導航:首頁 > 考試分析 > 小學奧數題目及答案

小學奧數題目及答案

發布時間:2020-11-26 06:51:30

小學三年級奧數題及答案

1.一條路長100米,從頭到尾每隔10米栽1棵梧桐樹,共栽多少棵樹?
路分成100÷10=10段,共栽樹10+1=11棵。

12棵柳樹排成一排,在每兩棵柳樹中間種3棵桃樹,共種多少棵桃樹?
3×(12-1)=33棵。

一根200厘米長的木條,要鋸成10厘米長的小段,需要鋸幾次?
200÷10=20段,20-1=19次。

4.螞蟻爬樹枝,每上一節需要10秒鍾,從第一節爬到第13節需要多少分鍾?
從第一節到第13節需10×(13-1)=120秒,120÷60=2分。

5.在花圃的周圍方式菊花,每隔1米放1盆花。花圃周圍共20米長。需放多少盆菊花?
20÷1×1=20盆

6.從發電廠到鬧市區一共有250根電線桿,每相鄰兩根電線桿之間是30米。從發電廠到鬧市區有多遠?
30×(250-1)=7470米。

7.王老師把月收入的一半又20元留做生活費,又把剩餘錢的一半又50元儲蓄起來,這時還剩40元給孩子交學費書本費。他這個月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他這個月收入400元。

8.一個人沿著大提走了全長的一半後,又走了剩下的一半,還剩下1千米,問:大提全長多少千米?
1×2×2=4千米

9.甲在加工一批零件,第一天加工了這堆零件的一半又10個,第二天又加工了剩下的一半又10個,還剩下25個沒有加工。問:這批零件有多少個?
(25+10)×2=70個,(70+10)×2=160個。綜合算式:【(25+10)×2+10】×2=160個

10.一條毛毛蟲由幼蟲長到成蟲,每天長一倍,16天能長到16厘米。問它幾天可以長到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)

11.一桶水,第一次倒出一半,然後倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中還剩下80千克。桶里原來有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12.甲、乙兩書架共有圖書200本,甲書架的圖書數比乙書架的3倍少16本。甲、乙兩書架上各有圖書多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13.小燕買一套衣服用去185元,問上衣和褲子各多少元?
褲子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。

14.甲、乙、丙三人年齡之和是94歲,且甲的2倍比丙多5歲,乙2倍比丙多19歲,問:甲、乙、丙三人各多大?
如果每個人的年齡都擴大到2倍,那麼三人年齡的和是94×2=188。如果甲再減少5歲,乙再減少19歲,那麼三人的年齡的和是188-5-19=164(歲),這時甲的年齡是丙的一半,即丙的年齡是甲的兩倍。同樣,這時丙的年齡也是乙兩倍。所以這時甲、乙的年齡都是164÷(1+1+2)=41(歲),即原來丙的年齡是41歲。甲原來的年齡是(41+5)÷2=23(歲),乙原來的年齡是(41+19)÷2=30(歲)。

15.小明、小華捉完魚。小明說:「如果你把你捉的魚給我1條,我的魚就是你的2倍。如果我給你1條,咱們就一樣多了。「請算出兩個各捉了多少條魚。
小明比小華多1×2=2(條)。如果小華給小明1條魚,那麼小明比小華多2+1×2=4(條),這時小華有魚4÷(2-1)=4(條)。原來小華有魚4+1=5(條),原來小明有魚5+2=7(條)。

16.小芳去文具店買了13本語文書,8本算術書,共用去10元。已知6本語文本的價錢與4本算術本的價錢相等。問:1本語文本、1本算術本各多少錢?
8÷4×6=12,即8本算術本與12本語文體價錢相等。所以1本語文本值10×100÷(13+12)=40(分),1本算術本值40×6÷4=60(分),即1本語文本4角,1本算術本6角。

17.找規律,在括弧內填入適當的數. 75,3,74,3,73,3,(),()。
答案:72,3。

18找規律,在括弧內填入適當的數. 1,4,5,4,9,4,(),()。
奇數項構成數列1,5,9……,每一項比前一項多4;偶數項都是4,所以應填13,4

19.找規律,在括弧內填入適當的數. 3,2,6,2,12,2,(),()。
24,2。

20.找規律,在括弧內填入適當的數. 76,2,75,3,74,4,(),()。
答案:將原數列拆分成兩列,應填:73,5。

21.找規律,在括弧內填入適當的數. 2,3,4,5,8,7,(),()。
答案:將原數列拆分成兩列,應填:16,9。

22.找規律,在括弧內填入適當的數. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶數項是它前面的奇數項的2倍;又8=6+2,18=16+2,即從第三項起,奇數項比它前面的偶數項多2.所以應填:36,38。

23.找規律,在括弧內填入適當的數. 1,6,7,12,13,18,19,(),()。
答案:將原數列拆分成兩列,應填:24,25。

24.找規律,在括弧內填入適當的數. 1,4,3,8,5,12,7,()。
答案:奇數項構成數列1,3,5,7,…,每一項比前一項多2;偶數項構成數列4,8,12,…,每一項比前一項多4,所以應填:16。

25.找規律,在括弧內填入適當的數. 0,1,3,8,21,55,(),()。
答案:144,377。

26.A、B、C、D四人在一場比賽中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。問:他們各是第幾名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27.一頭象的重量等於4頭牛的重量,一頭牛的重量等於3匹小馬的重量,一匹小馬的重量等於3頭小豬的重量。問:一頭象的重量等於幾頭小豬的重量?
答案:4×3×3=36,所以一頭象的重量等於36頭小豬的重量。

28.甲、乙、丙三人,一個人喜歡看足球,一個人喜歡看拳擊,一個人喜歡看籃球。已知甲不愛看籃球,丙既不喜歡看籃球又不喜歡看足球。現有足球、拳擊、籃球比賽的入場券各一張。請根據他們的愛好,把票分給他們。
答案:丙不喜歡看籃球與足球,應將拳擊入場券給丙。甲不喜歡看籃球,應將足球入場券給甲。最後,應將籃球入場券給乙。

29.有一堆鐵塊和銅塊,每塊鐵塊重量完全一樣,每塊銅塊的重量也完全一樣。3塊鐵快和5塊銅塊共重210克。4塊鐵塊和10塊銅塊共重380克。問:每一塊鐵塊、每一塊銅塊各重多少?
答案:4塊鐵塊和10塊銅塊共重380克,所以2塊鐵塊和5塊銅塊共重380÷2=190(克)。而3塊鐵塊和5塊銅塊共重210克,所以1塊鐵塊重210-190=20(克)。1銅塊重(190-20×2)÷5=30(克)。

30.甲、乙、丙三人中有一人做了一件好事。他們各自都說了一句話,而其中只有一句是真的。甲說:「是乙做的。」 乙說:「不是我做的。」 丙說:「也不是我做的。」 問:到底是誰做的好事?
答案:如果是甲做的好事,那麼乙、丙的話都是真的,與只有一句是真的矛盾。如果是乙做的好事,那麼甲、丙的話都是真的,也產生矛盾。好事是丙做的,這時甲、丙的話都是錯的,只有乙的話是真的,所以好事是丙做的。

31.一張長8分米、寬3分米的長方形紙板,在四個角落上各截去一個邊長為2分米的正方形,所剩下的部分的周長是多少?
答:(8+3)×2=22(分米)

32.計算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123

33.計算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856

34.995+996+997+998+999
原式=(995+999) ×5÷2=4985

35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一個括弧內的項數為(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005

⑵ 求小學奧數題題目及答案(答案要有過程)

.已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?
2、3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?
3.甲乙二人從兩地同時相對而行,經過4小時,在距離中點4千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?
4.李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了13支,張強要了7支,李軍又給張強0.6元錢。每支鉛筆多少錢?
5.甲乙兩輛客車上午8時同時從兩個車站出發,相向而行,經過一段時間,兩車同時到達一條河 的兩岸。由於河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然後按原路返回各自出發的車站,到站時已是下午2點。甲車每小時行40千米,乙車每小時行 45千米,兩地相距多少千米?(交換乘客的時間略去不計)
6.學校組織兩個課外興趣小組去郊外活動。第一小組每小時走4.5千米,第二小組每小時行3.5千米。兩組同時出發1小時後,第一小組停下來參觀一個果園,用了1小時,再去追第二小組。多長時間能追上第二小組?
7.有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸。甲倉的存糧噸數比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?
8.甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米。甲、乙兩隊每天共修多少米?
9.學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?
10.一列火車和一列慢車,同時分別從甲乙兩地相對開出。快車每小時行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?
11.某玻璃廠托運玻璃250箱,合同規定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元。運後結算時,共付運費4400元。托運中損壞了多少箱玻璃?
12.五年級一中隊和二中隊要到距學校20千米的地方去春遊。第一中隊步行每小時行4千米,第二中隊騎自行車,每小時行12千米。第一中隊先出發2小時後,第二中隊再出發,第二中隊出發後幾小時才能追上一中隊?
13.某廠運來一堆煤,如果每天燒1500千克,比計劃提前一天燒完,如果每天燒1000千克,將比計劃多燒一天。這堆煤有多少千克?
14.媽媽讓小紅去商店買5支鉛筆和8個練習本,按價錢給小紅3.8元錢。結果小紅卻買了8支鉛筆和5本練習本,找回0.45元。求一支鉛筆多少元?
15.學校組織外出參觀,參加的師生一共360人。一輛大客車比一輛卡車多載10人,6輛大客車和8輛卡車載的人數相等。都乘卡車需要幾輛?都乘大客車需要幾輛?
16.某築路隊承擔了修一條公路的任務。原計劃每天修720米,實際每天比原計劃多修80米,這樣實際修的差1200米就能提前3天完成。這條公路全長多少米?
17.某鞋廠生產1800雙鞋,把這些鞋分別裝入12個紙箱和4個木箱。如果3個紙箱加2個木箱裝的鞋同樣多。每個紙箱和每個木箱各裝鞋多少雙?
18.某工地運進一批沙子和水泥,運進沙子袋數是水泥的2倍。每天用去30袋水泥,40袋沙子,幾天以後,水泥全部用完,而沙子還剩120袋,這批沙子和水泥各多少袋?
19.學校里買來了5個保溫瓶和10個茶杯,共用了90元錢。每個保溫瓶是每個茶杯價錢的4倍,每個保溫瓶和每個茶杯各多少元?
20.兩個數的和是572,其中一個加數個位上是0,去掉0後,就與第二個加數相同。這兩個數分別是多少?
21.一桶油連桶重16千克,用去一半後,連桶重9千克,桶重多少千米?
22.一桶油連桶重10千克,倒出一半後,連桶還重5.5千克,原來有油多少千克?
23.用一隻水桶裝水,把水加到原來的2倍,連桶重10千克,如果把水加到原來的5倍,連桶重22千克。桶里原有水多少千克?
24.小紅和小華共有故事書36本。如果小紅給小華5本,兩人故事書的本數就相等,原來小紅和小華各有多少本?
25.有5桶油重量相等,如果從每隻桶里取出15千克,則5隻桶里所剩下油的重量正好等於原來2桶油的重量。原來每桶油重多少千克?
26.把一根木料鋸成3段需要9分鍾,那麼用同樣的速度把這根木料鋸成5段,需要多少分?
27.一個車間,女工比男工少35人,男、女工各調出17人後,男工人數是女工人數的2倍。原有男工多少人?女工多少人?
28.李強騎自行車從甲地到乙地,每小時行12千米,5小時到達,從乙地返回甲地時因逆風多用1小時,返回時平均每小時行多少千米?
29.甲、乙二人同時從相距18千米的兩地相對而行,甲每小時行走5千米,乙每小時走4千米。如果甲帶了一隻狗與甲同時出發,狗以每小時8千米的速度向乙跑去,遇到乙立即回頭向甲跑去,遇到甲又回頭向飛跑去,這樣二人相遇時,狗跑了多少千米?
30.有紅、黃、白三種顏色的球,紅球和黃球一共有21個,黃球和白球一共有20個,紅球和白球一共有19個。三種球各有多少個?
31.在一根粗鋼管上接細鋼管。如果接2根細鋼管共長18米,如果接5根細鋼管共長33米。一根粗鋼管和一根細鋼管各長多少米?
32.水泥廠原計劃12天完成一項任務,由於每天多生產水泥4.8噸,結果10天就完成了任務,原計劃每天生產水泥多少噸?
33.學校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34.學校舉辦語文、數學雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數學競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?
35.學校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價錢相等,桌子和椅子的單價各是多少元?
36.父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
37.有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?
38.光明小學舉辦數學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
39.甲列火車長240米,每秒行20米;乙列火車長264米,每秒行16米,兩車相向而行,從兩車頭相遇到兩車尾相離需要幾秒?
40.一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?
41.小明從家裡到學校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家裡到學校有多遠?
42.有一周長600米的環形跑道,甲、乙二人同時、同地、同向而行,甲每分鍾跑300米,乙每分鍾跑400米,經過幾分鍾二人第一次相遇?
43.有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?
44.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
45.甲乙兩人同時從相距135千米的兩地相對而行,經過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?
46.盒子里有同樣數目的黑球和白球。每次取出8個黑球和5個白球,取出幾次以後,黑球沒有了,白球還剩12個。一共取了幾次?盒子里共有多少個球?
47.上午6時從汽車站同時發出1路和2路公共汽車,1路車每隔12分鍾發一次,2路車每隔18分鍾發一次,求下次同時發車時間。
48.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
49.王老師有一盒鉛筆,如平均分給2名同學餘1支,平均分給3名同學餘2支,平均分給4名同學餘3支,平均分給5名同學餘4支。問這盒鉛筆最少有多少支?
50.一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來的面積?

50道奧數題解答參考
1、想:由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據椅子的價錢,就可求得一張桌子的價錢。
解:一把椅子的價錢:
288÷(10-1)=32(元)
一張桌子的價錢:
32×10=320(元)
答:一張桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。
解:45+5×3
=45+15
=60(千克)
答:3箱梨重60千克。
3、想:根據在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經過4小時相遇。即可求甲比乙每小時快多少千米。
解:4×2÷4
=8÷4
=2(千米)
答:甲每小時比乙快2千米。
4、想:根據兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。
解:0.6÷[13-(13+7)÷2]
=0.6÷[13-20÷2]
=0.6÷3
=0.2(元)
答:每支鉛筆0.2元。
5、想:根據已知兩車上午8時從兩站出發,下午2點返回原車站,可求出兩車所行駛的時間。根據兩車的速度和行駛的時間可求兩車行駛的總路程。
解:下午2點是14時。
往返用的時間:14-8=6(時)
兩地間路程:(40+45)×6÷2
=85×6÷2
=255(千米)
答:兩地相距255千米。
6、想:第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)] 千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快( 4.5-3.5)千米,由此便可求出追趕的時間。
解:第一組追趕第二組的路程:
3.5-(4.5- 3.5)=3.5-1=2.5(千米)
第一組追趕第二組所用時間:
2.5÷(4.5-3.5)=2.5÷1=2.5(小時)
答:第一組2.5小時能追上第二小組。
7、想:根據甲倉的存糧噸數比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數就是乙倉的4倍,那樣總存糧數也要增加5噸。若把乙倉存糧噸數看作1倍,總存糧噸數就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數。
解:乙倉存糧:
(32.5×2+5)÷(4+1)
=(65+5)÷5
=70÷5
=14(噸)
甲倉存糧:
14×4-5
=56-5
=51(噸)
答:甲倉存糧51噸,乙倉存糧14噸。
8、想:根據甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那麼總長度就減少4個10米,這時的長度相當於乙(4+5)天修的。由此可求出乙隊每天修的米數,進而再求兩隊每天共修的米數。
解:乙每天修的米數:
(400-10×4)÷(4+5)
=(400-40)÷9
=360÷9
=40(米)
甲乙兩隊每天共修的米數:
40×2+10=80+10=90(米)
答:兩隊每天修90米。
9、想:已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那麼總價就應減少30×6元,這時的總價相當於(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。
解:每把椅子的價錢:
(455-30×6)÷(6+5)
=(455- 180)÷11
=275÷11
=25(元)
每張桌子的價錢:
25+30=55(元)
答:每張桌子55元,每把椅子25元。
10、想:根據已知的兩車的速度可求速度差,根據兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。
解:(7+65)×[40÷(75- 65)]
=140×[40÷10]
=140×4
=560(千米)
答:甲乙兩地相距 560千米。
11、想:根據已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數。根據每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數和實際付的錢數的差里有幾個(100+20)元,就是損壞幾箱。
解:(20×250-4400)÷(10+20)
=600÷120
=5(箱)
答:損壞了5箱。
12、想:因第一中隊早出發2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。
解:4×2÷(12-4)
=4×2÷8
=1(時)
答:第二中隊1小時能追上第一中隊。
13、想:由已知條件可知道,前後燒煤總數量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計劃燒的天數,進而再求出這堆煤的數量。
解:原計劃燒煤天數:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
這堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:這堆煤有6000千克。
14、想:小紅打算買的鉛筆和本子總數與實際買的鉛筆和本子總數量是相等的,找回0.45 元,說明(8-5)支鉛筆當作(8-5)本練習本計算,相差0.45元。由此可求練習本的單價比鉛筆貴的錢數。從總錢數里去掉8個練習本比8支鉛筆貴的錢 數,剩餘的則是(5+8)支鉛筆的錢數。進而可求出每支鉛筆的價錢。
解:每本練習本比每支鉛筆貴的錢數:
0.45÷(8-5)=0.45÷3=0.15(元)
8個練習本比8支鉛筆貴的錢數:
0.15×8=1.2(元)
每支鉛筆的價錢:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
也可以用方程解:
設一枝鉛筆X元,則一本練習本為 元。
8X+5× =3.8-0.45
64X+19-25X=30.4-3.6
39X=7.8
X=0.2
答:每支鉛筆0.2元。
15、想:根據一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數,即多用的(8-6)輛卡車所載的人數,進而可求每輛卡車載多少人和每輛大客車載多少人。
解:卡車的數量:
360÷[10×6÷(8-6)]
=360÷[10×6÷2]
=360÷30
=12(輛)
客車的數量:
360÷[10×6÷(8-6)+10]
=360÷[30+10]
=360÷40
=9(輛)
答:可用卡車12輛,客車9輛。
16、想:根據計劃每天修720米,這樣實際提前的長度是(720×3-1200)米。根據每天多修80米可求已修的天數,進而求公路的全長。
解:已修的天數:
(720×3-1200)÷80
=960÷80
=12(天)
公路全長:
(720+80)×12+1200
=800×12+1200
=9600+1200
=10800(米)
答:這條公路全長10800米。
17、想:根據已知條件,可求12個紙箱轉化成木箱的個數,先求出每個木箱裝多少雙,再求每個紙箱裝多少雙。
解:12個紙箱相當木箱的個數:
2×(12÷3)=2×4=8(個)
一個木箱裝鞋的雙數:
1800÷(8+4)=18000÷12=150(雙)
一個紙箱裝鞋的雙數:
150×2÷3=100(雙)
答:每個紙箱可裝鞋100雙,每個木箱可裝鞋
150雙
18、想:由已知條件可知道,每天用去30袋水泥,同時用去30×2袋沙子,才能同時用完。但現在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計出120袋沙子。因此看120袋裡有多少個少用的沙子袋數,便可求出用的天數。進而可求出沙子和水泥的總袋數。
解:水泥用完的天數:
120÷(30×2-40)=120÷20=6(天)
水泥的總袋數:
30×6=180(袋)
沙子的總袋數:
180×2=360(袋)
答:運進水泥180袋,沙子360袋。
19、想:根據每個保溫瓶的價錢是每個茶杯的4倍,可把5個保溫瓶的價錢轉化為20個茶杯的價錢。這樣就可把5個保溫瓶和10個茶杯共用的90元錢,看作30個茶杯共用的錢數。
解:每個茶杯的價錢:
90÷(4×5+10)=3(元)
每個保溫瓶的價錢:
3×4=12(元)
答:每個保溫瓶12元,每個茶杯3元。
20、想:已知一個加數個位上是0,去掉0,就與第二個加數相同,可知第一個加數是第二個加數的10倍,那麼兩個加數的和572,就是第二個加數的(10+1)倍。
解:第一個加數:
572÷(10+1)=52
第二個加數:
52×10=520
答:這兩個加數分別是52和520。
21、想:由已知條件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
解:9-(16-9)
=9-7
=2(千克)
答:桶重2千克。
22、想:由已知條件可知,10千克與5.5千克的差正好是半桶油的重量,再乘以2就是原來油的重量。
解:(10-5.5)×2=9(千克)
答:原來有油9千克。
23、想:由已知條件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
解:(22-10)÷(5-2)
=12÷3
=4(千克)
答:桶里原有水4千克。
24、想:從「小紅給小華5本,兩人故事書的本數就相等」這一條件,可知小紅比小華多(5×2)本書,用共有的36本去掉小紅比小華多的本數,剩下的本數正好是小華本數的2倍。
解:小華有書的本數:
(36-5×2)÷2=13(本)
小紅有書的本數:
13+5×2=23(本)
答:原來小紅有23本,小華有13本。
25、想:由已知條件知,5桶油共取出(15×5)千克。由於剩下油的重量正好等於原來2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
解:15×5÷(5-2)=25(千克)
答:原來每桶油重25千克。
26、想:把一根木料鋸成3段,只鋸出了(3-1)個鋸口,這樣就可以求出鋸出每個鋸口所需要的時間,進一步即可以求出鋸成5段所需的時間。
解:9÷(3-1)×(5-1)=18(分)
答:鋸成5段需要18分鍾。
27、想:女工比男工少35人,男、女工各調出17人後,女工仍比男工少35人。這時男工人數是女工人數的2倍,也就是說少的35人是女工人數的(2-1)倍。這樣就可求出現在女工多少人,然後再分別求出男、女工原來各多少人。
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28、想:由每小時行12千米,5小時到達可求出兩地的路程,即返回時所行的路程。由去時5小時到達和返回時多用1小時,可求出返回時所用時間。
解:12×5÷(5+1)=10(千米)
答:返回時平均每小時行10千米。
29、想:由題意知,狗跑的時間正好是二人的相遇時間,又知狗的速度,這樣就可求出狗跑了多少千米。
解:18÷(5+4)=2(小時)
8×2=16(千米)
答:狗跑了16千米。
30、想:由條件知,(21+20+19)表示三種球總個數的2倍,由此可求出三種球的總個數,再根據題目中的條件就可以求出三種球各多少個。
解:總個數:
(21+20+19)÷2=30(個)
白球:30-21=9(個)
紅球:30-20=10(個)
黃球:30-19=11(個)
答:白球有9個,紅球有10個,黃球有11個。
31、想:根據題意,33米比18米長的米數正好是3根細鋼管的長度,由此可求出一根細鋼管的長度,然後求一根粗鋼管的長度。
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗鋼管長8米,一根細鋼管長5米。
32、想:由題意知,實際10天比原計劃10天多生產水泥(4.8×10)噸,而多生產的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產水泥(4.8×10)噸。
解:4.8×10÷(12-10)=24(噸)
答:原計劃每天生產水泥24噸。
33、想:由題意知唱歌的70人中也有跳舞的,同樣跳舞的30人中也有唱歌的,把兩者相加,這樣既唱歌又跑舞的就統計了兩次,再減去參加表演的80人,就是既唱歌又跳舞的人數。
解:70+30-80
=100-80
=20(人)
答:既唱歌又跳舞的有20人。
34、想:參加語文競賽的36人中有參加數學競賽的,同樣參加數學競賽的38人中也有參加語 文競賽的,如果把兩者加起來,那麼既參加語文競賽又參加數學競賽的人數就統計了兩次,所以將參加語文競賽的人數加上參加數學競賽的人數再加上一科也沒參加 的人數減去全班人數就是雙科都參加的人數。
解:36+38+5-59=20(人)
答:雙科都參加的有20人。
35、想:由「2張桌子和5把椅子的價錢相等」這一條件,可以推出4張桌子就相當於10把椅子的價錢,買4張桌子和6把椅子共用640元,也就相當於買16把椅子共用640元。
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的單價分別是100元、40元。
36、想:5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。
解:(45-5)÷4+5
=10+5
=15(歲)
答:今年兒子15歲。
37、想:「如果從甲桶倒入乙桶18千克,兩桶油就一樣重」可推出:甲桶油的重量比乙桶多(18×2)千克,又知「甲桶油重是乙桶油重的4倍」,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原來甲桶有油48千克,乙桶有油12千克。
38、想:根據題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數。
解:(5×20-75)÷8=2(題)……5(分)
20-2-1=17(題)
答:答對17題,答錯2題,有1題沒答。
39、想:「從兩車頭相遇到兩車尾相離」,兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據路程、速度和時間的關系,就可求得所需時間。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:從兩車頭相遇到兩車尾相離,需要14秒。
40、想:火車通過隧道是指從車頭進入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。
解:(600+1150)÷700
=1750÷700
=2.5(分)
答:火車通過隧道需2.5分。
41、想:在每分走50米的到校時間內按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明從家裡到學校是600米。
42、想:由已知條件可知,二人第一次相遇時,乙比甲多跑一周,即600米,又知乙每分鍾比甲多跑(400-300)米,即可求第一次相遇時經過的時間。
解:600÷(400-300)
=600÷100
=6(分)
答:經過6分鍾兩人第一次相遇
43、想:由「只把寬增加2厘米,面積就增加12平方厘米」,可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。
解:(12÷2)×(8÷2)=24(平方厘米)
答:這個長方形紙板原來的面積是24平方厘米。
44、想:用去的錢數除以3就是1千克蘋果和1千克梨的總錢數。從這個總錢數里去掉1千克蘋果的錢數,就是每千克梨的錢數。
解:(20-7.4)÷3-2.4
=12.6÷3-2.4
=4.2-2.4
=1.8(元)
答:每千克梨1.8元。
45、想:由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小時分別行30千米、15千米。
46、想:兩種球的數目相等,黑球取完時,白球還剩12個,說明黑球多取了12個,而每次多取(8-5)個,可求出一共取了幾次。
解:12÷(8-5)=4(次)
8×4+5×4+12=64(個)
或8×4×2=64(個)
答:一共取了4次,盒子里共有64個球。
47、想:1路和2路下次同時發車時,所經過的時間必須既是12分的倍數,又是18分的倍數。也就是它們的最小公倍數。
解:12和18的最小公倍數是36
6時+36分=6時36分
答:下次同時發車時間是上午6時36分。
48、想:父、子年齡的差是(45-15)歲,當父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的(11-1)倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數的差就是所求的問題。
解:(45-15)÷(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
49、想:根據題意,可以將題中的條件轉化為:平均分給2名同學、3名同學、4名同學、5名同學都少一支,因此,求出2、3、4、5的最小公倍數再減去1就是要求的問題。
解:2、3、4、5的最小公倍數是60
60-1=59(支)
答:這盒鉛筆最少有59支。
50、想:根據只把底增加8米,面積就增加40平方米, 可求出原來平行四邊形的高。根據只把高增加5米,面積就增加40平方米,可求出原來平行四邊形的底。再用原來的底乘以原來的高就是要求的面積。
解:(40÷5)×(40÷8)=40(平方米)
答:平行四邊形地原來的面積是40平方米。

⑶ 小學奧數題及答案

第一題:要使乘法算式84300365(20000)積的最後5個數字都是0,括弧里最小應填什麼數?
第二題:甲乙兩個數都大於100而小於150,他們倆個數的積等於65與231的積,求這兩個數
答:這兩個數是105與143
第三題:李老師帶領同學們去植樹,學生恰好分成了3組,如果老師比每個學生多植一棵,則師生共植507棵?共有多少名學生參加植樹?
第四題:一個長方體的體積是3360立方厘米,他的長寬高是三個連續的自然數,這個長方體的棱長綜合是多少
答:14、15、16
第五題:將40,44,45,63,65,78,99,105這八個數平均分成兩組,使每組四個數的乘積相等?
答:63、65、99、40,另一組105、78、44、45
第六題:有四個人,他們的年齡一個比一個大一歲,他們的年齡乘積等於43680,求這四個人的年齡各多少
答:13、14、15、16
第七題:有兩個整數,它們的和恰好是兩個數字相同的自然數,他們的乘積恰好是三個數字相同的三位數,求這兩個整數。
答: 18 和37
第八題:一個長方體,前面和上面的面積之和是209平方厘米,這個長方體的長,寬,高都是質數,求這個長方體的體積
答:長寬高分別為17、11、2,體積=17×11×2=374立方厘米。
第十題:爺爺,父親,孫子,三人的年齡乘積是2412,求三人的年齡各是多大?
答:67、36、1

⑷ 小學奧數測試題及答案

1.樓層 小宏與爸爸一起上樓,小宏走得慢,爸爸走得快,小宏上了1層時,爸爸已上了2層,問小宏上到3樓時,爸爸上到幾樓?
2.分水果 一個小組有10個人,7個人愛吃香蕉,5個人愛吃蘋果,問既愛吃香蕉又愛吃蘋果的有幾個人?
3.小鴨子說稀奇,道稀奇,鴨子隊里有隻雞,正著數,它第6,倒著數,它第7,小鴨一共有幾只?
4. 找規律填數:
① 5、7、9、11、13、( )
②0、1、1、2、3、5、8、( )
5. 按要求填數:
36、12、45、7、35、23、60、55
( )>( )>( )>( )>( )>( )>( )>( )
13、24、15、7、61、25、14、8
( )<( )<( )<( )<( )<( )<( )<()
6、有一個兩位數,個位是9,十位是4,這個兩位數是()
7、有14小朋友排成一隊,從左往右數紅紅排在第4位,從右向左數明明也是排在第4位,那麼紅紅和明明兩人之間有多少人?
8、最小三位數的是()最大的三位數是()。
9、用5、7、4三個數可以排成( )個不相同的三位數。分別寫出來。
10、要把一根木棒鋸成5段需要4分鍾,要是想鋸成7段需要多少分鍾?
11、計算:
3+5+7+9+11+13+15+17+19+21=
5+10+15+20+25+30=
12、有14個小朋友在玩捉迷藏的游戲,有6個小朋友被捉住了,還有多少個小朋友沒被捉住啊?
13、、有一個個位數,在它的右邊加上一個零,構成一個兩位數,這個兩位比原來的數要大36,則原來的各位數是()。
14、按要求填補算式完整:
9+( )=21 21—( )=19
21—( )=18 24+( )=43
15、老師讓小朋友們植樹,先植了10棵桃樹,然後老師讓同學們在每兩棵桃樹間植一棵梨樹,那麼一共還可以植多少棵梨樹?
16.分糖塊 三個小朋友分5塊糖。要求每人都分到糖,但每人分到的糖塊數不能一樣多,你能分嗎?
17.樹的年齡 公園里有三棵樹,它們的樹齡分別由1、2、3、4、5、6這六個數字中的不同的兩個數字組成,而其中一棵的樹齡正好是其他兩棵樹齡和的一半,你知道這三棵樹各是多少歲嗎?
18.奇偶問題
①把10個球分成三組,要求每組球的個數都是奇數,怎樣分?
②②把11個蘋果分給三個小朋友,要求每個小朋友分得偶數個蘋果,怎樣分
19:春遊 45個小朋友排成一隊去春遊。從排頭往後數,小剛是第19個;從排尾往前數,小莉是第12個,問小剛和小莉中間有幾個人?
20:報數 排好隊,來報數,正著報數我報七,倒著報數我報九,一共多少小朋友?
21:排隊 小朋友排隊,小紅前面4個人,後面3個人,問這隊共有幾個人?.
22:人數問題 老師帶了一些小朋友去看電影,一共買了11張票。問和老師一起看電影的有多少個小朋友?
23:等式
把2、3、4、5分別填入()中,每個數只能用一次。
()+()-()=()
24:排隊 小朋友排隊。小平的左面有4個人,右面有8個人。這一行有多少個人?
25.時間 四個青年人一起玩撲克,玩了40分鍾。他們每一個人玩了多長時間?
26:寄畫 爺爺有一幅名畫,捲起來長110厘朱,想寄給遠方的伯父,但郵局只准寄長度不超過一米的物品。你能想個辦法把這幅名畫寄出去嗎?
27:兔子 某人為打掃兔籠子,將4隻活兔子放進裝有4隻老虎的籠子里,打掃出2個兔籠子後,想把兔子放回兔籠里。這時還有幾只活兔子?
28:巧算 1+17+26+35+24+13+25+29=
答案:
1.5層。. 2.既愛吃香蕉又愛吃蘋果的有兩個人。 3.13隻.
4.15(單數) 13(0+1=1 1+1=2 1+2=3 2+3=5 3+5=8 5+8=13 )
5.60,55,45,36,35,23,12,7
7,8,13,14,15,24,25,61
6.49 7.6(***紅******明***) 8.100 999
9.6種(574 547 754 745 475 457)
10. 6分鍾
鋸5段要鋸4次則每次要用4÷4=1(分鍾)鋸七段要鋸6次則1*6=6分鍾
11.120( (3+21)+(5+19)+(7+17)+(9+15)+(11+13)=24+24+24+24+24=120 )
105(同理)
12.7個(有一個要捉) 13.40 14.12,2,3,19
15.9棵
/ * / * / * / * / * / * / * / * / * /
/為桃樹 *為梨樹
16.答案: 不夠,最少需要6塊糖。如果有6塊糖,那第一個人分1塊糖,第二個人分2塊糖,第三個人分3塊糖。
17.答案: 解:此題與例4相同,除在例4中求出的一個答案外還有以下各種答案也符合題意:
21+65=43×2 三棵樹的樹齡分別是21歲、43歲、65歲。 16+52=34×2
三棵樹的樹齡分別是16歲、34歲、52歲。 25+61=43×2 三棵樹的樹齡分別是25歲、43歲、61歲。
18.答案:①不能分。因為如果三組球,每組都是奇數個球的話,總數必是奇數,而不可能是偶數,而10個球卻是個偶數。
②不能分。因為如果每個小朋友都得到偶數個蘋果,那麼三個小朋友得到的蘋果總數也必定是個偶數。而11個蘋果是個奇數,所以無法分。 .
19.答案:畫示意圖。用點「•」代表人

由圖可見,小剛和小莉中間的人數是:45-19-12=14人
20.15人(******我********) 21.8人(****紅***)
22答案:解:11張票中有老師1張票, 所以11-1=10(張) 答:和老師一起看電影的有10個小朋友。
23答案: 解:( 3 )+( 4 )-( 5 )=( 2 )答案不唯一。
24答案:解:4+1+8=13(人)答:這一行有13人。
25答案:答案:每個人都玩了40分鍾
26答案:答案:做一個長一米(寬和高適當)的盒子,把畫斜著放進去.
27答案: 答案:因為老虎吃兔子,所以沒有兔子活著
28答案:解:用巧算,湊整法:
1+17+26+35+24+13+25+29
=1+29+17+13+26+24+35+25
=30+30+50+60
=170

小學五年級奧數題,及答案

1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?

2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?

3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?

4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?

5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
五年級試題三答案

1,因為10人2組都參加,所以只參加數學的5人,只參加航模的8人,加上那10人就是23人,40-23=17,2個小組都不參加的17人

2,同理,數學滿分10人,2科都滿分的3人,於是只是數學滿分的7人,45-7-29=9,這個就是語文滿分的人(如果說只是語文滿分的則需要減去3)

3,50÷4取整12,50÷6取整8,但是要注意,報4倍數的同時可能是6的倍數,所以還要算出4和6的公倍數,有50÷12(4和6的最小公倍數)=4(取整),所以,應該是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),還是算出2和3的公倍數100÷6=16(取整),然後找出即沒不被2整除,也不被3整除的數的個數100-50-33+16=28,所以,准備鉛筆為50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2個劃線劃在一起,也就是要算出他們的公倍數,180÷3÷4=15,所以應該為60+45-15=90

⑹ 小學奧數題及解析(一類一題)

工程問題
1.甲乙兩個水管單獨開,注滿一池水,分別需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時後,再打開排水管丙,問水池注滿還是要多少小時?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小時後進水量
1-45/80=35/80表示還要的進水量
35/80÷(9/80-1/10)=35表示還要35小時注滿
答:5小時後還要35小時就能將水池注滿。

2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由於彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九。現在計劃16天修完這條水渠,且要求兩隊合作的天數盡可能少,那麼兩隊要合作幾天?
解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因為,要求「兩隊合作的天數盡可能少」,所以應該讓做的快的甲多做,16天內實在來不及的才應該讓甲乙合作完成。只有這樣才能「兩隊合作的天數盡可能少」。
設合作時間為x天,則甲獨做時間為(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現在先請甲、丙合做2小時後,餘下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?
解:
由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量
(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。
根據「甲、丙合做2小時後,餘下的乙還需做6小時完成」可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。
所以1-9/10=1/10表示乙做6-4=2小時的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小時表示乙單獨完成需要20小時。
答:乙單獨完成需要20小時。

4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那麼恰好用整數天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那麼完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?
解:由題意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最後結束必須如上所示,否則第二種做法就不比第一種多0.5天)
1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)
得到1/甲=1/乙×2
又因為1/乙=1/17
所以1/甲=2/17,甲等於17÷2=8.5天

5.師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?
答案為300個
120÷(4/5÷2)=300個
可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那麼徒弟第二次後共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。

6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵

7.一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鍾可將滿池水放完,丙管也是出水管,30分鍾可將滿池水放完。現在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鍾放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鍾將水放完?
答案45分鍾。
1÷(1/20+1/30)=12 表示乙丙合作將滿池水放完需要的分鍾數。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作將漫池水放完後,還多放了6分鍾的水,也就是甲18分鍾進的水。
1/2÷18=1/36 表示甲每分鍾進水
最後就是1÷(1/20-1/36)=45分鍾。

8.某工程隊需要在規定日期內完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規定日期為幾天?
答案為6天
解:
由「若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,」可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分別做全部的的工作時間比是2:3
時間比的差是1份
實際時間的差是3天
所以3÷(3-2)×2=6天,就是甲的時間,也就是規定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6

9.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鍾後來點了,小芳將兩支蠟燭同時熄滅,發現粗蠟燭的長是細蠟燭的2倍,問:停電多少分鍾?
答案為40分鍾。
解:設停電了x分鍾
根據題意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40

二.雞兔同籠問題
1.雞與兔共100隻,雞的腿數比兔的腿數少28條,問雞與兔各有幾只?
解:
4*100=400,400-0=400 假設都是兔子,一共有400隻兔子的腳,那麼雞的腳為0隻,雞的腳比兔子的腳少400隻。
400-28=372 實際雞的腳數比兔子的腳數只少28隻,相差372隻,這是為什麼?
4+2=6 這是因為只要將一隻兔子換成一隻雞,兔子的總腳數就會減少4隻(從400隻變為396隻),雞的總腳數就會增加2隻(從0隻到2隻),它們的相差數就會少4+2=6隻(也就是原來的相差數是400-0=400,現在的相差數為396-2=394,相差數少了400-394=6)
372÷6=62 表示雞的只數,也就是說因為假設中的100隻兔子中有62隻改為了雞,所以腳的相差數從400改為28,一共改了372隻
100-62=38表示兔的只數

三.數字數位問題
1.把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9餘數是多少?
解:
首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那麼這個數也能被9整除;如果各個位數字之和不能被9整除,那麼得的余數就是這個數除以9得的余數。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數的個位上的數字之和可以被9整除
10~19,20~29……90~99這些數中十位上的數字都出現了10次,那麼十位上的數字之和就是10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數字之和為4500 同樣被9整除
也就是說1~999這些連續的自然數的各個位上的數字之和可以被9整除;
同樣的道理:1000~1999這些連續的自然數中百位、十位、個位 上的數字之和可以被9整除(這里千位上的「1」還沒考慮,同時這里我們少200020012002200320042005
從1000~1999千位上一共999個「1」的和是999,也能整除;
200020012002200320042005的各位數字之和是27,也剛好整除。
最後答案為余數為0。

2.A和B是小於100的兩個非零的不同自然數。求A+B分之A-B的最小值...
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不會變了,只需求後面的最小值,此時 (A-B)/(A+B) 最大。
對於 B / (A+B) 取最小時,(A+B)/B 取最大,
問題轉化為求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100

3.已知A.B.C都是非0自然數,A/2 + B/4 + C/16的近似值市6.4,那麼它的准確值是多少?
答案為6.375或6.4375
因為A/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由於A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。
當是102時,102/16=6.375
當是103時,103/16=6.4375

4.一個三位數的各位數字 之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.
答案為476
解:設原數個位為a,則十位為a+1,百位為16-2a
根據題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7 16-2a=4
答:原數為476。

5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.
答案為24
解:設該兩位數為a,則該三位數為300+a
7a+24=300+a
a=24
答:該兩位數為24。

6.把一個兩位數的個位數字與十位數字交換後得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?
答案為121
解:設原兩位數為10a+b,則新兩位數為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因為這個和是一個平方數,可以確定a+b=11
因此這個和就是11×11=121
答:它們的和為121。

7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.
答案為85714
解:設原六位數為abcde2,則新六位數為2abcde(字母上無法加橫線,請將整個看成一個六位數)
再設abcde(五位數)為x,則原六位數就是10x+2,新六位數就是200000+x
根據題意得,(200000+x)×3=10x+2
解得x=85714
所以原數就是857142
答:原數為857142

8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.
答案為3963
解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9
根據「新數就比原數增加2376」可知abcd+2376=cdab,列豎式便於觀察
abcd
2376
cdab
根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立。
先取d=3,b=9代入豎式的百位,可以確定十位上有進位。
根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知只有當c=6,a=3時成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數,所以不成立。

9.有一個兩位數,如果用它去除以個位數字,商為9餘數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5餘數為3,求這個兩位數.
解:設這個兩位數為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由於a、b均為一位整數
得到a=3或7,b=3或8
原數為33或78均可以

10.如果現在是上午的10點21分,那麼在經過28799...99(一共有20個9)分鍾之後的時間將是幾點幾分?
答案是10:20
解:
(28799……9(20個9)+1)/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鍾,所以現在時間是10:20

四.排列組合問題
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
解:
根據乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。

2 若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有 ( )
A 119種 B 36種 C 59種 D 48種
解:
5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正確的所以60-1=59

五.容斥原理問題
1. 有100種赤貧.其中含鈣的有68種,含鐵的有43種,那麼,同時含鈣和鐵的食品種類的最大值和最小值分別是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根據容斥原理最小值68+43-100=11
最大值就是含鐵的有43種

2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)只解出第一題的學生比餘下的學生中解出第一題的人數多1人;(4)只解出一道題的學生中,有一半沒有解出第一題,那麼只解出第二題的學生人數是( )
A,5 B,6 C,7 D,8
解:根據「每個人至少答出三題中的一道題」可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設各類的人數為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然後將④⑤⑥代入①中,整理得到
a2×4+a3=26
由於a2、a3均表示人數,可以求出它們的整數解:
當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22
又根據a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2。
然後可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。
故只解出第二題的學生人數a2=6人。

3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那麼這次考試的合格率至少是多少?
答案:及格率至少為71%。
假設一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯的最多人數)
87÷3=29(表示5題中有3題做錯的最多人數,即不及格的人數最多為29人)
100-29=71(及格的最少人數,其實都是全對的)
及格率至少為71%

六.抽屜原理、奇偶性問題
1.一隻布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍、黃四種,問最少要摸出幾只手套才能保證有3副同色的?
解:可以把四種不同的顏色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜里至少有2隻手套,根據抽屜原理,最少要摸出5隻手套。這時拿出1副同色的後4個抽屜中還剩3隻手套。再根據抽屜原理,只要再摸出2隻手套,又能保證有一副手套是同色的,以此類推。
把四種顏色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5隻手套。這時拿出1副同色的後,4個抽屜中還剩下3隻手套。根據抽屜原理,只要再摸出2隻手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9隻手套,才能保證有3副同色的。

2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣?
答案為21
解:
每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法.
當有11人時,能保證至少有2人取得完全一樣:
當有21人時,才能保證到少有3人取得完全一樣.

3.某盒子內裝50隻球,其中10隻是紅色,10隻是綠色,10隻是黃色,10隻是藍色,其餘是白球和黑球,為了確保取出的球中至少包含有7隻同色的球,問:最少必須從袋中取出多少只球?
解:需要分情況討論,因為無法確定其中黑球與白球的個數。
當黑球或白球其中沒有大於或等於7個的,那麼就是:
6*4+10+1=35(個)
如果黑球或白球其中有等於7個的,那麼就是:
6*5+3+1=34(個)
如果黑球或白球其中有等於8個的,那麼就是:
6*5+2+1=33
如果黑球或白球其中有等於9個的,那麼就是:
6*5+1+1=32

4.地上有四堆石子,石子數分別是1、9、15、31如果每次從其中的三堆同時各取出1個,然後都放入第四堆中,那麼,能否經過若干次操作,使得這四堆石子的個數都相同?(如果能請說明具體操作,不能則要說明理由)
不可能。
因為總數為1+9+15+31=56
56/4=14
14是一個偶數
而原來1、9、15、31都是奇數,取出1個和放入3個也都是奇數,奇數加減若干次奇數後,結果一定還是奇數,不可能得到偶數(14個)。

七.路程問題
1.狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。問:狗再跑多遠,馬可以追上它?
解:
根據「馬跑4步的距離狗跑7步」,可以設馬每步長為7x米,則狗每步長為4x米。
根據「狗跑5步的時間馬跑3步」,可知同一時間馬跑3*7x米=21x米,則狗跑5*4x=20米。
可以得出馬與狗的速度比是21x:20x=21:20
根據「現在狗已跑出30米」,可以知道狗與馬相差的路程是30米,他們相差的份數是21-20=1,現在求馬的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙輛車同時從a b兩地相對開出,幾小時後再距中點40千米處相遇?已知,甲車行完全程要8小時,乙車行完全程要10小時,求a b 兩地相距多少千米?
答案720千米。
由「甲車行完全程要8小時,乙車行完全程要10小時」可知,相遇時甲行了10份,乙行了8份(總路程為18份),兩車相差2份。又因為兩車在中點40千米處相遇,說明兩車的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

多給你一些吧,謝謝請採納了,啊啊啊

⑺ 小學五六年級奧數題30道帶答案!!

過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.

偶數與整數的積是偶數.

性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.

⑻ 20道簡單的五年級奧數題及答案

有獎勵
20道簡單的五年級奧數題及答案
急急急!!!
我來答有獎勵
138******49
LV.1
聊聊關注成為第1位粉絲
1.有一些糖,每人分5塊多10塊;如果現有的人數增加到原人數的1.5倍,那麼每人4塊就少2塊.問這些糖共有多少塊?
【分析與解】 方法一:設開始共有x人,兩種分法的糖總數不變,有5x+10=4×1.5x-2,解得x=12,所以這些糖共有12×5+10=70塊.
方法二:人數增加1.5倍後,每人分4塊,相當於原來的人數,每人分1.5×4=6塊.
有這些糖,每人分5塊多10塊,每人分6塊少2塊,所以開始總人數為(10+2)÷(6-5)=12人,那麼共有糖12×5+10=70塊.
2.甲、乙兩個小朋友各有一袋糖,每袋糖不到20粒.如果甲給乙一定數量的糖後,甲的糖就是乙的糖粒數的2倍;如果乙給甲同樣數量的糖後,甲的糖就是乙的糖粒數的3倍.那麼,甲、乙兩個小朋友共有糖多少粒?
【分析與解】 由題意知糖的總數應該是3的倍數,還是4的倍數.即為12的倍數,因為兩袋糖每袋都不超過20粒,所以總數不超過40粒.於是糖的總數只可能為12、24或36粒.
如果糖的總數為12的奇數倍,那麼「乙給甲同樣數量的糖後」,甲的糖為12÷(3+1)×3=9的奇數倍.那麼在甲給乙兩倍「同樣的數量糖」後,甲的糖為12÷(2+1)×2=8的奇數倍.
也就是說一個奇數加上一個偶數等於偶數,顯然不可能.所以糖的總數不能為12的奇數倍.
那麼甲、乙兩個小朋友共有的糖只能為12的偶數倍,即為24粒.
3.甲班有42名學生,乙班有48名學生.已知在某次數學考試中按百分制評卷,評卷結果各班的數學總成績相同,各班的平均成績都是整數,並且平均成績都高於80分.那麼甲班的平均成績比乙班高多少分?
【分析與解】 方法一:因為每班的平均成績都是整數,且兩班的總成績相等,所以總成績既是42的倍數,又是48的倍數,所以為[42,48]=336的倍數.
因為乙班的平均成績高於80分,所以總成績應高於48×80=3840分.
又因為是按百分制評卷,所以甲班的平均成績不會超過100分,那麼總成績應不高於42×100=4200分.
在3840~4200之間且是336的倍數的數只有4032.所以兩個班的總分均為4032分.
那麼甲班的平均分為4032÷42=96分,乙班的平均分為4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因為7、8互質,所以甲班的平均分為某數的8倍,乙班的平均分為某數的7倍,又因為兩個班的平均分均超過80分,不高於100分,所以這個數只能為12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某鄉水電站按戶收取電費,具體規定是:如果每月用電不超過24度,就按每度9分錢收費;如果超過24度,超出的部分按每度2角錢收費.已知在某月中,甲家比乙家多交了電費9角6分錢(用電按整度計算),問甲、乙兩家各交了多少電費?
【分析與解】 如果甲、乙兩家用電均超過24度,那麼他們兩家的電費差應是2角錢的整數倍;
如果甲、乙兩家用電均不超過24度,那麼他們兩家的電費差應是9分錢的整數倍.
現在9角6分既不是2角錢的整數倍,又不是9分錢的整數倍,所以甲家的用電超過了24度,乙家的用電不超過24度.
設甲家用了24+x度電,乙家用了24-y度電,有20x+9y=96,得x=3,y=4.
即甲家用了27度電,乙家用了20度電,那麼乙家應交電費20×9=180分=1元8角,則甲家交了180+96=276分=2元7角6分.
即甲、乙兩家各交電費2元7角6分,1元8角.
5.一小、二小兩校春遊的人數都是10的整數倍,出行時兩校人員不合乘一輛車,且每輛車盡量坐滿.現在知道,若兩校都租用有14個座位的旅遊車,則兩校共需租用這種車72輛;若兩校都租用19個座位的旅遊車,則二小要比一小多租用這種車7輛.問兩校參加這次春遊的人數各是多少?
【分析與解】 設二小春遊人數為m,一小春遊人數為n.由已知乘19座麵包車二小比一小多租用7輛.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知兩校共需租用14座麵包車72輛,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同時已知m與n都是10的倍數,於是有
, 解得 , 另外四組因為解得m、n不是10的倍數.
經檢驗只有 滿足.
所以,一小參加春遊430人,二小參加春遊570人.
6.某遊客在10時15分由碼頭劃出一條小船,他欲在不遲於13時回到碼頭.河水的流速為每小時1.4千米,小船在靜水中的速度為每小時3千米,他每劃30分鍾就休息15分鍾,中途不改變方向,並在某次休息後往回劃.那麼他最多能劃離碼頭多遠?
【分析與解】 從10時15分出發,不遲於13時必須返回,所以最多可劃行2小時45分,即165分鍾.165=4×30+3×15,最多可劃4個30分鍾,休息3個15分鍾.
順流速度為3+1.4=4.4千米/4,時;所以順流半小時劃行路程為4.4×0.5=2.2千米;
逆流速度為3-1.4=1.6千米/4,時;所以逆流半小時劃行路程為1.6×0.5=0.8千米.
休息15分鍾,則船順流漂行的路程為1.4×0.25=0.35千米.
第一種情況:當開始順流時,至少劃行半小時,行駛2.2千米,而在休息的3個時問內船又順流漂行0.35×3=1.05千米的路程,所以逆流返回時需劃行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小時=121.875分鍾.即最少需30+15×3+121.875=196.875分鍾>165分鍾,來不及按時還船.不滿足.
第二種情況:當開始逆流時,每逆流半小時,則行駛0.8千米,則3次逆流後,行駛了0.8×3=2.4千米,船在遊客休息時順流漂行了1.05千米,所以回劃時只用劃行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小時≈18.41分鍾.共需3×30+3×15+18.41=153.41分鍾<165分鍾,滿足.
於是,只有第二種情況滿足,此時最遠的路程為休息了2次後第3次逆流所至的地點,為0.8×3-0.35×2=1.7千米.
所以,他最多能劃離碼頭1.7千米.
7. 機械廠計劃生產一批機床,原計劃每天生產40台,可在預定的時間內完成任務,實際每天生產48台,結果提前4天完成任務,求這批機床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷廠計劃用24天裝訂一批書,每天裝訂12000本,實際提前4天完成了任務,實際比原計劃每天多裝訂多少本?
【分析與解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙兩磚廠,甲廠原存磚87500塊,乙廠比甲廠多存磚4500塊,某日甲廠賣出25000塊,乙廠比甲廠少賣出3000塊,這時哪廠存磚多?多多少塊?
【分析與解】甲廠存磚:87500-25000=62500(塊)
乙廠存磚:(87500+4500)-(25000-3000)=70000(塊)
∴ 乙廠存磚多,多 70000-62500=7500(塊)
10. 一筐蘋果連筐共重45千克,賣出一半後,剩下的蘋果連筐共重24千克,求原來有蘋果多少千克?
【分析與解】(45-24)×2=42(千克)
11.小明上午8時騎自行車以每小時12千米的速度從A地到B地,小強上午8時40分騎自行車以每小時16千米的速度從B地到A地,兩人在A、B兩地的中點處相遇,A、B兩地間的路程是多少千米?
【分析與解】這是一個相向而行相遇求路程的問題。但兩人不是同時出發,如果能轉換成同時出發,並且求出行多少小時相遇,就可以用數學課學的方法解答。
兩人在兩地間的路程的中點相遇,但小明比小強多行了40分鍾,如果兩人同時出發,相遇時,小明行的路程就比小強少12÷60×40=8(千米),就是當小強出發時,小明已經行了8千米,從8時40分起兩人到兩人相遇,由於小明每小時比小強少行16-12=4(千米),說明兩人相遇時間是8÷4=2(小時),那麼,A、B兩地間的路程是8+(12+16)×2=64(千米)。
答:A、B兩地間的路程是64千米。
12:甲、乙兩村相距3550米,小偉從甲村步行往乙村,出發5分鍾後,小強騎自行車從乙村前往甲村,經過10分鍾遇見小偉。小強騎車每分鍾行的比小偉步行每分鍾多160米,小偉每分鍾走多少米?
【分析與解】如果小強每分鍾少行160米,他行的速度就和小偉步行的速度相同,這樣小強10分鍾就少行了160×10=1600(米),小偉(5+10)分鍾和小強10分鍾一共行走的路程是3550-1600=1950(米),那麼小偉每分鍾走的路是1950÷(5+10+10)=78(米)。
答:小偉每分鍾走78米。
13:客車從東城和貨車從西城同時開出,相向而行,客車每小時行44千米,貨車每小時行36千米,客車到西城比貨車到東城早2小時。兩車開出後多少小時在途中相遇?
【分析與解】當客車到西城時,貨車離東城還有2×36=72(千米),而貨車每小時行的比客車少44-36=8(千米),客車行東西城間的路程用的時間是72÷8=9(小時),因此東西城相距44×9=396(千米),兩車從出發到相遇用的時間是;396÷(44+36)=4.95(小時)
答:兩車開出後4.95小時在途中相遇。
14:甲、乙二人同一天從北京出發沿同一條路騎車往廣州,甲每天行100千米,乙第一天行70千米,以後每天都比前一天多行3千米,直到追上甲,乙出發後第幾天追上甲?
【分析與解】二人同時、同地出發同向而行,但開始時,乙比甲行得慢,當乙的速度增加到與甲相同前,兩人間的距離越拉越大,當乙的速度超過甲時,兩人間的距離又越來越近,直到乙追上甲。
開始時,乙一天行的比甲少100-70=30(千米),以後乙每天多行3千米,到與甲速相同要經過30÷3=10(天),即前10天,甲、乙之間的距離是逐天拉大的,第11天兩人速度相同,從第12天起,乙的速度開始比甲快,與甲的距離逐天拉近,所以,乙追上甲用的時間是:10×2+1=21(天)。
答:乙出發後第21天追上甲。
15:甲、乙兩地相距10千米,快、慢兩車都從甲地開往乙地,快車開出時,慢車已行了1.5千米,當快車到達乙地時,慢車距乙地還有1千米,那麼快車在距乙地多少千米處追上慢車?
【分析與解】慢車行了1.5千米,快車才開出,而快車到達乙地時,慢車距乙地還有1千米,就是在快車行10千米的時間里,比慢車多行的路程為1.5+1=2.5(千米)。快車每行1千米比慢車多2.5÷10=0.25(千米)。
16. 有7個數,它們的平均數是18。去掉一個數後,剩下6個數的平均數是19;再去掉一個數後,剩下的5個數的平均數是20。求去掉的兩個數的乘積。
【分析與解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數是12和14它們的乘積是12*14=168
17. 有七個排成一列的數,它們的平均數是 30,前三個數的平均數是28,後五個數的平均數是33。求第三個數。
【分析與解】28×3+33×5-30×7=39。
18. 有兩組數,第一組9個數的和是63,第二組的平均數是11,兩個組中所有數的平均數是8。問:第二組有多少個數?
【分析與解】設第二組有x個數,則63+11x=8×(9+x),解得x=3。
19.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比後兩次的平均分少2分。如果後三次平均分比前三次平均分多3分,那麼第四次比第三次多得幾分?
【分析與解】第三、四次的成績和比前兩次的成績和多4分,比後兩次的成績和少4分,推知後兩次的成績和比前兩次的成績和多8分。因為後三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
20. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數表示)
【分析與解】每20天去9次,9÷20×7=3.15(次)。
編輯於 2020-02-13
查看全部8個回答
數學考試題,數學題目大全,0元試聽,總結高效提分方法。

值得一看的數學相關信息推薦
數學考試題,掌門1對1擁有10000+教研人員,1對1針對性教學,查缺補漏,快速提升!數學考試題,初高中在線1對1輔導,好老師1對1輔導教出好成績。
上海掌小門教育科技..廣告 
掌門優課在線高二數學題目及答案輔導_一線名師在線教學
名師高二數學題目及答案輔導,全程視頻互動,結合地域差異,個性化教學,2節精品小班課免費領!
上海掌小門教育科技..廣告 
相關問題全部
廣告數學題五年級_數學沖刺高分的秘籍_名師來告訴你
數學題五年級_作業幫,緊扣當地教材,快速吃透教材重難點,短時沖刺高分必備。學完就測評孩子成績提升看得見!
572020-06-03
20道五年級下學期奧數題(簡單一點的)不要答案
第六屆小學「希望杯」全國數學邀請賽一、填空題(每小題5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奧運吉祥物中的5個「福娃」取「北京歡迎您」的諧音:貝貝、京京、歡歡、迎迎、妮妮。如果在盒子中從左向右放5個不同的「福娃」,那麼,有 種不同的放法。3、有一列數:1,1,3,8,22,60,164,448……其中的前三個數是1,1,3,從第四個數起,每個數都是這個數前面兩個數之和的2倍。那麼,這列數中的第10個數是 4、有一排椅子有27個座位,為了使後去的人隨意坐在哪個位置都有人與他相鄰,則至少要先坐 人。5、一個擰緊瓶蓋的瓶子里裝著一些水(如圖1),由圖中的數據可推知瓶子的容積是 立方厘米;( 取3.14)6、某小區有一塊如圖2所示的梯形空地,根據圖中的數據計算,空地的面積是 平方米。 7、如圖3,棱長分別為1厘米,2厘米,3厘米,5厘米的四個正方體緊貼在一起,則所得到的多面體的表面積是 平方厘米。8、五年級一班共有36人,每人參加一個興趣小組,共有A,B,C,D,E五個小組,若參加A組的有15人,參加B組的僅次於A組,參加C組、D組的人數相同。參加E組的人數最少,只有4人,那麼,參加B組的有 人。 9、菜地里的西紅柿獲得豐收,摘了全部的 時,裝滿了3筐還多16千克。摘完其餘部分後,又裝滿6筐,則共收得西紅柿 千克。10、工程隊修一條公路,原計劃每天修720米,實際每天比原計劃多修80米。因而提前3天完成任務。這條路全長 千米。11、王叔叔開車從北京到上海,從開始出發,車速即比原計劃的速度提高了 ,結果提前一個半小時到達;返回時,按原計劃的速度行駛280千米後,將車速提高 ,於是提前1小時40分到達北京。北京、上海兩市間的路程是 千米。12、兩個完全相同長方體的長、寬、高分別是5厘米、4厘米、3厘米,把它們拼在一起可組成一個新長方體,在這些長方體中,表面積最小的是 平方厘米。二、解答題(本大題共4小題,每小題15分,共60分)要求:寫出推算過程13、著名的哥德巴赫猜想:「任意一個大於4的偶數都可以表示為兩個質數的和」。如6=3+3,12=5+7,等。那麼自然數100可以寫成多少種兩個不同質數和的形式?請分別寫出來(100=3+97和100=97+3算作同一種形式)14、如圖4(a),ABCD是一個長方形,其中陰影部分是由一副面積為100平方厘米的七巧板(圖4(b))拼成。那麼,長方形ABCD的面積是多少平方厘米? 15、號碼分別為2005、2006、2007、2008的4名運動員進行乒乓球賽,規定每2人比賽的場數是他們號碼的和被4除所得的余數。那麼2008號運動員比賽了多少場?16、有一個蓄水池裝了9根相同的水管,其中一根是進水管,其餘8根是出水管。開始時,進水管以均勻的速度不同地向蓄水池注水。後來,想打開出水管,使池內的水全部排光。如果同時打開8根出水管,則3小時可排盡池內的水;如果僅打開5根出水管,則需6小時才能排盡池內的水。若要在4.5小時內排盡池內的水,那麼應當同時打開多少根出水管第二屆華博士小學數學奧林匹克網上競賽試題及答案選擇正確的答案: (1)在下列算式中加一對括弧後,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的內角和是180度.一個五邊形的內角和應是( )度.A 500 B 540 C 360 D 480(3)甲乙兩個數的和是15.95,甲數的小數點向右移動一位就等於乙數,那麼 甲數是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一個顧客買了6瓶酒,每瓶付1.3元,退空瓶時,售貨員說,每隻空瓶錢比酒錢 少1.1元,顧客應退回的瓶錢是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)兩數相除得3餘10,被除數,除數,商與余數之和是143,這兩個數分別是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女兒的年齡和是44歲,10年後,爸爸的年齡是女兒的3倍,今年女兒是多少歲? A16 B11 C9 D10 (7)一個兩位數除250,余數是37,這樣的兩位數是( ).A 17 B38 C 71 D 91(8)把一條細繩先對折,再把它所折成相等的三折,接著再對折,然後用剪刀在折過三次的繩中間剪一刀,那麼這條繩被剪成( )段.A 13 B 12 C 14 D 15(9) 把兩個表面積都是6平方厘米的正方體拼成一個長方體,這個長方體的表面積( ). A 12 B 18 C10 D11(10)一晝夜鍾面上的時針和分針重疊( )次.A 23 B 12 C 20 D13(11)某車間四月份實際生產機器76台,其中原計劃生產的台數比超產台數多60台, 求四月份比原計劃超產多少台機器?A 16 B 8 C 10 D 12(12)一塊紅磚長25厘米,寬15厘米,用這樣的紅磚拼成一個正方形最少需要多少塊? A 15 B 12 C 75 D 8 E(13)圖中ABCD是長方形,已知AB=4厘米,BC=6厘米,三角形EFD的面積比三角形ABF的面積大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外釣魚已知甲比乙多釣6條,丙釣的是甲的2 倍,比乙多釣22條,問他們三人一共釣了多少條?A 48 B 50 C 52 D 58(15)張師傅以1元錢4個蘋果的價格買進蘋果若干個,又以2元錢5個蘋果有價格把這些蘋果賣出,如果他要賺得15元錢的利潤,那麼他必須賣出蘋果多少個?A 10 B 100 C 20 D 1602006年「希望杯」全國數學大賽(時間:90分鍾 滿分:120分)題 號一二其中:總 分13141516得 分 得分評卷人 一、填空題。(每題6分,共72分。) 1.計算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的個位上的數字是____________。3.有四個連續奇數的和是2008,則其中最小的一個奇數是____________。4.張阿姨把相同數量的蘋果和橘子分給若干名小朋友,每名小朋友分得1個蘋果和3個橘子。最後橘子分完了,蘋果還剩下12個。那麼一共分給了____________名小朋友。5.有這樣一種算式:三個不同的自然數相乘,積是100。這樣的算式有____________種。(交換因數位置的算同一種。)6.在右邊的數陣中,如果按照從上往下,從左往右的順序數數,可以知道第1個數是1,第3個數是2,第6個數是3,……那麼第99個數是____________。7.一天,小慧和劉老師一起談心。小慧問:「老師,您今年有多少歲?」劉老師回答說:「你猜猜,當我像你這么大時,你才1歲;當你到我這么大時,我就34歲了。」劉老師今年的年齡是____________歲。8.小華同學為了在「希望杯」數學大賽中取得好成績,自己做了四份訓練題(每份訓練題滿分為120分)。他第一份訓練題得了90分,第二份訓練題得了100分,那麼第三份訓練題至少要得____________分才能使四份訓練題的平均成績達到105分。9.某小學五年級有9名同學進入了「希望杯」數學大賽的決賽。已知他們在初賽中前3名同學的平均分比前6名同學的平均分多3分,後6名同學的平均分比後3名同學的平均分多3分。那麼前3名同學的總分比後3名同學的總分多____________分。10.在右圖中,已知正方形ABCD的面積是正方形EFGH面積的4倍,正方形AMEN的周長是4厘米,那麼正方形ABCD的周長是____________厘米。11.一個自然數各個數位上的數字之和是15。如果它 的各個數位上的數字都不相同,那麼符合條件的最大數是____________,最小數是____________。12.對自然數作如下操作:如果是偶數就除以2,如果是奇數就減去1,如此操作直到結果變成0為止。那麼經過6次操作後使結果變成0的數有______個,分別是_____________________________________。得分評卷人 二、解答題。(每題12分,共48分。) 13.五名裁判員給一名體操運動員評分,去掉一個最高分和一個最低分後平均得分是9.38分。若去掉一個最高分平均得分為9.26分;若去掉一個最低分平均得分為9.46分。這名體操運動員的最高分和最低分分別是多少分?14.小狗給動物王國編一本童話故事書。 我編這本書一共用了666個數字。小狗編的這本書一共有多少頁?15.學校合唱團全部是來自甲、乙、丙三個班的同學,其中來自甲、乙兩班的同學共有60人。合唱團中不是甲班的同學有100人,不是乙班的同學有90人。問:(1)合唱團中來自甲、乙兩班的同學各有多少人?(2)合唱團的同學一共有多少人?16.下面是一些「神秘等式」。式中的「+」、「-」、「×」、「÷」等運算符號的意義都與普通的用法相同,但0、1、2、3、……、9等數字所代表的意義則與普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)請你破解出這些「神秘等式」中的秘密,找出其中每個數字所代表的普通意義。(2)普通意義的2006用「神秘等式」中數字所代表的意義來表示,怎樣表示?(3)如果採用「神秘等式」中數字所代表的意義,那麼,60+06等於多少?
1 瀏覽560
求,,,20道小學五年級的奧數題及答案!
1.甲乙丙三人同時從同一地點出發沿同一路線追趕前面的小明;他們三人分別用9分,15分,20分追上小明,已知甲每小時行24千米,以每小時行20千米,求丙每小時行多少千米? 甲9分追上時行走了24*9/60=3.6,乙9分時行走了20*9/60=3,說明在9分時,乙和小明距離為0.6,15分時乙追上,用了6分追了0.6千米,說明乙比小明每分多走0.1千米,乙速度為20,則小明為14千米每小時,則設丙速度為x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小時) 2.甲乙兩人同時從山腳開始爬山,到達山頂後就立即下山,甲乙兩人下山的速度都是各自上山速度的二倍,嫁到山頂是一句山頂還有500米,甲回到山腳是乙剛好下到半山腰,求從山腳到山頂的路程。 甲乙兩人下山的速度都是各自上山速度的二倍,甲到山頂時乙距山頂還有500米,甲到山腳時乙距離山腳距離為500*(1+2)=1500米。 甲回到山腳是乙剛好下到半山腰,所以,從山腳到山頂的路程為3000米 3.甲一分鍾能洗3個盤子或9個碗,乙一分鍾能洗2個盤子或7個碗,甲乙兩人合作,20分鍾洗了134個盤子和碗,問洗了幾個盤子幾個碗? 設甲乙各用x、y分鍾洗盤子,則 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盤子=16*3+18*2=84個,碗=4*9+2*7=50個 4.全班有30名學生,其中17人會騎自行車,16人會游泳,11人會滑冰,

⑼ 小學奧數題精選題目及答案

30已知減數與差的和是2.7,求被減數 減數與差的和是多少?
被減數=減數+差=2.7,
被減數+減數+差=5.4
答:被減數 減數與差的和是5.4。 贊同2| 評論 2011-5-22 06:06 海盜船長是 | 一級
六(一)有學生48人,其中女生比男生的3/5多8人,問這個班有男女各多少人? 贊同1| 評論
等待您來回答2回答要30道5年級數學奧數題,帶答案。0回答10快快!!我急求有難度的奧數題(有答案)!!!1回答找300道初二奧數題(要附答案)最好是填空選擇簡單點3回答奧數題和答案誰能給我一些??1回答初一下冊的數學奧數題和答案1回答孩子要考工大附中有朋友幫出點小升初的奧數題要答案謝謝2回答5誰能給我一些六年級的奧數題,用方程解的,附答案,我用來做練習,題...2回答5小學奧數題精選題目及答案更多等待您來回答的問題>>
分享到:

閱讀全文

與小學奧數題目及答案相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99