1. 最適合小學生數學競賽的題目,附答案!
小學數學競賽試題(六年級)
1.一個三位數除以9餘7,除以5餘2,除以4餘3。這樣的三位數共有________個。
2.每千克價分別為2元、3元、2元4角、4元的桔子、蘋果、香蕉、柿子四種水果共買了83千克,用去228元。已知買桔子用去的前與買蘋果用去的錢一樣多,買柿子用去的錢是買香蕉所用的錢的2倍。那麼桔子買了________千克,蘋果買了________千克,香蕉買了________千克,柿子買了________千克。
3.稅法規定,一次性勞務收入若低於800原,免交所得稅。若超過800元,需教所得稅,具體標准為:800~2000的部分按10%計,2000~5000元部分按15%計,5000~10000元部分安20%計。某人一次勞務收入上稅1300元,他在這次勞務中稅後的凈收入為________元。
4.八進制加法是逢八進一,例如:13+6=21,77+4=103。在下面的八進制加法豎式中,a、b、c、d、e、f這六個數恰好由1、2、3、4、5、6這六個數組成,那麼滿足題中條件的加法式子共有________個。
6.1到2000這2000個數中,最大可取出________個數,使得這些數中任意三個數的和都不能被7整除。
7.面積分別為1、2、3、4、5、6的六個長方形如下圖排列,陰影部分的面積是________。
8.某商品成本為每個80原,如果按每個100賣,可賣出1000個。當這種商品每個漲價1元,銷售量就減少20個。為了賺取最多的利潤,售價應定為每個________元。
9.一隻小蟲從A處爬到B處。如果它的速度每分增加1米,可提前15分到達。如果它的速度每分再增加2米,則又可提前15分到達。A處到B處之間的路程是________米。
10.甲瓶中酒精濃度為70%,乙瓶中酒精的濃度為60%,兩瓶酒精混合後的濃度為66%。如果兩瓶酒精各用去5升後再混合,則混合後的濃度為66.25%。問:原來甲、乙兩瓶酒精分別有________升與________升。
11.用1、2、3、4、5、6、7、8、9這9個數字排成一個最小的能被11整除的九位數,這個九位數是________。
12.把1~625這625個自然數按順時針方向依次排列成一個圓圈。從1開始順時針方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……這樣擦去一個數,保留一個數,擦去兩個數,保留一個數;再擦去一個數,保留下一個數,擦去兩個數,保留一個數……一直轉圈擦下去,最後剩下的數是________。
2. 小學數學奧林匹克競賽試題與答案
1.一個三位數除以9餘7,除以5餘2,除以4餘3。這樣的三位數共有________個。
2.每千克價分別為2元、3元、2元4角、4元的桔子、蘋果、香蕉、柿子四種水果共買了83千克,用去228元。已知買桔子用去的前與買蘋果用去的錢一樣多,買柿子用去的錢是買香蕉所用的錢的2倍。那麼桔子買了________千克,蘋果買了________千克,香蕉買了________千克,柿子買了________千克。
3.稅法規定,一次性勞務收入若低於800原,免交所得稅。若超過800元,需教所得稅,具體標准為:800~2000的部分按10%計,2000~5000元部分按15%計,5000~10000元部分安20%計。某人一次勞務收入上稅1300元,他在這次勞務中稅後的凈收入為________元。
4.八進制加法是逢八進一,例如:13+6=21,77+4=103。在下面的八進制加法豎式中,a、b、c、d、e、f這六個數恰好由1、2、3、4、5、6這六個數組成,那麼滿足題中條件的加法式子共有________個。
5.下圖的正六邊形是由24個邊長為1的小等邊三角形組成的。在以格點為頂點、面積與陰影部分相同的三角形中,邊長都不是1的三角形共有________個。
6.1到2000這2000個數中,最大可取出________個數,使得這些數中任意三個數的和都不能被7整除。
7.某商品成本為每個80原,如果按每個100賣,可賣出1000個。當這種商品每個漲價1元,銷售量就減少20個。為了賺取最多的利潤,售價應定為每個________元。
8.一隻小蟲從A處爬到B處。如果它的速度每分增加1米,可提前15分到達。如果它的速度每分再增加2米,則又可提前15分到達。A處到B處之間的路程是________米。
9.甲瓶中酒精濃度為70%,乙瓶中酒精的濃度為60%,兩瓶酒精混合後的濃度為66%。如果兩瓶酒精各用去5升後再混合,則混合後的濃度為66.25%。問:原來甲、乙兩瓶酒精分別有________升與________升。
10.用1、2、3、4、5、6、7、8、9這9個數字排成一個最小的能被11整除的九位數,這個九位數是________。
11.把1~625這625個自然數按順時針方向依次排列成一個圓圈。從1開始順時針方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……這樣擦去一個數,保留一個數,擦去兩個數,保留一個數;再擦去一個數,保留下一個數,擦去兩個數,保留一個數……一直轉圈擦下去,最後剩下的數是________。
12、一根鋼條截下全長的1/8,再接上15米,結果比原來的長度多1/2,求鋼條原來的長度?(接頭不計算)
13、食堂有大小兩堆煤,一共重24噸。大堆煤中用去1/4後,還比小堆煤多4噸。這兩堆煤原來各有多少噸?
3. 小學六年級數學競賽題(帶答案的)
一隻小船從甲港到乙港往返一次共用2小時,回來時順水,比去時每小時多行駛8千米,因此第2小時比第1小時多行駛了6千米。甲乙兩港的距離是多少千米?
解:設去的速度為X 回來則為X+8; 兩港的距離為Y千米(單邊)
有一元二次方程
y/x(去的時間)+y/(x+8)(回來的時間)=2
(y/x -1)*x=6/2=3(根據條件:第2小時比第1小時多行駛了6千米)
解的 y=15 x=12
則 兩港距離為15千米
4. 2015年LMC國際數學競賽初一組初賽試題及答案。
我七年級的題都還沒做(偶9年級了 呵呵)
1.有理數;
111…1(2001個1)222…2(2001個2)÷333…3(2001個3)=
2.代數式;
已知y=ax^5+bx^3+cx+d,當x=0時,y=3;當x=-5時,y=9。求當x=5時,y的值
3.絕對值;
設a、b為有理數,且|a|>0,方程||x-a|-b|=3有三個不相等的實數解,求b的值
4.一元一次方程組;
解方程:[4x+1]=3x-1/3,其中[a]表示不超過a的最大整數
答案;1)33…34(2000個3) 2)y=-3 3)b=3 4)x=-11/9、-8/9、-5/9
【打不下去了,偶復習我的去了……】