1. 小學三年級奧數題及答案
1.一條路長100米,從頭到尾每隔10米栽1棵梧桐樹,共栽多少棵樹?
路分成100÷10=10段,共栽樹10+1=11棵。
12棵柳樹排成一排,在每兩棵柳樹中間種3棵桃樹,共種多少棵桃樹?
3×(12-1)=33棵。
一根200厘米長的木條,要鋸成10厘米長的小段,需要鋸幾次?
200÷10=20段,20-1=19次。
4.螞蟻爬樹枝,每上一節需要10秒鍾,從第一節爬到第13節需要多少分鍾?
從第一節到第13節需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周圍方式菊花,每隔1米放1盆花。花圃周圍共20米長。需放多少盆菊花?
20÷1×1=20盆
6.從發電廠到鬧市區一共有250根電線桿,每相鄰兩根電線桿之間是30米。從發電廠到鬧市區有多遠?
30×(250-1)=7470米。
7.王老師把月收入的一半又20元留做生活費,又把剩餘錢的一半又50元儲蓄起來,這時還剩40元給孩子交學費書本費。他這個月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他這個月收入400元。
8.一個人沿著大提走了全長的一半後,又走了剩下的一半,還剩下1千米,問:大提全長多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了這堆零件的一半又10個,第二天又加工了剩下的一半又10個,還剩下25個沒有加工。問:這批零件有多少個?
(25+10)×2=70個,(70+10)×2=160個。綜合算式:【(25+10)×2+10】×2=160個
10.一條毛毛蟲由幼蟲長到成蟲,每天長一倍,16天能長到16厘米。問它幾天可以長到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然後倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中還剩下80千克。桶里原來有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙兩書架共有圖書200本,甲書架的圖書數比乙書架的3倍少16本。甲、乙兩書架上各有圖書多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕買一套衣服用去185元,問上衣和褲子各多少元?
褲子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年齡之和是94歲,且甲的2倍比丙多5歲,乙2倍比丙多19歲,問:甲、乙、丙三人各多大?
如果每個人的年齡都擴大到2倍,那麼三人年齡的和是94×2=188。如果甲再減少5歲,乙再減少19歲,那麼三人的年齡的和是188-5-19=164(歲),這時甲的年齡是丙的一半,即丙的年齡是甲的兩倍。同樣,這時丙的年齡也是乙兩倍。所以這時甲、乙的年齡都是164÷(1+1+2)=41(歲),即原來丙的年齡是41歲。甲原來的年齡是(41+5)÷2=23(歲),乙原來的年齡是(41+19)÷2=30(歲)。
15.小明、小華捉完魚。小明說:「如果你把你捉的魚給我1條,我的魚就是你的2倍。如果我給你1條,咱們就一樣多了。「請算出兩個各捉了多少條魚。
小明比小華多1×2=2(條)。如果小華給小明1條魚,那麼小明比小華多2+1×2=4(條),這時小華有魚4÷(2-1)=4(條)。原來小華有魚4+1=5(條),原來小明有魚5+2=7(條)。
16.小芳去文具店買了13本語文書,8本算術書,共用去10元。已知6本語文本的價錢與4本算術本的價錢相等。問:1本語文本、1本算術本各多少錢?
8÷4×6=12,即8本算術本與12本語文體價錢相等。所以1本語文本值10×100÷(13+12)=40(分),1本算術本值40×6÷4=60(分),即1本語文本4角,1本算術本6角。
17.找規律,在括弧內填入適當的數. 75,3,74,3,73,3,(),()。
答案:72,3。
18找規律,在括弧內填入適當的數. 1,4,5,4,9,4,(),()。
奇數項構成數列1,5,9……,每一項比前一項多4;偶數項都是4,所以應填13,4
19.找規律,在括弧內填入適當的數. 3,2,6,2,12,2,(),()。
24,2。
20.找規律,在括弧內填入適當的數. 76,2,75,3,74,4,(),()。
答案:將原數列拆分成兩列,應填:73,5。
21.找規律,在括弧內填入適當的數. 2,3,4,5,8,7,(),()。
答案:將原數列拆分成兩列,應填:16,9。
22.找規律,在括弧內填入適當的數. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶數項是它前面的奇數項的2倍;又8=6+2,18=16+2,即從第三項起,奇數項比它前面的偶數項多2.所以應填:36,38。
23.找規律,在括弧內填入適當的數. 1,6,7,12,13,18,19,(),()。
答案:將原數列拆分成兩列,應填:24,25。
24.找規律,在括弧內填入適當的數. 1,4,3,8,5,12,7,()。
答案:奇數項構成數列1,3,5,7,…,每一項比前一項多2;偶數項構成數列4,8,12,…,每一項比前一項多4,所以應填:16。
25.找規律,在括弧內填入適當的數. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一場比賽中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。問:他們各是第幾名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一頭象的重量等於4頭牛的重量,一頭牛的重量等於3匹小馬的重量,一匹小馬的重量等於3頭小豬的重量。問:一頭象的重量等於幾頭小豬的重量?
答案:4×3×3=36,所以一頭象的重量等於36頭小豬的重量。
28.甲、乙、丙三人,一個人喜歡看足球,一個人喜歡看拳擊,一個人喜歡看籃球。已知甲不愛看籃球,丙既不喜歡看籃球又不喜歡看足球。現有足球、拳擊、籃球比賽的入場券各一張。請根據他們的愛好,把票分給他們。
答案:丙不喜歡看籃球與足球,應將拳擊入場券給丙。甲不喜歡看籃球,應將足球入場券給甲。最後,應將籃球入場券給乙。
29.有一堆鐵塊和銅塊,每塊鐵塊重量完全一樣,每塊銅塊的重量也完全一樣。3塊鐵快和5塊銅塊共重210克。4塊鐵塊和10塊銅塊共重380克。問:每一塊鐵塊、每一塊銅塊各重多少?
答案:4塊鐵塊和10塊銅塊共重380克,所以2塊鐵塊和5塊銅塊共重380÷2=190(克)。而3塊鐵塊和5塊銅塊共重210克,所以1塊鐵塊重210-190=20(克)。1銅塊重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他們各自都說了一句話,而其中只有一句是真的。甲說:「是乙做的。」 乙說:「不是我做的。」 丙說:「也不是我做的。」 問:到底是誰做的好事?
答案:如果是甲做的好事,那麼乙、丙的話都是真的,與只有一句是真的矛盾。如果是乙做的好事,那麼甲、丙的話都是真的,也產生矛盾。好事是丙做的,這時甲、丙的話都是錯的,只有乙的話是真的,所以好事是丙做的。
31.一張長8分米、寬3分米的長方形紙板,在四個角落上各截去一個邊長為2分米的正方形,所剩下的部分的周長是多少?
答:(8+3)×2=22(分米)
32.計算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.計算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一個括弧內的項數為(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
滿意請採納。
2. 小學四年級奧數題及答案50題
小學四年級奧數題及答案和題目分析
一、按規律填數。
1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差數列
1.在等差數列3,12,21,30,39,48,…中912是第幾個數?
2.求1至100內所有不能被5或9整除的整數和
3.把210拆成7個自然數的和,使這7個數從小到大排成一行後,相鄰兩個數的差都是5,那麼,第1個數與第6個數分別是多少?
4.把從1開始的所有奇數進行分組,其中每組的第一個數都等於此組中所有數的個數,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5組中所有數的和
三、 平均數問題
1.已知9個數的平均數是72,去掉一個數後,餘下的數平均數為78,去掉的數是______ . 2.某班有40名學生,期中數學考試,有兩名同學因故缺考,這時班級平均分為89分,缺考的同學補考各得99分,這個班級中考平均分是_______ .
3.今年前5個月,小明每月平均存錢4.2元,從6月起他每月儲蓄6元,那麼從哪個月起小明的平均儲蓄超過5元?
4.A、B、C、D四個數,每次去掉一個數,將其餘下的三個數求平均數,這樣計算了4次,得到下面4個數. 23, 26, 30, 33
A、B、C、D 4個數的平均數是多少?
5 A、B、C、D4個數,每次去掉一個數,將其餘3個數求平均數,這樣計算了4次得到下面4個數23、26、30、33,A、B、C、D4個數的和是 。
四、加減乘除的簡便運算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……2000-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、數陣圖
1、△、□、〇分別代表三個不同的數,並且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=
2.將九個連續自然數填入3行3列的九個空格中,使每一橫行及每一豎列的三個數之和都等於60.
3.將從1開始的九個連續奇數填入3行3列的九個空格中,使每一橫行、每一豎列及兩條對角線上的三個數之和都相等.
4 用1至9這9個數編制一個三階幻方,寫出所有可能的結果。所謂幻方是指在正方形的方格表的每個方格內填入不同的數,使得每行、每列和兩條對角線上的各數之和相等;而階數是指每行、每列所包含的方格的數。
六、和差倍問題
1.果園里一共種340棵桃樹和杏樹,其中桃樹的棵數比杏樹的3倍多20棵,兩種樹各種了多少棵?
2.一個長方形,周長是30厘米,長是寬的2倍,求這個長方形的面積。
3.甲、乙兩個數,如果甲數加上320就等於乙數了.如果乙數加上460就等於甲數的3倍,兩個數各是多少?
4.有兩塊同樣長的布,第一塊賣出25米,第二塊賣出14米,剩下的布第二塊是第一塊的2倍,求每塊布原有多少米?
5.果園里有桃樹和梨樹共150棵,桃樹比梨樹多20棵,兩種果樹各有多少棵?
6.甲、乙兩桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那麼兩桶油重量相等,問甲、乙兩桶原有多少油?
七、年齡問題
1.兄弟倆今年的年齡和是30歲,當哥哥像弟弟現在這樣大時,弟弟的年齡恰好是哥哥年齡的一半,哥哥今年幾歲?
2.母女的年齡和是64歲,女兒年齡的3倍比母親大8歲,求母女二人的年齡各是多少歲?
3.哥哥今年比小麗大12歲,8年前哥哥的年齡是小麗的4倍,今年二人各幾歲?
4.爺爺今年72歲,孫子今年12歲,幾年後爺爺的年齡是孫子的5倍?幾年前爺爺的年齡是孫子的13倍?
八、假設問題
1、有42個同學參加植樹,男生平均每人種3棵,女生平均每人種2棵,男生比女生多種56棵.男、女生各多少人?
2.某小學舉行一次數學競賽,共15道題,每做對一題得8分,每做錯一題倒扣4分,小明共得了72分,他做對了多少道題?
3.一張試卷有25道題,答對一題得4分,答錯或不答均倒扣1分,某同學共得60分,他答對了多少道題?
4.小華解答數學判斷題,答對一題給4分,答錯一題要倒扣4分,她答了20個判斷題,結果只得了56分,她答錯了多少道題?
5. 育才小學五年級舉行數學競賽,共10道題,每做對一道題得8分,錯一題倒扣
5分,張小靈最終得分為41分,她做對了多少道題?
自己做吧,有了答案就不會好好做,對不起
3. 小學一年級數學題目大全及答案
1、同學們要做10個燈籠,已做好8個,還要做多少個?
2、從花上飛走了6隻蝴蝶,又飛走了5隻,兩次飛走了多少只?
3、飛機場上有15架飛機,飛走了3架,現在機場上有飛機多少架?
4、小蘋種7盆紅花,又種了同樣多的黃花,兩種花共多少盆?
5、學校原有5瓶膠水,又買回9瓶,現在有多少瓶?
6、小強家有10個蘋果,吃了7個,還有多少個?
7、汽車總站有13輛汽車,開走了3輛,還有幾輛?
8、小朋友做剪紙 ,用了8張紅紙,又用了同樣多的黃紙,他們用了多少張紙?
9、馬場上有9匹馬,又來了5匹,現在馬場上有多少匹?
10、商店有15把扇,賣去5把,現在有多少把?
11、學校有蘭花和菊花共15盆,蘭花有6盆,菊花有幾盆?
12、小青兩次畫了17個 ,第一次畫了9個,第二次畫了多少個?
13、小紅家有蘋果和梨子共13個,蘋果有4個,梨子有多少個?
14、學校要把12箱文具送給山區小學,已送去7箱,還要送幾箱?
15、家有11棵白菜,吃了5棵,還有幾棵?
16、一條馬路兩旁各種上48棵樹,一共種樹多少棵?
17、從車場開走8輛汽車,還剩24輛,車場原來有多少汽車?
18、從車場開走8輛大汽車,又開走同樣多的小汽車,兩次開走多少輛汽車?
19、學校體育室有6個足球 ,又買來20個,現在有多少個?
20、學雷鋒小組上午修了8張椅,下午修了9張,一天修了多少張椅?
21、明明上午算了12道數學題,下午算了8道,上午比下午多算多少道題?
22、圖書室里有20個女同學,有10個男同學,男同學比女同學少多少個?
23、動物園里有大猴20隻,有小猴30隻,小猴比大猴多多少只?
24、學校有10個足球,16個籃球,足球比籃球少多少個?
25、花園里有蘭花40盆,菊花60盆,蘭花再種多少盆就和菊花同樣多?
26、媽媽買紅扣子18個,白扣子10個,黑扣子8個。
(1)紅扣子比白扣子多多少個?
(2)黑扣子比白扣子少多少個?
27、小華做了20個信封,小亮比小華多做6個,小亮做了多少個?
28、有兩層書架,第一層有16本書,第二層比第一層多8 本,第二層有多少本?
29、媽媽買蘋果6個,買梨子比蘋果多4個,買梨子多少個?
30、飼養組有30隻公雞,母雞比公雞多48隻,有母雞多少只?
4. 小學三年級奧數題及答案
1.一條路長100米,從頭到尾每隔10米栽1棵梧桐樹,共栽多少棵樹?
路分成100÷10=10段,共栽樹10+1=11棵。
12棵柳樹排成一排,在每兩棵柳樹中間種3棵桃樹,共種多少棵桃樹?
3×(12-1)=33棵。
一根200厘米長的木條,要鋸成10厘米長的小段,需要鋸幾次?
200÷10=20段,20-1=19次。
4.螞蟻爬樹枝,每上一節需要10秒鍾,從第一節爬到第13節需要多少分鍾?
從第一節到第13節需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周圍方式菊花,每隔1米放1盆花。花圃周圍共20米長。需放多少盆菊花?
20÷1×1=20盆
6.從發電廠到鬧市區一共有250根電線桿,每相鄰兩根電線桿之間是30米。從發電廠到鬧市區有多遠?
30×(250-1)=7470米。
7.王老師把月收入的一半又20元留做生活費,又把剩餘錢的一半又50元儲蓄起來,這時還剩40元給孩子交學費書本費。他這個月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他這個月收入400元。
8.一個人沿著大提走了全長的一半後,又走了剩下的一半,還剩下1千米,問:大提全長多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了這堆零件的一半又10個,第二天又加工了剩下的一半又10個,還剩下25個沒有加工。問:這批零件有多少個?
(25+10)×2=70個,(70+10)×2=160個。綜合算式:【(25+10)×2+10】×2=160個
10.一條毛毛蟲由幼蟲長到成蟲,每天長一倍,16天能長到16厘米。問它幾天可以長到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然後倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中還剩下80千克。桶里原來有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙兩書架共有圖書200本,甲書架的圖書數比乙書架的3倍少16本。甲、乙兩書架上各有圖書多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕買一套衣服用去185元,問上衣和褲子各多少元?
褲子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年齡之和是94歲,且甲的2倍比丙多5歲,乙2倍比丙多19歲,問:甲、乙、丙三人各多大?
如果每個人的年齡都擴大到2倍,那麼三人年齡的和是94×2=188。如果甲再減少5歲,乙再減少19歲,那麼三人的年齡的和是188-5-19=164(歲),這時甲的年齡是丙的一半,即丙的年齡是甲的兩倍。同樣,這時丙的年齡也是乙兩倍。所以這時甲、乙的年齡都是164÷(1+1+2)=41(歲),即原來丙的年齡是41歲。甲原來的年齡是(41+5)÷2=23(歲),乙原來的年齡是(41+19)÷2=30(歲)。
15.小明、小華捉完魚。小明說:「如果你把你捉的魚給我1條,我的魚就是你的2倍。如果我給你1條,咱們就一樣多了。「請算出兩個各捉了多少條魚。
小明比小華多1×2=2(條)。如果小華給小明1條魚,那麼小明比小華多2+1×2=4(條),這時小華有魚4÷(2-1)=4(條)。原來小華有魚4+1=5(條),原來小明有魚5+2=7(條)。
16.小芳去文具店買了13本語文書,8本算術書,共用去10元。已知6本語文本的價錢與4本算術本的價錢相等。問:1本語文本、1本算術本各多少錢?
8÷4×6=12,即8本算術本與12本語文體價錢相等。所以1本語文本值10×100÷(13+12)=40(分),1本算術本值40×6÷4=60(分),即1本語文本4角,1本算術本6角。
17.找規律,在括弧內填入適當的數. 75,3,74,3,73,3,(),()。
答案:72,3。
18找規律,在括弧內填入適當的數. 1,4,5,4,9,4,(),()。
奇數項構成數列1,5,9……,每一項比前一項多4;偶數項都是4,所以應填13,4
19.找規律,在括弧內填入適當的數. 3,2,6,2,12,2,(),()。
24,2。
20.找規律,在括弧內填入適當的數. 76,2,75,3,74,4,(),()。
答案:將原數列拆分成兩列,應填:73,5。
21.找規律,在括弧內填入適當的數. 2,3,4,5,8,7,(),()。
答案:將原數列拆分成兩列,應填:16,9。
22.找規律,在括弧內填入適當的數. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶數項是它前面的奇數項的2倍;又8=6+2,18=16+2,即從第三項起,奇數項比它前面的偶數項多2.所以應填:36,38。
23.找規律,在括弧內填入適當的數. 1,6,7,12,13,18,19,(),()。
答案:將原數列拆分成兩列,應填:24,25。
24.找規律,在括弧內填入適當的數. 1,4,3,8,5,12,7,()。
答案:奇數項構成數列1,3,5,7,…,每一項比前一項多2;偶數項構成數列4,8,12,…,每一項比前一項多4,所以應填:16。
25.找規律,在括弧內填入適當的數. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一場比賽中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。問:他們各是第幾名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一頭象的重量等於4頭牛的重量,一頭牛的重量等於3匹小馬的重量,一匹小馬的重量等於3頭小豬的重量。問:一頭象的重量等於幾頭小豬的重量?
答案:4×3×3=36,所以一頭象的重量等於36頭小豬的重量。
28.甲、乙、丙三人,一個人喜歡看足球,一個人喜歡看拳擊,一個人喜歡看籃球。已知甲不愛看籃球,丙既不喜歡看籃球又不喜歡看足球。現有足球、拳擊、籃球比賽的入場券各一張。請根據他們的愛好,把票分給他們。
答案:丙不喜歡看籃球與足球,應將拳擊入場券給丙。甲不喜歡看籃球,應將足球入場券給甲。最後,應將籃球入場券給乙。
29.有一堆鐵塊和銅塊,每塊鐵塊重量完全一樣,每塊銅塊的重量也完全一樣。3塊鐵快和5塊銅塊共重210克。4塊鐵塊和10塊銅塊共重380克。問:每一塊鐵塊、每一塊銅塊各重多少?
答案:4塊鐵塊和10塊銅塊共重380克,所以2塊鐵塊和5塊銅塊共重380÷2=190(克)。而3塊鐵塊和5塊銅塊共重210克,所以1塊鐵塊重210-190=20(克)。1銅塊重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他們各自都說了一句話,而其中只有一句是真的。甲說:「是乙做的。」 乙說:「不是我做的。」 丙說:「也不是我做的。」 問:到底是誰做的好事?
答案:如果是甲做的好事,那麼乙、丙的話都是真的,與只有一句是真的矛盾。如果是乙做的好事,那麼甲、丙的話都是真的,也產生矛盾。好事是丙做的,這時甲、丙的話都是錯的,只有乙的話是真的,所以好事是丙做的。
31.一張長8分米、寬3分米的長方形紙板,在四個角落上各截去一個邊長為2分米的正方形,所剩下的部分的周長是多少?
答:(8+3)×2=22(分米)
32.計算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.計算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一個括弧內的項數為(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
5. 求小學6年級計算題100道(帶答案)
沒有答案
(一)
3.375+5.75+2.25+6.625
72 ÷9
1001-9036÷18
3.8×5.25+14.5
50減去12.5的差,除以2.5商是多少?
某數的6倍與4 的和等於19.25,求某數。(方程解)
(二)
15.36-3
2.1×4.3+5.7×2.1
(
102×45-328
2.8×3.1+17.6÷8
19.2減去8.5與4.3的和,差是多少?
7. 一個數的30%比18少6,求這個數。
(方程解)
(三)
6110×47+639
3.5×2.7-52.2÷18
18
3.375×0.97+0.97×6.625
(2
5減去2 與1 的積,在除以5 ,商是多少?
某數的 比70多10,求某數?
(方程解)
(四)
6.54+2.4+3.46+0.6
95.6×1.8+95.6×8.2
600-420÷12
7.344÷3.6-5.4×0.25
(2
15.6÷[16×(0.25+0.125)]
158減去80的差除以13,商是多少?
7.5減去一個數的 ,差是6,求這個數。(方程解)
(五)
3001-1998
3.9+
5000-105×34
0.15÷0.25+0.75×1.2
( )×0.24
309除以41.25與5.75的和,商是多少?
一個數的 加上1.2等於10,求這個數。(方程解)
(六)
(25+ )×4
300-4263÷21
0.81÷0.25+5.96
2.6-1÷( )×
5個 除以 與 的和,商是多少?
一個數的 比它的 多4.5,求這個數。(方程解)
(七)
12
6.6+2
1.8×3
403÷13×27
1.5×4.2-0.75÷0.25
54的 減去3 除以0.5得商,差是多少?
一個數的65%與 的和是1.5求這個數。(方程解)
(八)
14
3.27×4 +3.27×5.7
(1.2+ )×4.5÷
1025-768÷32
0.25×80-0.45÷0.9
比47大13的數乘以5減去4.25的差,積是多少?
一個數的3倍減去4.5的差是1.5,求這個數。(方程解)
(九)
1. 0.25×2.69×4
4.125×
2348+275×16
2.4+2.4×(5.375-3.375)
(1
比一個數的 少2.4的數是1.8,求這個數。(方程解)
姓名______學號______
4.5減去1.5乘以2.5的積,差是多少?
(十)
1. 645-45×12
(
0.15+1.2÷0.24-0.45
3.75-(2.35+0.25÷1.25)
76× +23×25%+0.25
10-2.87-7.13
0.96+9.6×9.9
從7.5里減去5.7的 ,差是多少?
一個數的40%減去9.6等於6.4,求這個數。(方程解)
(十一)
1. 12.37-3.25-6.75
16×6.8+2.2×16+16
401×19+284
58.7-16.65÷3.7
0.4×4.7×2.5+(2.3+5.3)
3.6除以2.5的商加上12.1的和是多少?
一個數的0.4比0.9多0.5,求這個數。(方程解)
(十二)
1. 9.31-1.125-7.875
2. ( )×18
640+128×45
8.2×1.6-0.336÷4.2
(
400乘以0.62與0.08的和,積是多少?
一個數的2.5倍等於37與8的和,求這個數。(方程解)
(一)
3.375+5.75+2.25+6.625
72 ÷9
1001-9036÷18
3.8×5.25+14.5
50減去12.5的差,除以2.5商是多少?
某數的6倍與4 的和等於19.25,求某數。(方程解)
(二)
15.36-3
2.1×4.3+5.7×2.1
(
102×45-328
2.8×3.1+17.6÷8
19.2減去8.5與4.3的和,差是多少?
7. 一個數的30%比18少6,求這個數。
(方程解)
(三)
6110×47+639
3.5×2.7-52.2÷18
18
3.375×0.97+0.97×6.625
(2
5減去2 與1 的積,在除以5 ,商是多少?
某數的 比70多10,求某數?
(方程解)
(四)
6.54+2.4+3.46+0.6
95.6×1.8+95.6×8.2
600-420÷12
7.344÷3.6-5.4×0.25
(2
15.6÷[16×(0.25+0.125)]
158減去80的差除以13,商是多少?
7.5減去一個數的 ,差是6,求這個數。(方程解)
(五)
3001-1998
3.9+
5000-105×34
0.15÷0.25+0.75×1.2
( )×0.24
309除以41.25與5.75的和,商是多少?
一個數的 加上1.2等於10,求這個數。(方程解)
(六)
(25+ )×4
300-4263÷21
0.81÷0.25+5.96
2.6-1÷( )×
5個 除以 與 的和,商是多少?
一個數的 比它的 多4.5,求這個數。(方程解)
(七)
12
6.6+2
1.8×3
403÷13×27
1.5×4.2-0.75÷0.25
54的 減去3 除以0.5得商,差是多少?
一個數的65%與 的和是1.5求這個數。(方程解)
(八)
14
3.27×4 +3.27×5.7
(1.2+ )×4.5÷
1025-768÷32
0.25×80-0.45÷0.9
比47大13的數乘以5減去4.25的差,積是多少?
一個數的3倍減去4.5的差是1.5,求這個數。(方程解)
(九)
1. 0.25×2.69×4
4.125×
2348+275×16
2.4+2.4×(5.375-3.375)
(1
比一個數的 少2.4的數是1.8,求這個數。(方程解)
姓名______學號______
4.5減去1.5乘以2.5的積,差是多少?
(十)
1. 645-45×12
(
0.15+1.2÷0.24-0.45
3.75-(2.35+0.25÷1.25)
76× +23×25%+0.25
10-2.87-7.13
0.96+9.6×9.9
從7.5里減去5.7的 ,差是多少?
一個數的40%減去9.6等於6.4,求這個數。(方程解)
(十一)
1. 12.37-3.25-6.75
16×6.8+2.2×16+16
401×19+284
58.7-16.65÷3.7
0.4×4.7×2.5+(2.3+5.3)
3.6除以2.5的商加上12.1的和是多少?
一個數的0.4比0.9多0.5,求這個數。(方程解)
(十二)
1. 9.31-1.125-7.875
2. ( )×18
640+128×45
8.2×1.6-0.336÷4.2
(
400乘以0.62與0.08的和,積是多少?
一個數的2.5倍等於37與8的和,求這個數。(方程解)
3.375+5.75+2.25+6.625
72 ÷9
1001-9036÷18
3.8×5.25+14.5
50減去12.5的差,除以2.5商是多少?
某數的6倍與4 的和等於19.25,求某數。(方程解)
(二)
15.36-3
2.1×4.3+5.7×2.1
(
102×45-328
2.8×3.1+17.6÷8
19.2減去8.5與4.3的和,差是多少?
7. 一個數的30%比18少6,求這個數。
(方程解)
(三)
6110×47+639
3.5×2.7-52.2÷18
18
3.375×0.97+0.97×6.625
(2
5減去2 與1 的積,在除以5 ,商是多少?
某數的 比70多10,求某數?
(方程解)
(四)
6.54+2.4+3.46+0.6
95.6×1.8+95.6×8.2
600-420÷12
7.344÷3.6-5.4×0.25
(2
15.6÷[16×(0.25+0.125)]
158減去80的差除以13,商是多少?
7.5減去一個數的 ,差是6,求這個數。(方程解)
(五)
3001-1998
3.9+
5000-105×34
0.15÷0.25+0.75×1.2
( )×0.24
309除以41.25與5.75的和,商是多少?
一個數的 加上1.2等於10,求這個數。(方程解)
(六)
(25+ )×4
300-4263÷21
0.81÷0.25+5.96
2.6-1÷( )×
5個 除以 與 的和,商是多少?
一個數的 比它的 多4.5,求這個數。(方程解)
(七)
12
6.6+2
1.8×3
403÷13×27
1.5×4.2-0.75÷0.25
54的 減去3 除以0.5得商,差是多少?
一個數的65%與 的和是1.5求這個數。(方程解)
(八)
14
3.27×4 +3.27×5.7
(1.2+ )×4.5÷
1025-768÷32
0.25×80-0.45÷0.9
比47大13的數乘以5減去4.25的差,積是多少?
一個數的3倍減去4.5的差是1.5,求這個數。(方程解)
(九)
1. 0.25×2.69×4
4.125×
2348+275×16
2.4+2.4×(5.375-3.375)
(1
比一個數的 少2.4的數是1.8,求這個數。(方程解)
姓名______學號______
4.5減去1.5乘以2.5的積,差是多少?
(十)
1. 645-45×12
(
0.15+1.2÷0.24-0.45
3.75-(2.35+0.25÷1.25)
76× +23×25%+0.25
10-2.87-7.13
0.96+9.6×9.9
從7.5里減去5.7的 ,差是多少?
一個數的40%減去9.6等於6.4,求這個數。(方程解)
(十一)
1. 12.37-3.25-6.75
16×6.8+2.2×16+16
401×19+284
58.7-16.65÷3.7
0.4×4.7×2.5+(2.3+5.3)
3.6除以2.5的商加上12.1的和是多少?
一個數的0.4比0.9多0.5,求這個數。(方程解)
(十二)
1. 9.31-1.125-7.875
2. ( )×18
640+128×45
8.2×1.6-0.336÷4.2
(
400乘以0.62與0.08的和,積是多少?
一個數的2.5倍等於37與8的和,求這個數。(方程解)
6. 小學五六年級奧數題30道帶答案!!
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.
偶數與整數的積是偶數.
性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.
7. 小學比例方面應用題解及答案
1. 有甲乙兩堆糧食,甲堆糧食占總糧食的60%,如果從乙調運12噸糧食到甲堆,則甲乙兩堆糧食的存糧噸數的比是3比1.原來甲乙兩堆糧食各多少噸?
2.一塊合金內銅和鋅的比是2比3,現在再加入6克鋅,共得合金36克,求新合金內銅和鋅的比.(用比例的方法解答)
3.一對互相咬合的齒輪,主動輪每分鍾120轉,從動輪齒數是主動輪齒數的4分之三,從動輪每分鍾轉多少轉?(用比例的方法解答)
4.六年級一班男同學與女同學之比是7:5,若再轉進2名同學,則女同學人數是男同學的5分之1,這個班男、女同學各多少人?
5.有兩個底面半徑相等的圓柱,高的比是3:5.第一個圓柱的體積是48立方厘米,第二個圓柱的體積比第一個多多少立方厘米?
6.紡織廠的織布車間過去每人看16台織布機,每班需要42人,現在改進操作方法,每人看24台。每班可以節約幾人?
7.某機器廠原計劃每天生產機器48台,15天可以完成任務,現在要12天完成任務,每天應增產多少台?
8.修一條公路,甲隊單獨修要16天,乙隊平均每天修2.7米,用同樣的時間共同完成時,甲隊與乙隊修路千米樹的比是5:3,這條公路長多少千米?
9.一種奶茶,奶與茶的比是2:3,現在加入奶120g,茶40g,可得奶茶660g,求新奶茶和奶與茶的比!
10.生產一批零件.原計劃每天生產50個.12天可以完成.實際效率提高20%.實際多少天可以完成?
拿到應用題不要急於先做,要先讀題,找出對應關系,判斷是正比例還是反比例,就可以正確解答了。
8. 小學數學題(不要附答案)
小學數學總復習較難應用題(40題)
1.甲乙兩人年齡的和為29歲,已知甲比乙小3歲,甲、乙兩人各多少歲?
2.一個長方形的周長是240米,長是寬的1.4倍,求長方形的面積。
3.廣水電影院原有座位32排,平均每排坐38人;擴建後增加到40排,可比原來多坐584人。擴建後平均每排可以坐多少人?
4.吉陽村有糧食作物84公頃,比經濟作物的4倍多2公頃,經濟作物有多少公頃?
5.糧店運來大米和麵粉480包,大米的包數是麵粉的3倍,運來大米和麵粉各多少包?
6.爺爺今年71歲,比小華的6倍還多5歲,小華今年幾歲? 7.甲乙兩站距255千米,客車從甲站開出,貨車從乙站開出,2.5時相遇。客車每時48千米,求貨車速度8.一筐蘋果,連筐重45.5千克,取出一半後,連筐還重24.5千克,筐重多少千克?
8.商店運來8筐蘋果和10筐梨,一共重820千克。每筐蘋果
重45千克,每筐梨重多少千克?
9.36米布,正好裁成10件大人衣服和8件兒童衣服。每件成人2人衣服用布2.4米,每件兒童衣服
10.李暉買了一支筆和一個本子,共花0.48元,本子的價錢是筆的2倍,筆和本子的單價各是多少錢?
11.小強媽媽的年齡是小強的4倍,小強比媽媽小27歲,他們兩人的年齡各是多少?
12.甲袋大米的重是乙袋的3倍,若再往乙袋大米裝5千克大米,兩袋大米就一樣重,原兩袋大米各多少?
13.一輛雙層巴士共有乘客51人,下層乘客人數是上層的2倍,上層有乘客多少人?
14.在一個籠子里,有雞又有兔共8隻,數一下它們的腳,共有20隻。請問籠子里雞、兔各有幾只?
15.用一根長72cm的鐵絲圍成一個長方形,要使長是寬的2倍,圍成的長方形的長和寬各是多少?
16.爺爺家種龍眼樹的棵數是荔枝樹的4倍,龍眼樹比荔枝樹多48棵。龍眼樹有多少棵?
17.一幅長方形畫的長是寬的2倍。小芳做畫框用了1.8m木
條。這幅畫的長、寬、面積分別是多少?
18. 一個長方形和一個正方形的面積相等,正方形的邊長是6厘米,長方形的長是10厘米,寬是多少?
19.果園里種的桃樹比杏樹多90棵,桃樹的棵數是杏樹的3倍,桃樹和杏樹各多少棵?
20.有兩筐蘋果,甲筐的重量是甲筐的1.8倍,如果從甲筐拿出6千克放入乙筐,則兩筐重量相等,甲、乙兩筐蘋果原來各重多少千克?
21.三個數的平均數是13.5,甲是乙的4倍,丙比甲多4.5,求三個數各是多少?
22、水結成冰時,體積增加十一分之一 ,當冰融成水後,體積要減少幾分之幾?
23、某商店同時賣出兩件商品,每件各得30元,其中一件賺20%,另一件虧本20%,這個商店賣出這兩件商品是賺錢還是虧本?
24人民機械廠加工一批零件,甲車間加工這批零件的20%,乙車間加工餘下的25%,丙車間加工再餘下的40%,還剩下3600個沒加工,這批零件共有多少個?
25、四個孩子合買一隻60元的小船。第一個孩子付的錢是其他孩子付的總錢數的一半,第二個孩子付的錢是其他孩子付的總錢數的三分之一,第三個孩子付的錢是其他孩子付的總錢數的四分之一,第四個孩子付多少錢?
26、有10千克蘑菇,它們的含水量是99%,稍經晾曬,含水量下降到98%,晾曬後的蘑菇多重?
27、有兩只桶共裝油44千克,若第一桶里倒出5% ,第二桶里倒進2.8千克,則兩桶油重量相等,原來每隻桶各裝油多少千克
28、化肥廠用大、小兩輛汽車運47噸化肥,大汽車運了8次,小汽車運了6次正好運完,大汽車每次運4噸,小汽車每次運多少噸?
29、甲車每小時行48千米,乙車每小時行56千米,兩車從相距12千米的兩地同時背向而行,幾小時後兩車相距272千米? 30、甲、乙兩車同時從相距528千米的兩地相向而行,6小時後相遇,甲車每小時比乙車快6千米,求甲、乙兩車每小時各行多少千米?
31、購買的文藝書比科技書多156本,文藝書的本數比科技書
的3倍還多12本,文藝書和科技書各買了多少本? 32、一隻兩層書架,上層放的書是下層的3倍,如果把上層的書搬60本到下層,那麼兩層的書一樣多,求上、下層原來各有書多少本.
33、熊貓電視機廠生產一批電視機,如果每天生產40台,要比原計劃多生產6天,如果每天生產60台,可以比原計劃提前4天完成,求原計劃生產時間和這批電視機的總台數. 34、甲倉存糧32噸,乙倉存糧57噸,以後甲倉每天存人4噸,乙倉每天存人9噸.幾天後,乙倉存糧是甲倉的2倍? 35、甲、乙兩堆煤共100噸,如從甲堆運出10噸給乙堆,這時甲堆煤的質量正好是乙堆煤質量的1.5倍,求甲、乙兩堆煤原來各有多少噸?
36、甲倉存糧32噸,乙倉存糧57噸,以後甲倉每天存人4噸,乙倉每天存人9噸,幾天後乙倉存糧是甲倉的2倍? 37、一批香蕉,賣掉140千克後,原來香蕉的質量正好是剩下香蕉的5倍,這批香蕉共有多少千克?
38、師徒倆加工同一種零件,徒弟每小時加工12個,工作了3小時後,師傅開始工作,6小時後,兩人加工的零件同樣多,師傅每小時加工多少個零件.
39、甲、乙、丙三條鐵路共長1191千米,甲鐵路長比乙鐵路的2倍少189千米,乙鐵路長比丙鐵路少8千米,求甲鐵路的長.
40、電視機廠裝配一批電視機,計劃25天完成,如每天多裝35台,24天能超額完成60台.求原計劃每天裝配多少台.
望採納O(∩_∩)O