從兩地相對行駛。甲車每小時行75千米,乙車每小時行69千米,甲車開出1小時後,乙車才出發,5小相遇。兩地間的鐵路長多少千米?(用兩種方法解答)
第一種方法: 第二種方法:
2、甲、乙兩港的水路長726千米,一艘貨輪從甲港開往乙港,每小時行69千米,1小時後,一艘客輪從乙港開住甲港,每小時行77千米,客輪開出後幾小時與貨輪相遇?相遇時客輪和貨輪各行了多少千米?
3、一批零件478個,甲每小時加工50個,乙每小時加工32個,甲先加工3小時餘下的兩人合作完成,再過幾小時完成任務?
五、同時、同地點出發、同方向行駛
甲、乙兩人同時騎車從A地到B地,甲每小時行14.2千米,乙每小時行18.7千米。8小時後兩人相距多少千米?(用兩種方法解答)
第一種方法: 第二種方法:
行程應用題
1、客貨兩車分別相距387千米的甲、乙兩地相對開出,客車先行1小時,每小時行72千米,貨車開出後2.5小時與客車相遇。貨車每小時行多少千米?
2、甲、乙兩輛汽車同時同向而行,甲汽車每小時行42千米,乙汽車每小時行45千米,2.4小時後兩車相距多少千米?
3、甲、乙兩船同時從一個碼頭向相反方向開出,甲船每小時行23.5千米,乙船每小時行21.5千米,航行幾個小時後,兩船相距315千米?
4、甲、乙兩列火車同時從相距453千米的兩地相對開出,甲車每小時行45千米。5小時後兩車還相距28千米,乙車每小時行多少千米?
5、一輛汽車從甲地開往乙地,每小時行56千米,3小時後距離中點還有6千米,這時這輛汽車距乙地還有多少千米?
6、兩列火車同時從甲乙兩地相向開出,第一列火車從甲站出發,每小時行50千米,第二列火車從乙站出發,每小時行60千米,兩車相遇時,第一列火車正好行了全程的 ,離乙站還有300千米。甲乙兩地相距多少千米?
7、甲乙兩個同學在400米一圈的運動場跑道上,同時同地反向跑步,甲每秒鍾5米,乙每秒鍾6米,大約多少秒鍾後兩人相遇?
8、趙蘭步行上學,每分鍾行75米,趙蘭離家6分鍾後,媽媽發現趙蘭沒戴紅領巾,就騎車去追,每分鍾行375米,媽媽出發多少分鍾後能追上趙蘭?
9、甲乙兩車同時從兩地相向而行,甲每小時行83千米,乙每小時行95千米,兩車在距中點24千米處相遇,求兩地距離?
10、甲、乙兩列火車分別從兩個車站相向開出,甲車每小時行48千米,乙車每小時行52千米,如果相遇時,甲車比乙車一共少行20千米,那麼兩站之間的距離是多少千米
1. 有 28位小朋友排成一行 .從左邊開始數第 10位是愛華,從右邊開始數他是第幾位?
2. 紐約時間是香港時間減 13小時 .你與一位在紐約的朋友約定,紐約時間 4月 1日晚上 8時與他通電話,那麼在香港你應幾月幾日幾時給他打電話?
3. 名工人 5小時加工零件 90件,要在 10小時完成 540個零件的加工,需要工人多少人?
4. 大於 100的整數中,被 13除後商與余數相同的數有多少個?
5. 四個房間,每個房間里不少於 2人,任何三個房間里的人數不少 8人,這四個房間至少有多少人?
6. 在 1998的約數(或因數)中有兩位數,其中最大的是哪個數?
7. 英文測驗,小明前三次平均分是 88分,要想平均分達到 90分,他第四次最少要得幾分?
8. 一個月最多有 5個星期日,在一年的 12個月中,有 5個星期日的月份最多有幾個月?
9. 將 0, 1, 2, 3, 4, 5, 6, 7, 8, 9這十個數字中,選出六個填在下面方框中,使算式成立,一個方框填一個數字,各個方框數字不相同 .
□ +□□ =□□□
問算式中的三位數最大是什麼數?
10. 有一個號碼是六位數,前四位是 2857,後兩位記不清,即
2857□□
但是我記得,它能被 11和 13整除,請你算出後兩位數 .
11. 某學校有學生 518人,如果男生增加 4%,女生減少 3人,總人數就增加 8人,那麼原來男生比女生多幾人?
12. 陳敏要購物三次,為了使每次都不產生 10元以下的找贖, 5元、 2元、 1元的硬幣最少總共要帶幾個?
(硬幣只有 5元、 2元、 1元三種 .)
13. 右圖是三個半圓構成的圖形,其中小圓直徑為 8,中圓直徑為 12,
14.幼兒園的老師把一些畫片分給 A, B, C三個班,每人都能分到 6張 .如果只分給 B班,每人能得 15張,如果只分給 C班,每人能得 14張,問只分給 A班,每人能得幾張?
15. 兩人做一種游戲:輪流報數,報出的數只能是 1, 2, 3, 4, 5, 6, 7, 8.把兩人報出的數連加起來,誰報數後,加起來的數是 123,誰就獲勝,讓你先報,就一定會贏,那麼你第一個數報幾?
16.一本小說的頁碼,在印刷時必須用1989個鉛字,在這一本書的頁碼中數字1出現多少次?
17.把23個數:3,33,333,…,33…3(23個3)相加,則所得的和的末四位數是多少?
18.將1、1、2、2、3、3、4、4這八個數字排成一個八位數,使得兩個1之間有一個數字,兩個2之間有二個數字,兩個3之間有三個數字,兩個4之間有四個數字,那麼這樣的八位數中最小的是?
19.從 1, 2, 3,…,2004, 2005這些自然數中,最多可以取幾個數,才能使其中每兩個數的差不等於4?
20.有一個電話號碼是六位數,其中左邊三個數字相同,右邊三個數字是三個連續的自然數,六個數字之和恰好等於末尾的兩位數,這個電話號碼是多少?
21.若a為自然數,證明10│(a2005-a1949).
22.給出12個彼此不同的兩位數,證明:由它們中一定可以選出兩個數,它們的差是兩個相同數字組成的兩位數.
23.求被3除餘2,被5除餘3,被7除餘5的最小三位數.
24.設2n+1是質數,證明:12,22,…,n2被2n+1除所得的余數各不相同.
25.試證不小於5的質數的平方與1的差必能被24整除.
26. 有甲乙兩種糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,現要得到濃度是82.5%的糖水100克,問每種應取多少克?
27. 一個容器里裝有10升純酒精,倒出1升後,用水加滿,再倒出1升,用水加滿,再倒出1升,用水加滿,這時容器內的酒精溶液的濃度是?
28. 有若干千克4%的鹽水,蒸發了一些水分後變成了10%的鹽水,在加300克4%的鹽水,混合後變成6.4%的鹽水,問最初的鹽水是多少千克?
29.已知鹽水若干克,第一次加入一定量的水後,鹽水濃度變為3%,第二次加入同樣多的水後,鹽水濃度變為2%。求第三次加入同樣多的水後鹽水的濃度。
30.有A、B、C三種鹽水,按A與B的數量之比為2:1混合,得到濃度為13%的鹽水;按A與B的數量之比為1:2混合,得到濃度為14%的鹽水;按A、B、C的數量之比為1:1:3混合,得到濃度為10.2%的鹽水,問鹽水C的濃度是多少?
[ 答案 ]
1. 從右邊開始數,他是第 19位 .
2. 4 月2 日上午9 時.
3.9名工人 .
4.有 5個 .
13× 7+7=98< 100,商數從 8開始 .但余數小於 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5個數 .
5.至少有 11人 .
人數最多的房間至少有 3人,其餘三個房間至少有 8人,總共至少有 11人 .
6.最大的兩位約數是 74.
1998= 2× 3× 3× 3× 37
7.第四次最少要得 96分 .
88+( 90- 88)× 4=96(分)
8.最多有 5個月有 5個星期日 .
1月 1日是星期日,全年就有 53個星期日 .每月至少有 4個星期日, 53-4× 12=5,多出 5個星期日,在 5個月中 .
9.105.
和的前兩位是 1和 0,兩位數的十位是 9.因此加數的個位最大是 7和 8.
10.後兩位數是 14.
285700÷( 11× 13) =1997餘 129
余數 129再加 14就能被 143整除 .
11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .
12.最少 5元、 2元、 1元的硬幣共 11個 .
購物 3次,必須備有 3個 5元、 3個 2元、 3個 1元 .為了應付 3次都是 4元,至少還要 2個硬幣,例如 2元和 1元各一個,因此,總數 11個是不能少的 .准備 5元 3個, 2元 5個, 1元 3個,或者 5元 3個, 2元 4個, 1元 4個就能三次支付 1元至 9元任何錢數 .
14.A班每人能得 35張 .
設三班總人數是 1,則 B班人數是 6/15, C班人數是 6/14,因此 A班人數是:
15.第一個數報 6.
對方至少要報數 1,至多報數 8,不論對方報什麼數,你總是可以做到兩人所報數之和為 9.
123÷ 9= 13…… 6.
你第一次報數 6.以後,對方報數後,你再報數,使一輪中兩人報的數和為 9,你就能在 13輪後達到 123.
16.4
17.甲26又2/3天,乙40天
18.21
19.14又1/3
20.10
21.甲、乙兩地相距540千米,原來火車的速度為每小時90千米。
22.750
23.384
24.600
25.一班48人,二班42人
26.15
27.82
28.312
29.最少5個,最多7個
30.784
E. 小學五六年級奧數題30道帶答案!!
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.
偶數與整數的積是偶數.
性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.
F. 20道小學四年級奧數題及答案
1.有一串數19962808864……,這串數的排列規律是:從第7個數起,每個數都是它前面兩個數之和的個位數。那麼這串數中第1999個數字是(),這1999個數字的和是()。
2.有一種細胞,每分鍾分裂一次,每次能把一個細胞分裂成9個。經過1999分鍾,把這些細胞平均裝在7個試管里,還剩下()個細胞。
3.用記號(a)表示a的整數部分,如(10,62)=10,(15÷4)=3,那麼(120÷7)×(9.47-1.83)=()
4.□□□□□+□□□□□=199998,則這10個□中的數字之和是()。
5.印刷廠要印刷數學口算冊27萬本,白班每天印刷2855本,夜班比白班每天多印刷290本。完成任務時,白班比夜班少印刷()本。
6.一條長2000米的公路兩旁每隔10米種一棵楊樹,每二棵楊樹之間等距離種3棵楓樹。這條公路兩旁一共種楓樹()棵。
7.
8.小明騎在牛背上要趕著四頭水牛過河,這四頭牛過河分別需要2分、3分、6分、8分鍾,並且每次只能趕著兩頭牛過河。那麼小明至少需要()分鍾才能把牛全部趕過河去。
9.海關大樓共有十二層,李蘋的爸爸在十樓辦公,有一天,李蘋去找爸爸,她用40秒從一樓走到五樓,照此速度,她至少還要再走()秒才能到達她爸爸辦公室。
10.今年小玲12歲,媽媽40歲。當媽媽的年齡是女兒5倍的時候,母女兩人年齡的和是()歲。
11.小巍帶著一條獵犬騎車離家到26千米遠的招寶山郊遊,他騎車速度是每小時18千米,獵犬奔跑速度是騎車速度的2倍。當獵犬跑到招寶山腳下後,如小巍還未到,則馬上返回迎著小巍跑去,遇到小巍後再跑向招寶山,……這樣來回跑一直到小巍到招寶山為止。這時,這只獵犬一共跑了()千米路。
12.有一組算式:1+1,2+3,3+5,1+7,2+9,3+11,1+13……那麼和是1997的算式是左起第()個算式,第1999個算式的和是()。
13.有兩列火車,客車長200米,每秒行30米,貨車長300米,每秒行20米。兩車在平行軌道上齊頭同向行進,()秒後客車超過貨車;如兩車相向而行,從相遇到錯車而過,需要()秒。
14.四年級數學競賽試卷共有15道題,做對一題得10分,做錯一題扣4分,不答得0分。陳莉得了88分,她有()題未答。
15.四(2)班舉行「六一」聯歡晚會,輔導員老師帶著一筆錢去買糖果,如果買芒果13千克,還差4元,如果買奶糖15千克,則還剩2元。已知每千克芒果比奶糖貴2元,那麼輔導員老師帶了()元錢。
參考答案
1.(2)(8003) 2.(2)
3.(119) 4.(90)
5.(13050) 6.(1200)
7.(略)
8.(19) 9.(70) 10.(42)
11.(52) 12.(998)(3998) 13.(20)(10)
14.(2) 15.(152)
1.1993年的元旦是星期五,請你算一算,1997年的元旦是星期幾?2000年的元旦是星期幾?
答: 星期三、星期六
2.某年的10月有5的星期六,4個星期日,問這一年的十月一日是星期幾?
答: 星期一
3.
第一列 第二列 第三列 第四列 第五列
614…… 27101518 38111619 49121720 …… 51321
問:(1)300排在第幾列?(2)1000排在第幾列?
答: 第四列、第三列
4.用5÷14,商的小數點後面第1997位上數字是幾?
答: 4
5.1÷7的商小數點後面2001個數字之和是多少?
答:2001÷6=333……3,(1+4+2+8+5+7)×333+1+4+2=8998
6.數列1,3,4,7,11,18……,從第三項開始,每項均為它前面相鄰兩項之和,數列中第2001個數被4除余幾?
答: 0
7、將1----100的自然數按下面的順序排列:
答:正方形里的9個數和是90,能否照這樣框出9個數,使它們的和分別是170、216、630?
分析與解答:首先先觀察9個數的特點。上下兩個數的平均數是10,左右兩個數的平均數也是10,對角線的平均數還是10。說明10是這九個數的平均數,它們的和就是90。從這里可以看出,用3×3的正方形框出來的9個數的和一定是9的倍數。170不是9的倍數,所以不可能和是170。225和630都是9的倍數,是不是這兩個數都可以呢?可以發現,排在最左邊一列和最右邊一列上的數,不能做這9個數的平均數,因為畫不出正方形。216和630÷9分別等於24和70,這兩個數分別在哪一列呢?8個一循環,24÷8=3,正好在最右邊一列,所以畫不出來。而70÷8=8……6,余數是6,排在第6列,所以能畫出來。
8、有一個數列:
1,2,3,5,8,13,……。(從第3個數起,每個數恰好等於它前面相鄰兩個數的和)
求第1993個數被6除余幾?(這道題需要你耐心解答呦)
分析:如果能知道第1993個數是哪個數,問題很容易解決。可是要做到這一點不容易。由於我們所研究的是「余數」,如能構造出數列各項被6除,余數構成的數列,問題也可以得到解決。
解:根據「如果一個數等於幾個數的和,那麼這個數被a除的余數,等於各個加數被a除的余數的和再被a除的余數」。得到數列各項被6除,余數組成的數列是:
1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,……。
觀察規律,發現到第25項以後又重復出現前24項。呈現周期性變化規律。一個周期內排有24個數。(余數數列的前24項)
1993÷24=83……1。
第1993個數是第84個周期的第1個數。因此被6除是餘1。
G. 三年級奧數題100道。及答案
小學三年級奧數題
乘除法中的速算
三年級乘除法中的速算(2)
小學三年級奧數題:乘除法中的速算(2)
三年級乘除法中的速算(3)
小學三年級奧數題:乘除法中的速算(3)
三年級奧數題:噸的認識、測量
小學三年級奧數題:差倍問題(1)
小學三年級奧數題:差倍問題(1)
小學三年級奧數題:差倍問題(2)
小學三年級奧數題:差倍問題(2)
小學三年級奧數題:差倍問題(3)
小學三年級奧數題:差倍問題(3)
小學三年級奧數題:差倍問題(4)
小學三年級奧數題:差倍問題(4)
三年級奧數題:加減法的驗算
小學三年級奧數題:加減法的驗算
三年級奧數題:循環問題(1)
小學三年級奧數題:循環問題(1)
三年級奧數題:循環問題(2)
小學三年級奧數題:循環問題(2)
小學三年級奧數題:循環問題(3)
三年級奧數題:循環問題(3)
三年級奧數題:年月日問題(1)
三年級奧數題:年月日問題(1)
三年級奧數題:年月日問題(2)
三年級奧數題:年月日問題(2)
三年級奧數題:火柴棒問題
三年級奧數題:火柴棒問題
三年級奧數題:和差倍數問題(1)
1、南京長江大橋共分兩層,上層是公路橋,下層是鐵路橋。鐵路橋和公路橋共長11270米,鐵路橋比公路橋長2270米,問南京長江大橋的公路和鐵路橋各長多少米?
分析:和差基本問題,和1127米,差2270米,大數=(和+差)/2,小數=(和-差)/2。
解:鐵路橋長=(11270+2270)/2=6770米,公路橋長=(11270-2270)/2=4500米。
2、三個小組共有180人,一、二兩個小組人數之和比第三小組多20人,第一小組比第二小組少2人,求第一小組的人數。
分析:先將一、二兩個小組作為一個整體,這樣就可以利用基本和差問題公式得出第一、二兩個小組的人數和,然後對第一、二兩個組再作一次和差基本問題計算,就可以得出第一小組的人數。
解:一、二兩個小組人數之和=(180+20)/2=100人,第一小組的人數=(100-2)/2=49人。
3、甲、乙兩筐蘋果,甲筐比乙筐多19千克,從甲筐取出多少千克放入乙筐,就可以使乙筐中的蘋果比甲筐的多3千克?
分析:從甲筐取出放入乙筐,總數不變。甲筐原來比乙筐多19千克,後來比乙筐少3千克,也即對19千克進行重分配,甲筐得到的比乙筐少3千克。於是,問題就變成最基本的和差問題:和19千克,差3千克。
解:(19+3)/2=11千克,從甲筐取出11千克放入乙筐,就可以使乙筐中的蘋果比甲筐的多3千克。
三年級奧數題:和差倍數問題(2)
1、在一個減法算式里,被減數、減數與差的和等於120,而減數是差的3倍,那麼差等於多少?
分析:被減數=減數+差,所以,被減數和減數與差的和就各自等於被減數、減數與差的和的一半,即:
被減數=減數+差=(被減數+減數+差)/2。因此,減數與差的和= 120/2=60。這樣就是基本的和倍問題了。小數=和/(倍數+1)
解:減數與差的和=120/2=60,差=60/(3+1)=15。
2、已知兩個數的商是4,而這兩個數的差是39,那麼這兩個數中較小的一個是多少?
分析:兩個數的商是4,即大數是小數的4倍,因此,這是一個基本的差倍問題。小數=差/(倍數-1)。
解:兩個數中較小的一個=39/(4-1)=13。
3、姐姐做自然練習比妹妹做算術練習多用48分鍾,比妹妹做英語練習多用42分鍾,妹妹做算術、英語兩門練習共用了44分鍾,那麼妹妹做英語練慣用了多少分鍾?
分析:姐姐做自然練習的時間是一定的,比妹妹做算術和英語的時間分別差了48分和42分,說明妹妹做英語比做算術多用了48-42=6分鍾,仍然是一個和差問題。
解:妹妹做英語練慣用時=(44+6)/2=25分鍾。
三年級奧數題:和差倍數問題(3)
1、已知△,○,□是三個不同的數,並且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那麼△+○+□等於多少?
分析:由一、二可知,□是△的2倍,將它代換到三中,就是三個△加2個○等於60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。
解:△+○+□=10+15+20=45。
2、用中國象棋的車、馬、炮分別表示不同的自然數。如果,車÷馬=2,炮÷車=4,炮-馬=56,那麼「車+馬+炮」等於多少?
分析:車÷馬=2,車是馬的2倍;炮÷車=4,炮是車的4倍,是馬的8倍;炮-馬=56,炮比馬大56。差倍問題。
解:馬=56/(8-1)=8,炮=56+8=64,車=8*2=16,車+馬+炮=8+64+16=88。
3、聰聰用10元錢買了3支圓珠筆和7本練習本,剩下的錢若買一支圓珠筆就少1角4分;若買一本練習本還多8角,問一支圓珠筆的售價是多少元?
分析:剩下的錢若買一支圓珠筆就少1角4分;若買一本練習本還多8角,說明圓珠筆比練習本貴1角4分+8角=9角4分,那麼,3支圓珠筆就要比三本練習本貴94*3=282分=2元8角2分,這樣,就相當於在10元中扣除2元8角2分加8角,正好可以買11本練習本,所以,每本練習本的價錢是(1000-282-80)/11=58分=5角8分。
解:圓珠筆-練習本=14+80=94分,每本練習本的價錢是(1000-94*3-80)/11=58分=5角8分,圓珠筆的售價=58+94=152分=1元5角2分。
三年級奧數題:和差倍數問題(4)
1、甲、乙兩位學生原計劃每天自學的時間相同,若甲每天增加自學時間半小時,乙每天減少自學時間半小時,則乙自學6天的時間僅相等於甲自學一天的時間。問:甲、乙原訂每天自學的時間是多少分鍾?
分析:甲每天增加自學時間半小時,乙每天減少自學時間半小時,甲比乙多自學一個小時,乙自學6天的時間僅相等於甲自學一天的時間,甲是乙的6倍,差倍問題。
解:乙每天減少半小時後的自學時間=1/(6-1)=1/5小時=12分鍾,乙原計劃每天自學時間=30+12=42分鍾,甲原計劃每天自學時間=12*6-30=42分鍾。
2、一大塊金帝牌巧克力可以分成若干大小一樣的正方形小塊。小明和小強各有一大塊金帝巧克力,他們同時開始吃第一小塊巧克力。小明每隔20分鍾吃1小塊,14時40分吃最後1小方塊;小強每隔30分鍾吃1小塊,18時吃最後1小方塊。那麼他們開始吃第1小塊的時間是幾時幾分?
分析:小明每隔20分鍾吃1小塊,小強每隔30分鍾吃1小塊,小強比小明多間隔10分鍾,小明14時40分吃最後1小方塊,小強18時吃最後1小方塊,小強比小明晚3小時20分,說明在吃最後一塊前面共有(3*60+20)/10=20個間隔,即已經吃了20塊。那麼,20*20=400分鍾=6小時40分鍾,14時40分-6小時40分=8時。
解:18時-14時40分=3小時20分=3*60+20=200分鍾,已經吃的塊數=200/(30-20)=20塊,小明吃20塊用時20*20=400分鍾=6小時40分鍾,開始吃第一塊的時間為14時40分-6小時40分=8時。
三年級奧數題:速算與巧算
【試題】巧算與速算:41×49=( )
【詳解】相乘的兩個數都是兩位數,且十位上的數字相同,個位上的數字之和正好是10,這就可以運用「頭同尾合十」的巧演算法進行簡便計算。
「頭同尾合十」的巧算方法是:用十位上的數字乘十位上的數字加1的積,再乘100,最後加上個位上2個數字的乘積。
41×49,先用(4+1)×4=20,將20作為積的前兩位數字,再用1×9=9,可以發現末位數字相乘的積是一位數,那就在9的前面補一個0,作為積的後兩位數字。這樣答案很簡單的就求出了,即41×49=(4+1)×4×100+1×9=2009。
三年級奧數題:植樹問題
【試題】一塊三角形地,三邊分別長156米,234米,186米,要在三邊上植樹,株距6米,三個角的頂點上各植上1棵數,共植樹( )棵。
【詳解】此題植樹線路是封閉的,這類題的特點是:因為頭尾兩端重合在一起,所以棵數等於分成的段數。題中要求三角形三個頂點上要各栽一棵樹,因此我們要按照三條邊來考慮。因為156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每邊恰好分成了整數段,這樣,從周長來講,應栽樹的棵數與段數相等。即共植樹:26+31+39=96(棵)。
三年級奧數應用題解題技巧(1)
【試題】一台拖拉機5小時耕地40公頃,照這樣的速度,耕72公頃地需要幾小時?
【詳解】要求耕72公頃地需要幾小時,我們就要先求出這台拖拉機每小時耕地多少公頃?
(1)每小時耕地多少公頃?
40÷5=8(公頃)
(2)需要多少小時?
72÷8=9(小時)
答:耕72公頃地需要9小時。
三年級奧數應用題解題技巧(2)
【試題】紡織廠運來一堆煤,如果每天燒煤1500千克,6天可以燒完。如果每天燒1000千克,可以多燒幾天?
【詳解】要想求可以多燒幾天,就要先知道這堆煤每天燒1000千克可以燒多少天;而要求每天燒1000千克,可以燒多少天,還要知道這堆煤一共有多少千克。
(1)這堆煤一共有多少千克?
1500×6=9000(千克)
(2)可以燒多少天?
9000÷1000=9(天)
(3)可以多燒多少天?
9-6=3(天)。
三年級奧數應用題解題技巧(3)
【試題】把7本相同的書摞起來,高42毫米。如果把28本這樣的書摞起來,高多少毫米?(用不同的方法解答)
【詳解】
方法1:
(1)每本書多少毫米?
42÷7=6(毫米)
(2)28本書高多少毫米?
6×28=168(毫米)
方法2:
(1)28本書是7本書的多少倍?
28÷7=4
(2)28本書高多少毫米?
42×4=168(毫米)
三年級奧數應用題解題技巧(4)
【試題】兩個車間裝配電視機。第一車間每天裝配35台,第二車間每天裝配37台。照這樣計算,這兩個車間15天一共可以裝配電視機多少台?
【詳解】
方法1:
(1)兩個車間一天共裝配多少台?
35+37=72(台)
(2)15天共可以裝配多少台?
72×15=1080(台)
方法2:
(1)第一車間15天裝配多少台?
35×15=525(台)
(2)第二車間15天裝配多少台?
37×15=555(台)
(3)兩個車間一共可以裝配多少台?
555+525=1080(台)
答:15天兩個車間一共可以裝配1080台。
三年級奧數應用題解題技巧(5)
【試題】同學們到車站義務勞動,3個同學擦12塊玻璃。(補充不同的條件求問題,編成兩道不同的兩步計算應用題)。
補充1:「照這樣計算,9個同學可以擦多少塊玻璃?」
【詳解】
(1)每個同學可以擦幾塊玻璃?
12÷3=4(塊)
(2)9個同學可以擦多少塊?
4×9=36(塊)
答:9個同學可以擦36塊。
補充2:「照這樣計算,要擦40塊玻璃,需要幾個同學?」
【詳解】
(1)每個同學可以擦幾塊玻璃?
12÷3=4(塊)
(2)擦40塊需要幾個同學?
40÷4=10(個)
答:擦40塊玻璃需要10個同學。
三年級奧數應用題解題技巧(6)
【試題】小華每分拍球25次,小英每分比小華少拍5次。照這樣計算,小英5分拍多少次?小華要拍同樣多次要用幾分?
【解析】
(1)小英每分拍多少次?
25-5=20(次)
(2)小英5分拍多少次?
20×5=100(次)
(3)小華要幾分拍100次?
100÷25=4(分)
答:小英5分拍100次,小華要拍同樣多次要用4分。
三年級奧數應用題解題技巧(7)
【試題】劉老師搬一批書,每次搬15本,搬了12次,正好搬完這批書的一半。剩下的書每次搬20本,還要幾次才能搬完?
【解析】
(1)12次搬了多少本?
15×12=180(本)
搬了的與沒搬的正好相等
(2)要幾次才能把剩下的搬完?
180÷20=9(次)
答:還要9次才能搬完。