導航:首頁 > 考試分析 > 小學應用題類型及答案

小學應用題類型及答案

發布時間:2020-12-01 10:32:02

⑴ 小學的應用題題目類型有哪些

工程問題,一般與工作效率、時間和工作總量有關;路程問題,分為相遇、追及等等,變專態一點的會屬問相距多少距離需要多長時間,這分兩種情況;銷售問題,與進價、售價、打折、利潤率有關;更實際一點的,比如猴子分桃、雞兔同籠等等,還有像是圍籬笆靠牆不靠牆、裁圓鐵皮方鐵皮做盒子、圓柱浸到水裡水面上升多少這種。
我現在上初中,小學的應用題說實話記不得太多了。

小學數學應用題有哪些類型

分數:甲乙兩人共有錢150元。甲是乙的1/4。甲乙兩人各有多少元。
小數:小明每分鍾走回0.06千米。他家距學答校有1500千米。它上學時可以騎車,騎車每分鍾走120米。問如果用騎車上學,筆走路快幾分鍾?
百分數:機械廠,今年生產機械1500台,筆計劃增產了120%,原計劃生產多少台?
整數:甲乙兩地相距300千米,甲乙兩人同時相向出發。甲的速度是乙的4倍,問兩人相遇時,乙走多少千米?
一定要選我呀,字怪難打得。

⑶ 小學數學典型應用題有哪些類型

有以下30類典型應用題:

1、歸一問題
2、歸總問題
3、和差版問題
4、和倍問題
5、差倍問題
6、倍比問題
7、相遇問題
8、追及問權題
9、植樹問題
10、年齡問題

11、行船問題
12、列車問題
13、時鍾問題
14、盈虧問題
15、工程問題
16、正反比例問題
17、按比例分配
18、百分數問題
19、「牛吃草」問題
20、雞兔同籠問題

21、方陣問題
22、商品利潤問題
23、存款利率問題
24、溶液濃度問題
25、構圖布數問題
26、幻方問題
27、抽屜原則問題
28、公約公倍問題
29、最值問題
30、列方程問題

⑷ 小學1-6年級數學應用題類型

和差問題,
和倍問題,
差倍問題
年齡問題
植樹問題
行路問題
行車問題
水流問題
盈虧問題
龜鶴回問題(雞兔答同籠)
工程問題
水管問題
時鍾問題
連續數問題

差不多了,夠嗎?
你找對人了,我就是專門研究小學應用題的.
QQ:742300 等有時間了給你補充公式.

⑸ 小學數學應用題包括哪些種類

有以下30類典型應用題:

1、歸一問題
2、歸總問題
3、和差問題
4、和倍問題
5、差倍問題
6、倍比問題
7、相遇問題
8、追及問題
9、植樹問題
10、年齡問題

11、行船問題
12、列車問題
13、時鍾問題
14、盈虧問題
15、工程問題
16、正反比例問題
17、按比例分配
18、百分數問題
19、「牛吃草」問題
20、雞兔同籠問題

21、方陣問題
22、商品利潤問題
23、存款利率問題
24、溶液濃度問題
25、構圖布數問題
26、幻方問題
27、抽屜原則問題
28、公約公倍問題
29、最值問題
30、列方程問題

⑹ 小學數學所有的應用題類型及例題

一、雞兔同籠問題:

基本題型:籠子里有雞兔共30隻,一共100條腿,問:雞兔各幾只?

解這個題的方法是:先假設30隻都是雞,那麼共有2x30=60條腿,少100-60=40條腿,因為每隻兔子比雞多4-2=2條腿,所以兔子共有40/2=20隻,則雞共有30-20=10隻。

當然也可以倒過來,先假設30隻都是兔子,那麼就120條腿,多了20條,因為雞比兔子少2條腿,所以雞是10隻。

類似的題還有很多,但都是從基本題型變化出來的,如下題:

俱樂部里有30副棋,正好供100位小朋友下,象棋是每2人下一副,跳棋是每6人下一副,問象棋和跳棋各有幾副?

二、工程問題:

基本題型:

甲乙兩人完成某項工程,甲單獨做需要3天完成,乙單獨做需要6天完成,問甲乙共同完成需要幾天?

解題方法:

甲每天的工作量是全部工程的1/3,乙每天的工作量是全部工程的1/6,兩人合作每天的工作量=1/3+1/6=1/2,所以甲乙共同完成需要2天。

這個題會有很多變化,如甲先工作多少天,乙再開始工作;或者甲乙共同工作一天,乙單獨工作等等,但解題思路是一樣的。都是把總的工作量定成1,然後計算。

三、相遇問題:

基本題型:甲乙兩地相距20公里,甲的速度是6公里/小時,乙的速度是4公里/小時,甲乙兩人同時同向出發,問多少時間後相遇?

解題方法:這個比較簡單,20/(6+4)=2

這類的題變化是非常多的,通常有甲先出發若干時間後,乙再發的;或者求相遇地點離甲地多遠的?

四、追擊問題:

基本題型:甲的速度是10公里/小時,乙的速度是15公里/小時,甲先出發2小時,問乙多少時間追上甲?

解題方法:甲出發2小時,走的路程是10x2=20公里,乙的速度比甲快15-10=5公里/小時,所以追上的時間是20/5=4小時。

這個題的變化很多,比如著名的放水問題。某浴池開注水管,10分鍾可注滿,開排水管,20分鍾可排完,問兩管同時開,多少分鍾可注滿。這個題可以按追擊問題思路來做:注水的速度是1/10,排水的速度是1/20,兩者相差1/10,所以10分鍾可注滿。

五、水流問題:

基本題型:甲乙兩地相距300公里,船速為20公里/小時,水流速度為5公里/小時,問來回需要多少時間?

解題方法:假設去的時候順流,則速度為20+5=25公里/小時,所用時間為300/25=12小時,回來的時候逆流,則速度為20-5=15公里/小時,所用時間為300/15=20小時

基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

僅供參考:

【和差問題公式】

(和+差)÷2=較大數;

(和-差)÷2=較小數。

【和倍問題公式】

和÷(倍數+1)=一倍數;

一倍數×倍數=另一數,

或 和-一倍數=另一數。

【差倍問題公式】

差÷(倍數-1)=較小數;

較小數×倍數=較大數,

或 較小數+差=較大數。

【平均數問題公式】

總數量÷總份數=平均數。

【一般行程問題公式】

平均速度×時間=路程;

路程÷時間=平均速度;

路程÷平均速度=時間。

【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:

(速度和)×相遇(離)時間=相遇(離)路程;

相遇(離)路程÷(速度和)=相遇(離)時間;

相遇(離)路程÷相遇(離)時間=速度和。

【同向行程問題公式】

追及(拉開)路程÷(速度差)=追及(拉開)時間;

追及(拉開)路程÷追及(拉開)時間=速度差;

(速度差)×追及(拉開)時間=追及(拉開)路程。

【列車過橋問題公式】

(橋長+列車長)÷速度=過橋時間;

(橋長+列車長)÷過橋時間=速度;

速度×過橋時間=橋、車長度之和。

【行船問題公式】

(1)一般公式:

靜水速度(船速)+水流速度(水速)=順水速度;

船速-水速=逆水速度;

(順水速度+逆水速度)÷2=船速;

(順水速度-逆水速度)÷2=水速。

(2)兩船相向航行的公式:

甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度

(3)兩船同向航行的公式:

後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。

(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。

【工程問題公式】

(1)一般公式:

工效×工時=工作總量;

工作總量÷工時=工效;

工作總量÷工效=工時。

(2)用假設工作總量為「1」的方法解工程問題的公式:

1÷工作時間=單位時間內完成工作總量的幾分之幾;

1÷單位時間能完成的幾分之幾=工作時間。

(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)

【盈虧問題公式】

(1)一次有餘(盈),一次不夠(虧),可用公式:

(盈+虧)÷(兩次每人分配數的差)=人數。

例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」

解(7+9)÷(10-8)=16÷2

=8(個)………………人數

10×8-9=80-9=71(個)………………………桃子

或8×8+7=64+7=71(個)(答略)

(2)兩次都有餘(盈),可用公式:

(大盈-小盈)÷(兩次每人分配數的差)=人數。

例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」

解(680-200)÷(50-45)=480÷5

=96(人)

45×96+680=5000(發)

或50×96+200=5000(發)(答略)

(3)兩次都不夠(虧),可用公式:

(大虧-小虧)÷(兩次每人分配數的差)=人數。

例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」

解(90-8)÷(10-8)=82÷2

=41(人)

10×41-90=320(本)(答略)

(4)一次不夠(虧),另一次剛好分完,可用公式:

虧÷(兩次每人分配數的差)=人數。

(例略)

(5)一次有餘(盈),另一次剛好分完,可用公式:

盈÷(兩次每人分配數的差)=人數。

(例略)

【雞兔問題公式】

(1)已知總頭數和總腳數,求雞、兔各多少:

(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;

總頭數-兔數=雞數。

或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;

總頭數-雞數=兔數。

例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」

解一 (100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………雞。

解二 (4×36-100)÷(4-2)=22(只)………雞;

36-22=14(只)…………………………兔。

(答 略)

(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式

(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數

或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。

(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數。

或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:

(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。

例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」

解一 (4×1000-3525)÷(4+15)

=475÷19=25(個)

解二 1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(個)(答略)

(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)

(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:

〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;

〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。

例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」

解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………雞

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

【植樹問題公式】

(1)不封閉線路的植樹問題:

間隔數+1=棵數;(兩端植樹)

路長÷間隔長+1=棵數。

或 間隔數-1=棵數;(兩端不植)

路長÷間隔長-1=棵數;

路長÷間隔數=每個間隔長;

每個間隔長×間隔數=路長。

(2)封閉線路的植樹問題:

路長÷間隔數=棵數;

路長÷間隔數=路長÷棵數

=每個間隔長;

每個間隔長×間隔數=每個間隔長×棵數=路長。

(3)平面植樹問題:

佔地總面積÷每棵佔地面積=棵數

【求分率、百分率問題的公式】

比較數÷標准數=比較數的對應分(百分)率;

增長數÷標准數=增長率;

減少數÷標准數=減少率。

或者是

兩數差÷較小數=多幾(百)分之幾(增);

兩數差÷較大數=少幾(百)分之幾(減)。

【增減分(百分)率互求公式】

增長率÷(1+增長率)=減少率;

減少率÷(1-減少率)=增長率。

比甲丘面積少幾分之幾?」

解 這是根據增長率求減少率的應用題。按公式,可解答為

百分之幾?」

解 這是由減少率求增長率的應用題,依據公式,可解答為

【求比較數應用題公式】

標准數×分(百分)率=與分率對應的比較數;

標准數×增長率=增長數;

標准數×減少率=減少數;

標准數×(兩分率之和)=兩個數之和;

標准數×(兩分率之差)=兩個數之差。

【求標准數應用題公式】

比較數÷與比較數對應的分(百分)率=標准數;

增長數÷增長率=標准數;

減少數÷減少率=標准數;

兩數和÷兩率和=標准數;

兩數差÷兩率差=標准數;

【方陣問題公式】

(1)實心方陣:(外層每邊人數)2=總人數。

(2)空心方陣:

(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。

或者是

(最外層每邊人數-層數)×層數×4=中空方陣的人數。

總人數÷4÷層數+層數=外層每邊人數。

例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?

解一 先看作實心方陣,則總人數有

10×10=100(人)

再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是

10-2×3=4(人)

所以,空心部分方陣人數有

4×4=16(人)

故這個空心方陣的人數是

100-16=84(人)

解二 直接運用公式。根據空心方陣總人數公式得

(10-3)×3×4=84(人)

【利率問題公式】利率問題的類型較多,現就常見的單利、復利問題,介紹其計算公式如下。

(1)單利問題:

本金×利率×時期=利息;

本金×(1+利率×時期)=本利和;

本利和÷(1+利率×時期)=本金。

年利率÷12=月利率;

月利率×12=年利率。

(2)復利問題:

本金×(1+利率)存期期數=本利和。

例如,「某人存款2400元,存期3年,月利率為10.2‰(即月利1分零2毫),三年到期後,本利和共是多少元?」

解 (1)用月利率求。

3年=12月×3=36個月

2400×(1+10.2%×36)

=2400×1.3672

=3281.28(元)

(2)用年利率求。

先把月利率變成年利率:

10.2‰×12=12.24%

再求本利和:

2400×(1+12.24%×3)

=2400×1.3672

=3281.28(元)(答略)
(希望採納)

⑺ 小學分類應用題及答案

1.一個長方形長70厘米,寬50厘米,高65厘米,如果要切成同樣大小的正方形,這些正方形的棱長最大可以是多少厘米?共可以切成多少個小正方形?
2.商店平時8元賣一支圓珠筆,可賺60%,現減價至6.5元賣出,是賺還是賠?如果賺,賺多少?如果賠,賠多少?
3.容器A.現在是一個空的圓柱體容器,直徑20厘米,容器B.是一個水深40厘米.長27厘米,寬18厘米的長方體.要將容器B的水倒一部分給A,使兩個容器水的高度相同,這時水深是多少厘米?

第二題
筆的成本=8/[1+60%]=5元
現賣價是6。5元,是賺了,賺了6。5-5=1。5元
第三題
圓柱的底面積=3。14*10*10=314
長方體的底面積=27*18=486
水的體積=486*40=19440
由於兩個容器的水的高相同,則水的體積比與它們的底面積比相同
則圓柱的體積與長方體的水的體積比=314:486=157:243
那麼長方體中的水的體積是19440*243/[157+243]=11809。8
則水的高是11809。8/486=24。3厘米
這一題也可用方程來做
設水的高是H
314H+486H=19440
H=24。3
即水的高是24。3
第一題,
70、65、50的最大公約數是5,則分成的正方體的最大棱長是5
共可分成70*65*50/[5*5*5]=1820個

⑻ 小學數學典型應用題有哪些類型

1 歸一問題
【含義】 在解題時,先求出一份是多少(即單一量),然後以單一量為標准,求出所要求的數量。這類應用題叫做歸一問題。

【數量關系】 總量÷份數=1份數量 1份數量×所佔份數=所求幾份的數量
另一總量÷(總量÷份數)=所求份數

【解題思路和方法】 先求出單一量,以單一量為標准,求出所要求的數量。

例1 買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?
解(1)買1支鉛筆多少錢? 0.6÷5=0.12(元)
(2)買16支鉛筆需要多少錢?0.12×16=1.92(元)
列成綜合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉機3天耕地90公頃,照這樣計算,5台拖拉機6 天耕地多少公頃?
解(1)1台拖拉機1天耕地多少公頃? 90÷3÷3=10(公頃)
(2)5台拖拉機6天耕地多少公頃? 10×5×6=300(公頃)
列成綜合算式 90÷3÷3×5×6=10×30=300(公頃)
答:5台拖拉機6 天耕地300公頃。
例3 5輛汽車4次可以運送100噸鋼材,如果用同樣的7輛汽車運送105噸鋼材,需要運幾次?
解 (1)1輛汽車1次能運多少噸鋼材? 100÷5÷4=5(噸)
(2)7輛汽車1次能運多少噸鋼材? 5×7=35(噸)
(3)105噸鋼材7輛汽車需要運幾次? 105÷35=3(次)
列成綜合算式 105÷(100÷5÷4×7)=3(次)
答:需要運3次。
2 歸總問題
【含義】 解題時,常常先找出「總數量」,然後再根據其它條件算出所求的問題,叫歸總問題。所謂「總數量」是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。

【數量關系】 1份數量×份數=總量 總量÷1份數量=份數
總量÷另一份數=另一每份數量

【解題思路和方法】 先求出總數量,再根據題意得出所求的數量。
例1 服裝廠原來做一套衣服用布3.2米,改進裁剪方法後,每套衣服用布2.8米。原來做791套衣服的布,現在可以做多少套?
解 (1)這批布總共有多少米? 3.2×791=2531.2(米)
(2)現在可以做多少套? 2531.2÷2.8=904(套)
列成綜合算式 3.2×791÷2.8=904(套)
答:現在可以做904套。
例2 小華每天讀24頁書,12天讀完了《紅岩》一書。小明每天讀36頁書,幾天可以讀完《紅岩》?
解 (1)《紅岩》這本書總共多少頁? 24×12=288(頁)
(2)小明幾天可以讀完《紅岩》? 288÷36=8(天)
列成綜合算式 24×12÷36=8(天)
答:小明8天可以讀完《紅岩》。
例3 食堂運來一批蔬菜,原計劃每天吃50千克,30天慢慢消費完這批蔬菜。後來根據大家的意見,每天比原計劃多吃10千克,這批蔬菜可以吃多少天?
解 (1)這批蔬菜共有多少千克? 50×30=1500(千克)
(2)這批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成綜合算式 50×30÷(50+10)=1500÷60=25(天)
答:這批蔬菜可以吃25天。
3 和差問題
【含義】 已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。

【數量關系】 大數=(和+差)÷ 2 小數=(和-差)÷ 2

【解題思路和方法】 簡單的題目可以直接套用公式;復雜的題目變通後再用公式。

例1 甲乙兩班共有學生98人,甲班比乙班多6人,求兩班各有多少人?
解 甲班人數=(98+6)÷2=52(人)
乙班人數=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。
解 長=(18+2)÷2=10(厘米) 寬=(18-2)÷2=8(厘米)
長方形的面積 =10×8=80(平方厘米)
答:長方形的面積為80平方厘米。
例3 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
解 甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數,丙是小數。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?
解 「從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐」,這說明甲車是大數,乙車是小數,甲與乙的差是(14×2+3),甲與乙的和是97,因此 甲車筐數=(97+14×2+3)÷2=64(筐)
乙車筐數=97-64=33(筐)
答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。
4 和倍問題
【含義】 已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。

【數量關系】 總和 ÷(幾倍+1)=較小的數 總和 - 較小的數 = 較大的數
較小的數 ×幾倍 = 較大的數

【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 果園里有杏樹和桃樹共248棵,桃樹的棵數是杏樹的3倍,求杏樹、桃樹各多少棵?
解 (1)杏樹有多少棵? 248÷(3+1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:杏樹有62棵,桃樹有186棵。
例2 東西兩個倉庫共存糧480噸,東庫存糧數是西庫存糧數的1.4倍,求兩庫各存糧多少噸?
解 (1)西庫存糧數=480÷(1.4+1)=200(噸)
(2)東庫存糧數=480-200=280(噸)
答:東庫存糧280噸,西庫存糧200噸。
例3 甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天後乙站車輛數是甲站的2倍?
解 每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當於每天從甲站開往乙站(28-24)輛。把幾天以後甲站的車輛數當作1倍量,這時乙站的車輛數就是2倍量,兩站的車輛總數(52+32)就相當於(2+1)倍,那麼,幾天以後甲站的車輛數減少為 (52+32)÷(2+1)=28(輛)
所求天數為 (52-28)÷(28-24)=6(天)
答:6天以後乙站車輛數是甲站的2倍。
例4 甲乙丙三數之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數各是多少?
解 乙丙兩數都與甲數有直接關系,因此把甲數作為1倍量。
因為乙比甲的2倍少4,所以給乙加上4,乙數就變成甲數的2倍;
又因為丙比甲的3倍多6,所以丙數減去6就變為甲數的3倍;
這時(170+4-6)就相當於(1+2+3)倍。那麼,
甲數=(170+4-6)÷(1+2+3)=28
乙數=28×2-4=52
丙數=28×3+6=90
答:甲數是28,乙數是52,丙數是90。
5 差倍問題
【含義】 已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。

【數量關系】 兩個數的差÷(幾倍-1)=較小的數
較小的數×幾倍=較大的數

【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 果園里桃樹的棵數是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?
解 (1)杏樹有多少棵? 124÷(3-1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:果園里杏樹是62棵,桃樹是186棵。
例2 爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?
解 (1)兒子年齡=27÷(4-1)=9(歲)
(2)爸爸年齡=9×4=36(歲)
答:父子二人今年的年齡分別是36歲和9歲。
例3 商場改革經營管理辦法後,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個月盈利各是多少萬元?
解 如果把上月盈利作為1倍量,則(30-12)萬元就相當於上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(萬元)
本月盈利=18+30=48(萬元)
答:上月盈利是18萬元,本月盈利是48萬元。
例4 糧庫有94噸小麥和138噸玉米,如果每天運出小麥和玉米各是9噸,問幾天後剩下的玉米是小麥的3倍?
解 由於每天運出的小麥和玉米的數量相等,所以剩下的數量差等於原來的數量差(138-94)。把幾天後剩下的小麥看作1倍量,則幾天後剩下的玉米就是3倍量,那麼,(138-94)就相當於(3-1)倍,因此
剩下的小麥數量=(138-94)÷(3-1)=22(噸)
運出的小麥數量=94-22=72(噸)
運糧的天數=72÷9=8(天)
答:8天以後剩下的玉米是小麥的3倍。
6 倍比問題
【含義】 有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數,再用倍比的方法算出要求的數,這類應用題叫做倍比問題。

【數量關系】 總量÷一個數量=倍數 另一個數量×倍數=另一總量

【解題思路和方法】 先求出倍數,再用倍比關系求出要求的數。

例1 100千克油菜籽可以榨油40千克,現在有油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成綜合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植樹節這天,某小學300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植樹多少棵? 400×160=64000(棵)
列成綜合算式 400×(48000÷300)=64000(棵)
答:全縣48000名師生共植樹64000棵。
例3 鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉800畝果園共收入多少元?全縣16000畝果園共收入多少元?
解 (1)800畝是4畝的幾倍? 800÷4=200(倍)
(2)800畝收入多少元? 11111×200=2222200(元)
(3)16000畝是800畝的幾倍?16000÷800=20(倍)
(4)16000畝收入多少元? 2222200×20=44444000(元)
答:全鄉800畝果園共收入2222200元,全縣16000畝果園共收入
44444000元。
7 相遇問題
【含義】 兩個運動的物體同時由兩地出發相向而行,在途中相遇。這類應用題叫做相遇問題。

【數量關系】 相遇時間=總路程÷(甲速+乙速)
總路程=(甲速+乙速)×相遇時間

【解題思路和方法】 簡單的題目可直接利用公式,復雜的題目變通後再利用公式。

例1 南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,經過幾小時兩船相遇?
解 392÷(28+21)=8(小時)
答:經過8小時兩船相遇。
例2 小李和小劉在周長為400米的環形跑道上跑步,小李每秒鍾跑5米,小劉每秒鍾跑3米,他們從同一地點同時出發,反向而跑,那麼,二人從出發到第二次相遇需多長時間?
解 「第二次相遇」可以理解為二人跑了兩圈。因此總路程為400×2
相遇時間=(400×2)÷(5+3)=100(秒)
答:二人從出發到第二次相遇需100秒時間。
例3 甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。
解 「兩人在距中點3千米處相遇」是正確理解本題題意的關鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,
相遇時間=(3×2)÷(15-13)=3(小時)
兩地距離=(15+13)×3=84(千米)
答:兩地距離是84千米。
8 追及問題
【含義】 兩個運動物體在不同地點同時出發(或者在同一地點而不是同時出發,或者在不同地點又不是同時出發)作同向運動,在後面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內,後面的追上前面的物體。這類應用題就叫做追及問題。
【數量關系】 追及時間=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及時間
【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?
解 (1)劣馬先走12天能走多少千米? 75×12=900(千米)
(2)好馬幾天追上劣馬? 900÷(120-75)=20(天)
列成綜合算式 75×12÷(120-75)=900÷45=20(天)
答:好馬20天能追上劣馬。
例2 小明和小亮在200米環形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發,同向而跑。小明第一次追上小亮時跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮時比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用〔40×(500÷200)〕秒,所以小亮的速度是 (500-200)÷〔40×(500÷200)〕=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?
解 敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是〔10×(22-6)〕千米,甲乙兩地相距60千米。由此推知
追及時間=〔10×(22-6)+60〕÷(30-10)=220÷20=11(小時)
答:解放軍在11小時後可以追上敵人。
例4 一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。
解 這道題可以由相遇問題轉化為追及問題來解決。從題中可知客車落後於貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,
這個時間為 16×2÷(48-40)=4(小時)
所以兩站間的距離為 (48+40)×4=352(千米)
列成綜合算式 (48+40)×〔16×2÷(48-40)〕=88×4=352(千米)
答:甲乙兩站的距離是352千米。
例5 兄妹二人同時由家上學,哥哥每分鍾走90米,妹妹每分鍾走60米。哥哥到校門口時發現忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學校有多遠?
解 要求距離,速度已知,所以關鍵是求出相遇時間。從題中可知,在相同時間(從出發到相遇)內哥哥比妹妹多走(180×2)米,這是因為哥哥比妹妹每分鍾多走(90-60)米,那麼,二人從家出走到相遇所用時間為
180×2÷(90-60)=12(分鍾)
家離學校的距離為 90×12-180=900(米)
答:家離學校有900米遠。
例6 孫亮打算上課前5分鍾到學校,他以每小時4千米的速度從家步行去學校,當他走了1千米時,發現手錶慢了10分鍾,因此立即跑步前進,到學校恰好准時上課。後來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鍾到學校。求孫亮跑步的速度。
解 手錶慢了10分鍾,就等於晚出發10分鍾,如果按原速走下去,就要遲到(10-5)分鍾,後段路程跑步恰准時到學校,說明後段路程跑比走少用了(10-5)分鍾。如果從家一開始就跑步,可比步行少9分鍾,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分鍾。所以
步行1千米所用時間為 1÷〔9-(10-5)〕=0.25(小時)=15(分鍾)
跑步1千米所用時間為 15-〔9-(10-5)〕=11(分鍾)
跑步速度為每小時 1÷11/60=1×60/11=5.5(千米)
答:孫亮跑步速度為每小時5.5千米。
9 植樹問題
【含義】 按相等的距離植樹,在距離、棵距、棵數這三個量之間,已知其中的兩個量,要求第三個量,這類應用題叫做植樹問題。

【數量關系】 線形植樹 棵數=距離÷棵距+1
環形植樹 棵數=距離÷棵距
方形植樹 棵數=距離÷棵距-4
三角形植樹 棵數=距離÷棵距-3
面積植樹 棵數=面積÷(棵距×行距)

【解題思路和方法】 先弄清楚植樹問題的類型,然後可以利用公式。

例1 一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?
解 136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2 一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?
解 400÷4=100(棵)
答:一共能栽100棵白楊樹。
例3 一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?
解 220×4÷8-4=110-4=106(個)
答:一共可以安裝106個照明燈。
例4 給一個面積為96平方米的住宅鋪設地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?
解 96÷(0.6×0.4)=96÷0.24=400(塊)
答:至少需要400塊地板磚。
例5 一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?
解 (1)橋的一邊有多少個電桿? 500÷50+1=11(個)
(2)橋的兩邊有多少個電桿? 11×2=22(個)
(3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)
答:大橋兩邊一共可以安裝44盞路燈。
10 年齡問題
【含義】 這類問題是根據題目的內容而得名,它的主要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數關系隨著年齡的增長在發生變化。

【數量關系】年齡問題往往與和差、和倍、差倍問題有著密切聯系,尤其與差倍問題的解題思路是一致的,要緊緊抓住「年齡差不變」這個特點。

【解題思路和方法】 可以利用「差倍問題」的解題思路和方法。

例1 爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?
解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)
答:今年爸爸的年齡是亮亮的7倍,明年爸爸的年齡是亮亮的6倍。
例2 母親今年37歲,女兒今年7歲,幾年後母親的年齡是女兒的4倍?
解 (1)母親比女兒的年齡大多少歲? 37-7=30(歲)
(2)幾年後母親的年齡是女兒的4倍?30÷(4-1)-7=3(年)
列成綜合算式 (37-7)÷(4-1)-7=3(年)
答:3年後母親的年齡是女兒的4倍。
例3 3年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?
解 今年父子的年齡和應該比3年前增加(3×2)歲,今年二人的年齡和為 49+3×2=55(歲)
把今年兒子年齡作為1倍量,則今年父子年齡和相當於(4+1)倍,因此,今年兒子年齡為
55÷(4+1)=11(歲)
今年父親年齡為 11×4=44(歲)
答:今年父親年齡是44歲,兒子年齡是11歲。
例4 甲對乙說:「當我的歲數曾經是你現在的歲數時,你才4歲」。乙對甲說:「當我的歲數將來是你現在的歲數時,你將61歲」。求甲乙現在的歲數各是多少?

這里涉及到三個年份:過去某一年、今年、將來某一年。列表分析:
過去某一年 今 年 將來某一年
甲 □歲 △歲 61歲
乙 4歲 □歲 △歲
表中兩個「□」表示同一個數,兩個「△」表示同一個數。
因為兩個人的年齡差總相等:□-4=△-□=61-△,也就是4,□,△,61成等差數列,所以,61應該比4大3個年齡差,因此二人年齡差為 (61-4)÷3=19(歲)
甲今年的歲數為 △=61-19=42(歲)
乙今年的歲數為 □=42-19=23(歲)
答:甲今年的歲數是42歲,乙今年的歲數是23歲。
11 行船問題
【含義】 行船問題也就是與航行有關的問題。解答這類問題要弄清船速與水速,船速是船隻本身航行的速度,也就是船隻在靜水中航行的速度;水速是水流的速度,船隻順水航行的速度是船速與水速之和;船隻逆水航行的速度是船速與水速之差。

【數量關系】 (順水速度+逆水速度)÷2=船速
(順水速度-逆水速度)÷2=水速
順水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-順水速=順水速-水速×2

【解題思路和方法】 大多數情況可以直接利用數量關系的公式。

例1 一隻船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?
解 由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時 320÷8-15=25(千米)
船的逆水速為 25-15=10(千米)
船逆水行這段路程的時間為 320÷10=32(小時)
答:這只船逆水行這段路程需用32小時。
例2 甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?
解由題意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可見 (36-20)相當於水速的2倍,
所以, 水速為每小時(36-20)÷2=8(千米)
又因為, 乙船速-水速=360÷15,
所以, 乙船速為 360÷15+8=32(千米)
乙船順水速為 32+8=40(千米)
所以, 乙船順水航行360千米需要 360÷40=9(小時)
答:乙船返回原地需要9小時。
例3 一架飛機飛行在兩個城市之間,飛機的速度是每小時576千米,風速為每小時24千米,飛機逆風飛行3小時到達,順風飛回需要幾小時?
解 這道題可以按照流水問題來解答。
(1)兩城相距多少千米? (576-24)×3=1656(千米)
(2)順風飛回需要多少小時? 1656÷(576+24)=2.76(小時)
列成綜合算式〔(576-24)×3〕÷(576+24)=2.76(小時)
答:飛機順風飛回需要2.76小時。

閱讀全文

與小學應用題類型及答案相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99