Ⅰ 小學奧數追及問題及答案
每跑一圈,甲用一分20秒,乙用一分40秒,丙用120秒
最小公倍數=[20,40,120]=120(秒)=2分鍾
∴經過2分鍾,他們三人有並排在一起.
Ⅱ 小學奧數題精選題目及答案
30已知減數與差的和是2.7,求被減數 減數與差的和是多少?
被減數=減數+差=2.7,
被減數+減數+差=5.4
答:被減數 減數與差的和是5.4。 贊同2| 評論 2011-5-22 06:06 海盜船長是 | 一級
六(一)有學生48人,其中女生比男生的3/5多8人,問這個班有男女各多少人? 贊同1| 評論
等待您來回答2回答要30道5年級數學奧數題,帶答案。0回答10快快!!我急求有難度的奧數題(有答案)!!!1回答找300道初二奧數題(要附答案)最好是填空選擇簡單點3回答奧數題和答案誰能給我一些??1回答初一下冊的數學奧數題和答案1回答孩子要考工大附中有朋友幫出點小升初的奧數題要答案謝謝2回答5誰能給我一些六年級的奧數題,用方程解的,附答案,我用來做練習,題...2回答5小學奧數題精選題目及答案更多等待您來回答的問題>>
分享到:
Ⅲ 奧數題及答案
【題目2】一件商品按原價的8折出售,能獲利20%,由於成本降低,先按原價的75折出售,能獲利25%,那麼現在的成本比原來降低了幾分之幾?
【解答】原來的成本看作單位1,那麼原價就是(1+20%)÷80%=150%。現在的成本是150%×75%÷(1+25%)=90%,所以成本降低了10%。
【題目3】某校四年級原有兩個班,現在重新編為三個班,將原一班的1/3和原二班的1/4組成新一班,將原一班的1/4和原二班的1/3組成新二班,餘下的30人組成新三班。如果新一班的人數比新二班的人數多10%。新一班有多少人?
【解答】原來兩班總數的1-1/4-1/3=5/12是30人,那麼原來兩個班共30÷5/12=72人,新一班和新二班共72-30=42人,新二班有42÷(1+10%+1)=20人,新一班就是42-20=22人
【題目4】已知甲、乙兩車分別從相距300千米的A、B兩地同時出發,相向而行。其中甲到B以後立即反回,甲去時用了3小時,返回時用了15/4小時。乙車較慢,甲返回後,再過一會才到A地。當他們行駛與各自的出發地距離相等時,都用了9/2小時,求他們何時相遇。
【解答】甲車去時每小時行300÷3=100千米,返回時每小時行300÷15/4=80千米。乙車9/2小時行的路程相當於甲車返回時3+15/4-9/2=9/4小時行的,乙車每小時行80×9/4÷9/2=40千米。所以出發後300÷(100+40)=15/7小時相遇。
【題目5】小剛和小明從家出發相向而行,小剛每分鍾走52米,小明每分鍾走70米,兩人在途中A相遇,若小剛提前4分鍾出發,且速度不變,小明每分鍾走90米,兩人仍然在A處相遇,兩家距離多少米?
【解答】4分鍾相當於相遇時間的1-70/90=2/9,相遇時間是4÷2/9=18分鍾,相遇時間是(52+70)×18=2196米
【題目6】某車間共有86名工人,已知每人平均每天可加工甲種部件15個,或乙種部件12個,或丙種部件9個,要使加工後的部件按3個甲種部件、2個乙種部件和1個丙種部件配套,則應安排多少人加工甲種部件,多少人加工乙種部件,多少人加工丙種部件。
【解答】做3個甲部件需要3/15個人,2個乙部件需要2/12個人,1個丙部件需要1/9個人。人數的比就是3/15:2/12:1/9=18:15:10,按比例分配就是甲部件安排36人,乙部件安排30人,丙部件安排20人。
【題目7】女兒每天放學後,父親都准時去接.某日女兒提前放學步行回家.而父親當天因事晚10分鍾出發接女兒.女兒在步行8分鍾後遇到父親,然後一起回家.結果到家時間比平時晚了3分鍾,假設父親的速度保持恆定,求女兒提前多少分鍾放學?
【解答】如果女兒在老地方等,那麼就要晚10分鍾回家,最後只晚了3分鍾,說明父親少行了7分鍾的路。如果父親要行到老地方,就還要行7÷2=3.5分鍾,說明此時此刻已經比往常晚了10-3.5=6.5分鍾,女兒行了8分鍾之後才比往常晚6.5分鍾,就說明女兒比平時早出發8-6.5=1.5分鍾。
【題目8】用0,1,2,…,9十個數字組成五個兩位數,每個數字只能用一次,要求它們的和是一個奇數,並且盡可能的大,那麼這五個兩位數的和是多少?
【解答】首先0隻能在個位,那麼剩下4個個位數字,並且其和是奇數,這樣就是兩種情況,只有1個奇數或者有3個奇數。要使和盡可能大,那麼個位數字要盡可能小。當1個奇數時,最少是0+1+2+4+6=13,當3個奇數時,最少是0+1+2+3+5=11,所以還是用後面這個辦法。個位的和是11,十位的數字和是4+6+7+8+9=34,即總和是34×10+11=351
【題目9】某商品成本為每個80元,如果按每個100元賣,可賣出1000個。當這種商品每個漲價1元,銷售量就減少20個。為了賺取最多的利潤,售價應定為每個多少元。
【解答】把100-80=20元的每1元看作1份,20元就是20份。銷量減少20個,把這20個看作1份,那麼1000個就是50份。單價漲1份,數量就少1份,單價和數量的數據的和是不變的,要使單價和數量的積最大,就得讓兩個數據最接近,所以當兩個數據都是(50+20)÷2=35份時,即高出35-20=15元的時候。即定價為100+15=115元的時候獲得的利潤最多。
【題目10】甲乙兩人分別從A,B 兩地出發,相向而行,出發時他們的速度比是3:2,他們第一次相遇後,甲的速度提高了20% ,乙的速度提高了30% ,這樣,當甲到達B地時,乙離地A地還有14千米 ,那麼AB兩地之間的距離是多少?
【解答】相遇後的速度比是[3×(1+20%)]:[2×(1+30%)]=18:13,甲行剩下的2份乙就可以行2×13/18=13/9份。還差3-13/9=14/9份,所以每份是14÷14/9=9千米,那麼AB的距離是9×(3+2)=45千米
Ⅳ 求小學奧數題,帶答案更好。謝謝。
火車過橋問題(二)
一、填空題
1.有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
2.某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度.
3.現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米.如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長.
4.一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?
5.小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表.小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒.已知兩電線桿之間的距離是100米.你能幫助小英和小敏算出火車的全長和時速嗎?
6.一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒.求這列火車的速度與車身長各是多少米.
7.兩人沿著鐵路線邊的小道,從兩地出發,以相同的速度相對而行.一列火車開來,全列車從甲身邊開過用了10秒.3分後,乙遇到火車,全列火車從乙身邊開過只用了9秒.火車離開乙多少時間後兩人相遇?
8. 兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
9.某人步行的速度為每秒鍾2米.一列火車從後面開來,越過他用了10秒鍾.已知火車的長為90米,求列車的速度.
10.甲、乙二人沿鐵路相向而行,速度相同,一列火車從甲身邊開過用了8秒鍾,離甲後5分鍾又遇乙,從乙身邊開過,只用了7秒鍾,問從乙與火車相遇開始再過幾分鍾甲乙二人相遇?
二、解答題
11.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
12.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
13.一人以每分鍾120米的速度沿鐵路邊跑步.一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度.
14.一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
———————————————答 案——————————————————————
一、填空題
120米
102米
17x米
20x米
尾
尾
頭
頭
1. 這題是「兩列車」的追及問題.在這里,「追及」就是第一列車的車頭追及第二列車的車尾,「離開」就是第一列車的車尾離開第二列車的車頭.畫線段圖如下:
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 畫段圖如下:
頭
90米
尾
10x
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
3. (1)車頭相齊,同時同方向行進,畫線段圖如下:
則快車長:18×12-10×12=96(米)
(2)車尾相齊,同時同方向行進,畫線段圖如下:
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
則慢車長:18×9-10×9=72(米)
4. (1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)
5. (1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
6. 設火車車身長x米,車身長y米.根據題意,得
①②
解得
7. 設火車車身長x米,甲、乙兩人每秒各走y米,火車每秒行z米.根據題意,列方程組,得
①②
①-②,得:
火車離開乙後兩人相遇時間為:
(秒) (分).
8. 解:從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+60)¸(15+20)=8(秒).
9. 這樣想:列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
答:列車的速度是每秒種11米.
10. 要求過幾分鍾甲、乙二人相遇,就必須求出甲、乙二人這時的距離與他們速度的關系,而與此相關聯的是火車的運動,只有通過火車的運動才能求出甲、乙二人的距離.火車的運行時間是已知的,因此必須求出其速度,至少應求出它和甲、乙二人的速度的比例關系.由於本問題較難,故分步詳解如下:
①求出火車速度 與甲、乙二人速度 的關系,設火車車長為l,則:
(i)火車開過甲身邊用8秒鍾,這個過程為追及問題:
故 ; (1)
(i i)火車開過乙身邊用7秒鍾,這個過程為相遇問題:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火車頭遇到甲處與火車遇到乙處之間的距離是:
.
③求火車頭遇到乙時甲、乙二人之間的距離.
火車頭遇甲後,又經過(8+5×60)秒後,火車頭才遇乙,所以,火車頭遇到乙時,甲、乙二人之間的距離為:
④求甲、乙二人過幾分鍾相遇?
(秒) (分鍾)
答:再過 分鍾甲乙二人相遇.
二、解答題
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列車的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:從車頭進入隧道到車尾離開隧道共需80秒.
平均數問題
1. 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?
2. 甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?
3. 已知八個連續奇數的和是144,求這八個連續奇數。
4. 甲種糖每千克8.8元,乙種糖每千克7.2元,用甲種糖5千克和多少乙種糖混合,才能使每千克糖的價錢為8.2元?
5. 食堂買來5隻羊,每次取出兩只合稱一次重量,得到十種不同的重量(千克):47、50、51、52、53、54、55、57、58、59.問這五隻羊各重多少千克?
等差數列
1、下面是按規律排列的一串數,問其中的第1995項是多少?
解答:2、5、8、11、14、……。 從規律看出:這是一個等差數列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984
2、在從1開始的自然數中,第100個不能被3除盡的數是多少?
解答:我們發現:1、2、3、4、5、6、7、……中,從1開始每三個數一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數,共有50×3=150,那麼第100個不能被3除盡的數就是150-1=149.
3、把1988表示成28個連續偶數的和,那麼其中最大的那個偶數是多少?
解答:28個偶數成14組,對稱的2個數是一組,即最小數和最大數是一組,每組和為: 1988÷14=142,最小數與最大數相差28-1=27個公差,即相差2×27=54, 這樣轉化為和差問題,最大數為(142+54)÷2=98。
4、在大於1000的整數中,找出所有被34除後商與余數相等的數,那麼這些數的和是多少?
解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數的和為35×(29+30+31+32+33)=5425
5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,並算出這若干張卡片上各數的和除以17的余數,再把這個余數寫在另一張黃色的卡片上放回盒內,經過若干次這樣的操作後,盒內還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數分別是19和97,求那張黃色卡片上所寫的數。
解答:因為每次若干個數,進行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設有2個數20和30,它們的和除以17得到黃卡片數為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數16,也就是說不管幾個數相加,總和除以17的余數不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數的和除以17的余數為0,而19+97=116,116÷17=6……14, 所以黃卡片的數是17-14=3。
6、下面的各算式是按規律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那麼其中第多少個算式的結果是1992?
解答:先找出規律: 每個式子由2個數相加,第一個數是1、2、3、4的循環,第二個數是從1開始的連續奇數。 因為1992是偶數,2個加數中第二個一定是奇數,所以第一個必為奇數,所以是1或3, 如果是1:那麼第二個數為1992-1=1991,1991是第(1991+1)÷2=996項,而數字1始終是奇數項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。
7、如圖,數表中的上、下兩行都是等差數列,那麼同一列中兩個數的差(大數減小數)最小是多少?
解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。
8、有19個算式:
那麼第19個等式左、右兩邊的結果是多少?
解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數? 各式用數分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數相加? 各式左邊用數分別為3、4、5、……、第19個應該是3+1×18=21個, 所以第19個式子結果是397+398+399+……+417=8547。
9、已知兩列數: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數中相同的項數共有多少對?
解答:易知第一個這樣的數為5,注意在第一個數列中,公差為3,第二個數列中公差為4,也就是說,第二對數減5即是3的倍數又是4的倍數,這樣所求轉換為求以5為首項,公差為12的等差數的項數,5、17、29、……, 由於第一個數列最大為2+(200-1)×3=599; 第二數列最大為5+(200-1)×4=801。新數列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
10、如圖,有一個邊長為1米的下三角形,在每條邊上從頂點開始,每隔2厘米取一個點,然後以這些點為端點,作平行線將大正三角形分割成許多邊長為2厘米的小正三角形。求⑴邊長為2厘米的小正三角形的個數,⑵所作平行線段的總長度。
解答:⑴ 從上數到下,共有100÷2=50行, 第一行1個,第二行3個,第三行5個,……,最後一行99個, 所以共有(1+99)×50÷2=2500個; ⑵所作平行線段有3個方向,而且相同, 水平方向共作了49條, 第一條2厘米,第二條4厘米,第三條6厘米,……, 最後一條98厘米, 所以共長(2+98)×49÷2×3=7350厘米。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續派相同人數的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那麼,這月由總廠派到分廠工作的工人共多少人?
解答:11月份有30天。 由題意可知,總廠人數每天在減少,最後為240人,且每天人數構成等差數列,由等差數列的性質可知,第一天和最後一天人數的總和相當於8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明讀一本英語書,第一次讀時,第一天讀35頁,以後每天都比前一天多讀5頁,結果最後一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以後每天都比前一天多讀5頁,結果最後一天只需讀40頁就可以讀完,問這本書有多少頁?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調整如下: 第一方案:40、45、50、55、……35+35(第一天放到最後惶熘腥ィ?/P>第二方案:40、45、50、55、……(最後一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。
13、7個小隊共種樹100棵,各小隊種的查數都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?
解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫
Ⅳ 小學奧數題及答案
設騾子,馬,驢的數目分別為x,y,z,則
x+y+z=100
3x+2y+z/3=100
約去y得,5/3*z=100+x >=100 所以z>=60
約去x得,8/3*z=200-y <=200 所以z<=75
同時z又是3的倍數
然後就試一下z=60,63,66,69,72,75,分別放到原方程,有整數解的就是答案了