『壹』 30道六年級上冊奧數題及答案(問題要短的)
應用題:
六年級有三個班,一班與二班的學生人數和比三班學生人數多3/4,二班與三班 的學生人數和比六年級學生總數2/3多3人,已知二班有學生43人,六年級共有學生多少人?
一個圓錐形容器中裝有水4升(頂點向下裝水),這時水面高度正好是圓錐高度的1/2,水面半徑是容器半徑的1/2,這個容器還能裝多少升水?
加工一批零件,甲獨做要20小時,乙獨做要30小時,現在兩人合做,每小時甲比乙多做40個,這批零件有多少個?
某校六年級進行一次數學競賽,設一、二、三等獎,其中獲得一等獎的占獲獎總數的5分之1,獲二等獎的與獲三等獎的人數的比是3:5,獲得二等獎的人數比獲三等獎人數少4人,一共有多少人獲獎?
小明讀一本書,7天後還剩全書的4分之1,以後5天共讀了120頁,正好讀完,小明讀這本書平均每天讀多少頁?
一本書已經看了58頁,還剩下全書頁數的25%少1頁,這本書共有多少頁?
一位老奶奶去市場買菜,去時要走8分鍾,回來是因為提著東西比過時慢了2分鍾,在去的路上第四分鍾看到維修工在維修電纜,奶奶在回來的路上第幾分鍾再次看到維修工?
一、 五年級有學生192人,其中「三好」學生32人,「三好」學生佔五年級學生總人數的幾分之幾?
應用題
二、 新華書店運來一批科技書籍,第一天售出300本,占這批書籍的30%,這批科技書籍共有多少本?
三、 五年級有學生280人,其中男生佔50% ,五年級男生有多少人?
四、 六年級有學生300人,是三年級的2倍還少10人,三年級有多少人?
五、 水果店有蘋果60箱,是橘子的3倍還多10箱,水果店有橘子多少箱?
一、 五年級有學生192人,其中「三好」學生32人,「三好」學生佔五年級學生總人數的幾分之幾?
應用題
二、 新華書店運來一批科技書籍,第一天售出300本,占這批書籍的30%,這批科技書籍共有多少本?
三、 五年級有學生280人,其中男生佔50% ,五年級男生有多少人?
四、 六年級有學生300人,是三年級的2倍還少10人,三年級有多少人?
五、 水果店有蘋果60箱,是橘子的3倍還多10箱,水果店有橘子多少箱?
18.已知某一鐵橋長1000米,現有一列火車從橋上通過,測得火車開始上橋到完全通過橋共用一分鍾,整列火車完全在橋上的時間為40秒鍾,求火車的長度和速度。
19.有一位婦女在河邊洗碗,旁人看見以後問她為什麼要用這么多碗?她回答說,家中來了許多客人,他們每兩個人合用一隻菜碗,每3個人合用一隻湯碗,每4個人合用一隻飯碗,共用了65隻碗.她家究竟來了多少客人?
20.小明有一包餅干,4個一數,5個一數,6個一數都多一個,小明的這包餅干至少有多少個?
1.小明看一本書,原計劃每天看35頁,32天看完。實際每天比計劃多看5頁,實際用多少天看完?
2.修一條路,原計劃每天修0.4千米,70天可以修完。實際每天修的米數是計劃的1.25倍。實際用多少天完成?
3.綠化隊植樹,計劃8天完成任務。實際每天植樹240棵,7天就完成了全部的植樹任務。實際比計劃每天多植樹多少棵?
4.某街道居委會慰問軍烈屬,給他們送去紅糖和白糖。每到一戶送去2袋紅糖和5袋白糖,送到最後一戶時,紅糖正好送完,還剩下10袋白糖。已知帶去的白糖的袋數是紅糖袋數的3倍,那麼帶去的紅糖、白糖各多少袋?
5.服裝廠要加工一批服裝。第一車間和第二車間同時加工60天正好完成。已知第一車間加工的服裝占服裝總數的45%,第二車間每天加工132件。第一車間每天加工多少件?
6.洗衣機廠計劃生產一批洗衣機。結果9天恰好完成了計劃的37.5%。照這樣計算,完成計劃還要多少天?
7.有一堆煤可以燒120天。由於改進燒煤技術,每天節約用煤0.25噸,結果這堆煤燒了150天。這堆煤共有多少噸?
8.牽走7頭黃牛放在水牛群之中,那麼這三群牛的頭數正好相等。問奶牛有多少頭?
9.甲乙兩個車間加工一批同樣的零件。如果甲車間先加工35個,然後乙先加工1天,然後乙車間再開始加工,經過5天後兩車間加工的零件數相等。那麼乙車間一天加工多少個零件?
12.有100千克青草,含水量為66%,晾曬後含水量降到15%。這些青草晾曬後重多少千克?
13.將一個正方形的一邊減少1/5,另一邊增加 4米,得到一個長方形。這個長方形與原來正方形面積相等。那麼正方形面積有多少平方米?
14.某車間加工甲、乙兩種零件。已加工好的零件中甲種零件佔30%,後來又加工好了24個乙種零件,這時甲種零件佔25%。那麼現在已加工好兩種零件共多少個?
15.甲、乙、丙三人共生產零件1760個。如果甲少生產2/9,乙多生產80個,那麼甲、乙、丙三人生產零件的個數相等。甲、乙、丙三人各生產了多少個?
16.小明今年的年齡是他爸爸年齡的1/6,15年後他的年齡是他爸爸年齡的4/9。小明和他爸爸今年各多少歲?
17.某校有學生314人,其中男生人數的2/3比女生人數的4/5少40人。這個學校男生、女生各多少人?
18.甲、乙兩班人數相等,各有一些同學參加了數學小組。甲班參加數學小組的人數恰好是乙班沒參加數學小組人數的1/3;乙班參加數學小組的人數恰好是甲班沒參加數學小組人數的1/4。那麼甲班沒參加數學小組的人數是乙班沒參加數學小組人數的幾分之幾?
19.容器里放著某種濃度的酒精溶液若干升,加 1升水後純酒精含量為25%;再加1升純酒精,容器里純酒精含量為40%。那麼原來容器里的酒精溶液共幾升?濃度為百分之幾?
20.甲、乙、丙三人合抄一份稿件,1小時可以完成。如果甲、乙二人合抄,要80分鍾完成;如果乙、丙二人合抄,要100分鍾完成。如果這份稿件由乙一人獨抄,要幾小時完成?
21.一件工程,甲獨做,20天可以完成;乙獨做,30天可以完成。現在兩人合做,中間甲休息了3天,乙休息了若干天,結果經過16天才完成。問乙休息了幾天?
22.注滿一池水,只打開甲管,要8小時;只打開乙管,要12小時;只打開丙管,要15小時。今開始只打開甲、乙兩管,中途關掉甲、乙兩管,然後打開丙管,前後共用了10小時才注滿一池水。那麼打開丙管注水幾小時?
23.某工程隊承建一項工程,要用12天完成。如果只讓其中的甲、乙兩個小隊交換一下工作內容,那麼全工程就要推遲3天完成;如果讓其中甲、乙兩個小隊交換一下工作內容的同時,也讓丙、丁兩個小隊交換工作內容,仍然可以按期完成全工程。如果只讓丙、丁兩個小隊交換工作內容,那麼可以使全工程提前幾天完成?
24.甲、乙兩隊合干一項工程,甲隊先獨幹了6天後,乙隊參加和甲隊一起干,又過了4天完成了全工程的1/3。又過了10天正好完成了全工程的3/4。因甲隊另有任務調出,乙隊繼續工作,直到完成全工程。從開始到完工用了多少天?
25.甲、乙二人同時從A、B兩地出發,各自去B、A兩地,二人速度比為7∶6。二人相遇後繼續向前行進,這時乙的速度比原來速度每小時增加來的速度。
1.兩個小隊割青草,每個小隊割3捆,每捆重8千克。一共割了多少千克?
2.張家莊小學新修9個教室,每個教室有6扇窗子,每扇窗子安8塊玻璃,一共要安多少塊玻璃?
3.每個書架有5層,每層放30本書,3個書架一共放多少本書?
4.學校舉行廣播操表演。三、四、五年級各有3個班,每班選16人參加。參加表演的一共有多少人?
連除應用題(兩種方法解答)
1.商店賣出7箱保溫杯,每箱12個,一共收入336元,每個保溫杯多少元?
2.三年級有2個班,每個班有43個同學,一共栽樹258棵,平均每個同學栽樹多少棵?
3.百貸商店賣出3箱上衣,每箱20件,一共賣了720元,每件上衣的價錢是多少元?
4.學校給三好學生買獎品,買了2盒鋼筆,每盒10支,一共用去80元。每支鋼筆多少元?
這應該是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
希望能幫到你,需要的話我還有,要選我滿意答案哦
『貳』 六年級上冊30道奧數題(帶答案)
應用題:
六年級有三個班,一班與二班的學生人數和比三班學生人數多3/4,二班與三班 的學生人數和比六年級學生總數2/3多3人,已知二班有學生43人,六年級共有學生多少人?
一個圓錐形容器中裝有水4升(頂點向下裝水),這時水面高度正好是圓錐高度的1/2,水面半徑是容器半徑的1/2,這個容器還能裝多少升水?
加工一批零件,甲獨做要20小時,乙獨做要30小時,現在兩人合做,每小時甲比乙多做40個,這批零件有多少個?
某校六年級進行一次數學競賽,設一、二、三等獎,其中獲得一等獎的占獲獎總數的5分之1,獲二等獎的與獲三等獎的人數的比是3:5,獲得二等獎的人數比獲三等獎人數少4人,一共有多少人獲獎?
小明讀一本書,7天後還剩全書的4分之1,以後5天共讀了120頁,正好讀完,小明讀這本書平均每天讀多少頁?
一本書已經看了58頁,還剩下全書頁數的25%少1頁,這本書共有多少頁?
一位老奶奶去市場買菜,去時要走8分鍾,回來是因為提著東西比過時慢了2分鍾,在去的路上第四分鍾看到維修工在維修電纜,奶奶在回來的路上第幾分鍾再次看到維修工?
一、 五年級有學生192人,其中「三好」學生32人,「三好」學生佔五年級學生總人數的幾分之幾?
應用題
二、 新華書店運來一批科技書籍,第一天售出300本,占這批書籍的30%,這批科技書籍共有多少本?
三、 五年級有學生280人,其中男生佔50% ,五年級男生有多少人?
四、 六年級有學生300人,是三年級的2倍還少10人,三年級有多少人?
五、 水果店有蘋果60箱,是橘子的3倍還多10箱,水果店有橘子多少箱?
一、 五年級有學生192人,其中「三好」學生32人,「三好」學生佔五年級學生總人數的幾分之幾?
應用題
二、 新華書店運來一批科技書籍,第一天售出300本,占這批書籍的30%,這批科技書籍共有多少本?
三、 五年級有學生280人,其中男生佔50% ,五年級男生有多少人?
四、 六年級有學生300人,是三年級的2倍還少10人,三年級有多少人?
五、 水果店有蘋果60箱,是橘子的3倍還多10箱,水果店有橘子多少箱?
18.已知某一鐵橋長1000米,現有一列火車從橋上通過,測得火車開始上橋到完全通過橋共用一分鍾,整列火車完全在橋上的時間為40秒鍾,求火車的長度和速度。
19.有一位婦女在河邊洗碗,旁人看見以後問她為什麼要用這么多碗?她回答說,家中來了許多客人,他們每兩個人合用一隻菜碗,每3個人合用一隻湯碗,每4個人合用一隻飯碗,共用了65隻碗.她家究竟來了多少客人?
20.小明有一包餅干,4個一數,5個一數,6個一數都多一個,小明的這包餅干至少有多少個?
1.小明看一本書,原計劃每天看35頁,32天看完。實際每天比計劃多看5頁,實際用多少天看完?
2.修一條路,原計劃每天修0.4千米,70天可以修完。實際每天修的米數是計劃的1.25倍。實際用多少天完成?
3.綠化隊植樹,計劃8天完成任務。實際每天植樹240棵,7天就完成了全部的植樹任務。實際比計劃每天多植樹多少棵?
4.某街道居委會慰問軍烈屬,給他們送去紅糖和白糖。每到一戶送去2袋紅糖和5袋白糖,送到最後一戶時,紅糖正好送完,還剩下10袋白糖。已知帶去的白糖的袋數是紅糖袋數的3倍,那麼帶去的紅糖、白糖各多少袋?
5.服裝廠要加工一批服裝。第一車間和第二車間同時加工60天正好完成。已知第一車間加工的服裝占服裝總數的45%,第二車間每天加工132件。第一車間每天加工多少件?
6.洗衣機廠計劃生產一批洗衣機。結果9天恰好完成了計劃的37.5%。照這樣計算,完成計劃還要多少天?
7.有一堆煤可以燒120天。由於改進燒煤技術,每天節約用煤0.25噸,結果這堆煤燒了150天。這堆煤共有多少噸?
8.牽走7頭黃牛放在水牛群之中,那麼這三群牛的頭數正好相等。問奶牛有多少頭?
9.甲乙兩個車間加工一批同樣的零件。如果甲車間先加工35個,然後乙先加工1天,然後乙車間再開始加工,經過5天後兩車間加工的零件數相等。那麼乙車間一天加工多少個零件?
12.有100千克青草,含水量為66%,晾曬後含水量降到15%。這些青草晾曬後重多少千克?
13.將一個正方形的一邊減少1/5,另一邊增加 4米,得到一個長方形。這個長方形與原來正方形面積相等。那麼正方形面積有多少平方米?
14.某車間加工甲、乙兩種零件。已加工好的零件中甲種零件佔30%,後來又加工好了24個乙種零件,這時甲種零件佔25%。那麼現在已加工好兩種零件共多少個?
15.甲、乙、丙三人共生產零件1760個。如果甲少生產2/9,乙多生產80個,那麼甲、乙、丙三人生產零件的個數相等。甲、乙、丙三人各生產了多少個?
16.小明今年的年齡是他爸爸年齡的1/6,15年後他的年齡是他爸爸年齡的4/9。小明和他爸爸今年各多少歲?
17.某校有學生314人,其中男生人數的2/3比女生人數的4/5少40人。這個學校男生、女生各多少人?
18.甲、乙兩班人數相等,各有一些同學參加了數學小組。甲班參加數學小組的人數恰好是乙班沒參加數學小組人數的1/3;乙班參加數學小組的人數恰好是甲班沒參加數學小組人數的1/4。那麼甲班沒參加數學小組的人數是乙班沒參加數學小組人數的幾分之幾?
19.容器里放著某種濃度的酒精溶液若干升,加 1升水後純酒精含量為25%;再加1升純酒精,容器里純酒精含量為40%。那麼原來容器里的酒精溶液共幾升?濃度為百分之幾?
20.甲、乙、丙三人合抄一份稿件,1小時可以完成。如果甲、乙二人合抄,要80分鍾完成;如果乙、丙二人合抄,要100分鍾完成。如果這份稿件由乙一人獨抄,要幾小時完成?
21.一件工程,甲獨做,20天可以完成;乙獨做,30天可以完成。現在兩人合做,中間甲休息了3天,乙休息了若干天,結果經過16天才完成。問乙休息了幾天?
22.注滿一池水,只打開甲管,要8小時;只打開乙管,要12小時;只打開丙管,要15小時。今開始只打開甲、乙兩管,中途關掉甲、乙兩管,然後打開丙管,前後共用了10小時才注滿一池水。那麼打開丙管注水幾小時?
23.某工程隊承建一項工程,要用12天完成。如果只讓其中的甲、乙兩個小隊交換一下工作內容,那麼全工程就要推遲3天完成;如果讓其中甲、乙兩個小隊交換一下工作內容的同時,也讓丙、丁兩個小隊交換工作內容,仍然可以按期完成全工程。如果只讓丙、丁兩個小隊交換工作內容,那麼可以使全工程提前幾天完成?
24.甲、乙兩隊合干一項工程,甲隊先獨幹了6天後,乙隊參加和甲隊一起干,又過了4天完成了全工程的1/3。又過了10天正好完成了全工程的3/4。因甲隊另有任務調出,乙隊繼續工作,直到完成全工程。從開始到完工用了多少天?
25.甲、乙二人同時從A、B兩地出發,各自去B、A兩地,二人速度比為7∶6。二人相遇後繼續向前行進,這時乙的速度比原來速度每小時增加來的速度。
1.兩個小隊割青草,每個小隊割3捆,每捆重8千克。一共割了多少千克?
2.張家莊小學新修9個教室,每個教室有6扇窗子,每扇窗子安8塊玻璃,一共要安多少塊玻璃?
3.每個書架有5層,每層放30本書,3個書架一共放多少本書?
4.學校舉行廣播操表演。三、四、五年級各有3個班,每班選16人參加。參加表演的一共有多少人?
連除應用題(兩種方法解答)
1.商店賣出7箱保溫杯,每箱12個,一共收入336元,每個保溫杯多少元?
2.三年級有2個班,每個班有43個同學,一共栽樹258棵,平均每個同學栽樹多少棵?
3.百貸商店賣出3箱上衣,每箱20件,一共賣了720元,每件上衣的價錢是多少元?
4.學校給三好學生買獎品,買了2盒鋼筆,每盒10支,一共用去80元。每支鋼筆多少元?
這應該是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
足夠了吧,希望能幫到你啊!
『叄』 小學六年級奧數計算題和答案50道
六年級奧數題及答案
1
電影票原價每張若干元,現在每張降低3元出售,觀眾增加一半,收入增加五分之一,一張電影票原價多少元?
解:設一張電影票價x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x這一步是什麼意思,為什麼這么做
(x-3){現在電影票的單價}×(1+1/2){假如原來觀眾總數為整體1,則現在的觀眾人數為(1+2/1)}
左邊算式求出了總收入
(1+1/5)x{其實這個算式應該是:1x*(1+5/1) 把原觀眾人數看成整體1,則原來應收入1x元,而現在增加了原來的五分之一,就應該再*(1+5/1),減縮後得到(1+1/5x)}
如此計算後得到總收入,使方程左右相等
2
甲乙在銀行存款共9600元,如果兩人分別取出自己存款的40%,再從甲存款中提120元給乙。這時兩人錢相等,求 乙的存款
答案
取40%後,存款有
9600×(1-40%)=5760(元)
這時,乙有:5760÷2+120=3000(元)
乙原來有:3000÷(1-40%)=5000(元)
3
由奶糖和巧克力糖混合成一堆糖,如果增加10顆奶糖後,巧克力糖占總數的60%。再增加30顆巧克力糖後,巧克力糖占總數的75%,那麼原混合糖中有奶糖多少顆?巧克力糖多少顆?
答案
加10顆奶糖,巧克力占總數的60%,說明此時奶糖佔40%,
巧克力是奶糖的60/40=1。5倍
再增加30顆巧克力,巧克力佔75%,奶糖佔25%,巧克力是奶糖的3倍
增加了3-1.5=1.5倍,說明30顆佔1.5倍
奶糖=30/1.5=20顆
巧克力=1.5*20=30顆
奶糖=20-10=10顆
小明和小亮各有一些玻璃球,小明說:「你有球的個數比我少1/4!」小亮說:「你要是能給我你的1/6,我就比你多2個了。」小明原有玻璃球多少個?
答案
小明說:「你有球的個數比我少1/4!」,則想成小明的球的個數為4份,則小亮的球的個數為3份
4*1/6=2/3 (小明要給小亮2/3份玻璃球)
小明還剩:4-2/3=3又1/3(份)
小亮現有:3+2/3=3又2/3(份)
這多出來的1/3份對應的量為2,則一份里有:3*2=6(個)
小明原有4份玻璃球,又知每份玻璃球為6個,則小明原有玻璃球4*6=24(個)
搬運一個倉庫的貨物,甲需要10小時,乙需要12小時,丙需要15小時.有同樣的倉庫A和B,甲在A倉庫、乙在B倉庫同時開始搬運貨物,丙開始幫助甲搬運,中途又轉向幫助乙搬運.最後兩個倉庫貨物同時搬完.問丙幫助甲、乙各多少時間?
解:設搬運一個倉庫的貨物的工作量是1.現在相當於三人共同完成工作量2,所需時間是
答:丙幫助甲搬運3小時,幫助乙搬運5小時
解本題的關鍵,是先算出三人共同搬運兩個倉庫的時間.本題計算當然也可以整數化,設搬運一個倉庫全部工作量為 60.甲每小時搬運 6,乙每小時搬運 5,丙每小時搬運4
三人共同搬完,需要
60 × 2÷(6+ 5+ 4)= 8(小時)
甲需丙幫助搬運
(60- 6× 8)÷ 4= 3(小時)
乙需丙幫助搬運
(60- 5× 8)÷4= 5(小時)
一件工作,若由甲單獨做72天完成,現在甲做1天後,乙加入一起工作,合作2天後,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又過了8天,完成了全部工作的5/6,若餘下的工作由丙單獨完成,還需要幾天?
答案
甲乙丙3人8天完成 :5/6-1/3=1/2
甲乙丙3人每天完成 :1/2÷8=1/16,
甲乙丙3人4天完成 :1/16×4=1/4
則甲做一天後乙做2天要做 :1/3-1/4=1/12
那麼乙一天做 :[1/12-1/72×3]/2=1/48
則丙一天做 :1/16-1/72-1/48=1/36
則餘下的由丙做要 :[1-5/6]÷1/36=6天
答:還需要6天
股票交易中,每買進或賣出一種股票都必須按成交易額的1%和2%分別交納印花稅和傭金(通常所說的手續費)。老王10月8日以股票10.65元的價格買進一種科技股票3000股,6月26日以每月13.86元的價格將這些股票全部賣出,老王賣出這種股票一共賺了多少錢?
答案
10.65*1%=0.1065(元) 10.65*2%=0.213(元)
10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)
13.86*1%=0.1386(元) 13.86*2%=0.2772(元)
0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)
14.2758-10.9695=3.3063(元)
答:老王賣出這種股票一共賺了3.3063元.
某書店老闆去圖書批發市場購買某種圖書,第一次購書用100元,按該書定價2.8元出售,很快售完。第二次購書時,每本的批發價比第一次增多了0.5元,用去150元,所購數量比第一次多10本,當這批書售出4/5時出現滯銷,便以定價的5折售完剩餘圖書。試問該老闆第二次售書是賠錢還是賺錢,若賠,賠多少,若賺,賺多少
答案
(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元
一件工程原計劃40人做,15天完成.如果要提前3天完成,需要增加多少人
解: 設需要增加x人
(40+x)(15-3)=40*15
x=10
所以需要增加10了
倉庫有一批貨物,運走的貨物與剩下的貨物的質量比為2:7.如果又運走64噸,那麼剩下的貨物只有倉庫原有貨物的五分之三。倉庫原有貨物多少噸?
解:第1次運走:2/(2+7)=2/9.
64/(1-2/9-3/5)=360噸。
答:原倉庫有360噸貨物。
育才小學原來體育達標人數與未達標人數比是3:5,後來又有60名同學達標,這時達標人數是未達標人數的9/11,育才小學共有學生多少人?
答案
原來達標人數占總人數的
3÷(3+5)=3/8
現在達標人數占總人數的
9/11÷(1+9/11)=9/20
育才小學共有學生
60÷(9/20-3/8)=800人
小王,小李,小張三人做數學練習題,小王做的題數的一半等於小李的1/3,等於小張的1/8,而且小張比小王多做了72道,小王,小張,小李各做多少道?
答案
設小王做了a道,小李做了b道,小張做了c道
由題意1/2a=1/3b=1/8c
c-a=72
解得a=24 b=36 c=96
甲乙二人共同完成242個機器零件。甲做一個零件要6分鍾,乙做一個零件要5分鍾。完成這批零件時,兩人各做了多少個零件?
答案
設甲做了X個,則乙做了(242-X)個
6X=5(242-X)
X=110
242-110=132(個)
答:甲做了110個,乙做了132個
某工會男女會員的人數之比是3:2,分為甲乙丙三組,已知甲乙丙三組人數之比是10:8:7,甲組中男女比是3:1,乙組中男女比是5:3。求丙組男女人數之比
答案
設男會員是3N,則女會員是2N,總人是:5N
甲組有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2
乙級有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N
丙級有:5N*7/25=7/5N
丙級中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N
那麼丙組中男女之比是:N/2:9/10N=5:9
甲乙丙三個村合修一條水渠,修完後,甲乙丙村可灌溉的面積比是8:7:5原來三個村計劃按可灌溉的面積比派出勞力,後來因為丙村抽不出勞力,經協商,丙村應抽出的勞力由甲乙兩村分擔,丙村付給甲乙兩村工錢1350元,結果,甲村共派出60人,乙村共派出40人,問甲乙兩村各應分得工錢多少元?
答案
根據甲乙丙村可灌溉的面積比算出總份數:8+7+5=20份
每份需要的人數:(60+40)÷20=5人
甲村需要的人數:8×5=40人,多出勞力人數:60-40=20人
乙村需要的人數:7×5=35人,多出勞力人數:40-35=5人
丙村需要的人數:5×5=25人 或 20+5=25人
每人應得的錢數:1350÷25=54元
甲村應得的工錢:54×20=1080元
乙村應得的工錢: 54×5=270元
p166
19題
李明的爸爸經營已個水果店,按開始的定價,每買出1千克水果,可獲利0.2元。後來李明建議爸爸降價銷售,結果降價後每天的銷量增加了1倍,每天獲利比原來增加了50%。問:每千克水果降價多少元?
答案
設以前賣出X 降價a 那麼0.2X * (1+0.5)=(0.2-a) * 2x
則0.1X=2aX a=0.05
.哈利.波特參加數學競賽,他一共得了68分。評分的標準是:每做對一道得20分,每做錯一道倒扣6分。已知他做對題的數量是做錯題的兩倍,並且所有的題他都做了,請問這套試卷共有多少道題?
解:設哈利波特答對2X題,答錯X題
20×2X-6X=68
40X-6X=68
34X=68
X=2
答對:2×2=4題
共有:4+2=6題
爸爸媽媽和奶奶乘飛機去旅行,三人所帶行李的質量都超過了可免費攜帶行李的質量,要另付行李費,三人共付了4元,而三人行李共重150千克,如果這些行李讓一個人帶,那麼除了免費部分,應另付行李費8元,求每人可免費攜帶行李的質量。
答案
設可免費攜帶的重量為x kg,則:
(150-3x)/4=(150-x)/8 //等式兩邊非免費部分單價相同;
解方程:x=30
一隊少先隊員乘船過河,如果每船坐15人,還剩9人,如果每船坐18人,剛好剩餘1隻船,求有多少只船?
答案
解法一:
設船數為X,則
(15X+9)/18=X-1
15X+9=18X-18
27=3X
X=9
答:有9隻船。
解法二:
(15+9)÷(18-15)=8隻船 --每船坐18人時坐了8隻船
8+1=9隻船
建築工地有兩堆沙子,一堆比2堆多85噸,兩堆沙子各用去30噸後,一堆剩的是2堆的2倍,兩堆沙子原來各有多少噸?
答案
設2堆為X噸,則一堆為X+85噸
X+85-30=2(X-30)
x=115(2堆)
x+85=115+85=200(1堆)
自然數1-100排列,用長方形框出二行六個數,六個數和為432,問這六個數最小的是幾
答案
六個數分別是46 47 48 96 97 98
甲乙兩地相距420千米,其中一段路面鋪了柏油,另一段是泥土路.一輛汽車從甲地駛到乙地用了8小時,已知在柏油路上行駛的速度是每小時60千米,而在泥土路上的行駛速度是每小時40千米.泥土路長多少千米?
答案
兩段路所用時間共8小時。
柏油路時間:(420-x)÷60
泥土路時間: x÷40
7-(x÷60)+(x÷40)=8
有x÷120=1
所以x=120
一少先隊中隊去野營,炊事員問多少人,中隊長答: 一個人一個碗,兩個人一隻菜碗,三個人一隻湯碗,放在你這兒有55隻碗,你算算有多少人?
設有x個人
x+x/2+x/3=55
x=30
學校購買840本圖書分給高、中、低三個年級段,高年級段分的是低年級段的2倍,中年級段分的是低年級段的3倍少120本。三個年級段各分得多少本圖書?
設低年級段分得x本書,則高年級段分得2x本,中年級段分得(3x-120)本
x+2x+3x-120=840
6x-120=840
6x=840+120
6x=960
x=960/6
x=160
高年級段為:160*2=320( 本) 中年級段為:160*3-120=360(本)
答:低年級段分得圖書160本,中年級段分得圖書360本,高年級段分得圖書320本.
學校田徑組原來女生人數佔1/3,後來又有6名女生參加進來,這樣女生就占田徑組總人數的4/9。現在田徑組有女生多少人?
解 設 原來田徑隊男女生一共x人
1/3x+6= 4/9(x+6)
x=30
1/3x+6=30*1/3+6=16
女生16人
小華有連環畫本數是小明6倍如果兩人各再買2本那麼小華所有本數是小明4倍兩人原來各有連環畫多少本?
解:設小華的有x本書
4(x+2)=6x+2
4x+8=6x+2
x=3
6x=18
小春一家四口人今年的年齡之和為147歲,爺爺比爸爸大38歲,媽媽比小春大27歲,爺爺的年齡是小春與媽媽年齡之和的2倍。小春一家四口人的年齡各是多少?
答案
1
設小春x歲,則媽媽x+27歲,爺爺(x+x+27)*2=4x+54歲,爸爸4x+54-38=4x+16歲
x+x+27+4x+54+4x+16=147,x=5
所以小春5歲,媽媽32歲,爺爺74歲,爸爸36歲。
2
爺爺+爸爸+(媽媽+小春)
=爺爺+(爺爺-38)+(爺爺/2)=147
爺爺=74歲
爸爸=36歲
媽媽+小春=小春+27+小春=74/2=37
小春=5歲
媽媽=5+27=32歲
小春一家四口人的年齡各是74,36,32,5歲
3
(147+38)÷(2×2+1)=37(歲)
36×2=74(歲) 爺爺的年齡
74-38=36(歲) 爸爸的年齡
(37+27)÷2=32(歲) 媽媽的年齡
32-27=5(歲) 小華的年齡
甲乙兩校共有22人參加競賽,甲校參加人數的5分之1比乙校參加人數的4分之1少1人,甲乙兩校各多少人參賽?
解:設甲校有x人參加,則乙校有(22-x)人參加。
0.2 x=(22-x)×0.25-1
0.2x=5.5-0.25x-1
0.45x=4.5
x=10
22-10=12(人)
答: 甲校有10人參加,乙校有12人參加。
在濃度為40%的鹽水中加入千克水,濃度變為30%,再加入多千克鹽,濃度變為50%?
答案1
解
設原有鹽水x千克,則有鹽40%x千克,所以根據關系列出方程:
(40%x)/(x+1)=30% 得出x=3,再設須加入y千克鹽,則有方程:
(1.2+y)/(4+y)=50%得出y=1.6
54比45多20%,演算法,設所求為x,x(1+20%)=54 算出結果45
答案2
設原有溶液為x千克,加入y千克鹽後,濃度變為50%
由題意,得溶質為40%x,則有
40%x/(x+5)=30%
解之得
x=15千克
則溶質有15*40%=6千克
由題意,得
(6+y)/(15+5+y)=50%
解之得
y=8千克
故再加入8千克鹽,濃度變為50%
某人到商店買紅藍兩種鋼筆,紅鋼筆定價5元,藍鋼筆定價9元,由於購買量較多,商店給予優惠,紅鋼筆八五折,藍鋼筆八折,結果此人付的錢比原來節省的18%,已知他買了藍鋼筆30枝,那麼。他買了幾支紅鋼筆?
答案
紅筆買了x支。
(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8
x=36.
甲說:「我乙丙共有100元。」乙說:「如果甲的錢是現有的6倍,我的錢是現有的1/3,丙的錢不變,我們仍有錢100元。」丙說:「我的錢都沒有30元。」三人原來各有多少錢?
答案
乙的話表明:甲錢5倍與乙錢2/3一樣多
所以,乙錢是3*5=15的倍數,甲錢是偶數
丙錢不足30,所以,甲乙錢和多於70,
而乙多於甲的6倍,
所以,乙多於60
設乙=75,甲=75*2/3÷5=10,丙=100-10-75=15
設乙=90,甲=90*2/3÷5=12,90+12>100,不行
所以,三人原來:甲10元,乙75元,丙15元
某廠向銀行申請甲乙兩種貸款共30萬,每年需支付利息4萬元,甲種貸款年利率為12%,乙種貸款年利率為14%,該廠申請甲乙兩種貸款金額各多少元?
答案
設:甲廠申請貸款金額x萬元,則乙廠申請貸款金額(30-x)萬元。
列式:x*0.12+(30-x)*0.14=4
化簡:4.2-0.02x=4
0.02x=0.2
解得:x=10(萬元)
某書店對顧客有一項優惠,凡購買同一種書100本以上,就按書價的90%收款。某學校到書店購買甲、乙兩種書,其中乙種書的冊數是甲種書冊數的3/5隻有甲種書得到了90%的優惠。其中買甲種書所付的錢數是買乙種書所付錢數的2倍。已知乙種書每本1.5元,那麼甲種書每本定價多少元?
答案1
根據題意,
甲種超過了100本,乙種不到100 本
甲乙花的總錢數比為2:1
那麼甲打折以前,和乙的總錢數比為:
(2÷0.9):1=20:9
甲乙冊數比為5:3
甲乙單價比為(20÷5):(9÷3)=4:3
優惠前,甲種每本:1.5×4/3=2元
答案2
答案
設甲買了x本,則乙為3/5x,x>100
買乙共付了:3/5x*1.5=0.9x元
則甲共付了:0.9x*2=1.8x元
所以甲優惠後每本為:1.8x/x=1.8元
則優惠前:1.8/0.9=2元
兩支成分不同的蠟燭,其中1支以均勻速度燃燒,2小時燒完,另一支可以燃燒3小時,傍晚6時半同時點燃蠟燭,到什麼1支剩餘部分正好是另一支剩餘的2倍?
答案
兩支蠟燭分別設為A蠟燭和B蠟燭,其中A蠟燭是那支燒得快點的
A蠟燭,兩小時燒完,那麼每小時燃燒1/2
B蠟燭,三小時燒完,那麼每小時燃燒1/3
設過了x小時以後,B蠟燭剩餘的部分是A的兩倍
2(1—x/2)=1—x/3
解得x=1.5
由於是6點半開始的,所以到8點的時候剛剛好
學校組織春遊,同學們下午1點從學校出發,走了一段平路,爬了一座山後按原路返回,下午七點回到學校。已知他們的步行速度平路4Km/小時,爬山3Km/小時,下山為6Km/小時,返回時間為2.5時。問:他們一共行了多少路
答案1
設走的平路是X公里 山路是Y公里
因為1點到七點共用時間6小時 返回為2.5小時 則去時用3.5小時
Y/3-Y/6=1小時
Y=6公里
去時共用3.5小時 則X/4+Y/3=3.5 X=6
所以總路程為2(6+6)=24km
答案2
解:春遊共用時:7:00-1:00=6(小時)
上山用時:6-2.5=3.5(小時)
上山多用:3.5-2.5=1(小時)
山路:(6-3)×1÷(3÷6)=6(千米)
下山用時:6÷6=1(小時)
平路:(2.5-1)×4=6(千米)
單程走路:6+6=12(千米)
共走路:12×2=24(千米)
答:他們共走24千米。
『肆』 六年級奧數題30道
http://www.whjxqs.com/edit/UploadFile/2009111214111488.doc
http://eblog.cersp.com/UploadFiles/2008/6-5/65730378.doc
這兩個抄可以直襲接下載,題目和答案分開的,夠你用的……
『伍』 六年級上冊30道奧數題帶答案謝謝!
應用題:
六年級有三個班,一班與二班的學生人數和比三班學生人數多3/4,二班與三班 的學生人數和比六年級學生總數2/3多3人,已知二班有學生43人,六年級共有學生多少人?
一個圓錐形容器中裝有水4升(頂點向下裝水),這時水面高度正好是圓錐高度的1/2,水面半徑是容器半徑的1/2,這個容器還能裝多少升水?
加工一批零件,甲獨做要20小時,乙獨做要30小時,現在兩人合做,每小時甲比乙多做40個,這批零件有多少個?
某校六年級進行一次數學競賽,設一、二、三等獎,其中獲得一等獎的占獲獎總數的5分之1,獲二等獎的與獲三等獎的人數的比是3:5,獲得二等獎的人數比獲三等獎人數少4人,一共有多少人獲獎?
小明讀一本書,7天後還剩全書的4分之1,以後5天共讀了120頁,正好讀完,小明讀這本書平均每天讀多少頁?
一本書已經看了58頁,還剩下全書頁數的25%少1頁,這本書共有多少頁?
一位老奶奶去市場買菜,去時要走8分鍾,回來是因為提著東西比過時慢了2分鍾,在去的路上第四分鍾看到維修工在維修電纜,奶奶在回來的路上第幾分鍾再次看到維修工?
一、 五年級有學生192人,其中「三好」學生32人,「三好」學生佔五年級學生總人數的幾分之幾?
應用題
二、 新華書店運來一批科技書籍,第一天售出300本,占這批書籍的30%,這批科技書籍共有多少本?
三、 五年級有學生280人,其中男生佔50% ,五年級男生有多少人?
四、 六年級有學生300人,是三年級的2倍還少10人,三年級有多少人?
五、 水果店有蘋果60箱,是橘子的3倍還多10箱,水果店有橘子多少箱?
一、 五年級有學生192人,其中「三好」學生32人,「三好」學生佔五年級學生總人數的幾分之幾?
應用題
二、 新華書店運來一批科技書籍,第一天售出300本,占這批書籍的30%,這批科技書籍共有多少本?
三、 五年級有學生280人,其中男生佔50% ,五年級男生有多少人?
四、 六年級有學生300人,是三年級的2倍還少10人,三年級有多少人?
五、 水果店有蘋果60箱,是橘子的3倍還多10箱,水果店有橘子多少箱?
18.已知某一鐵橋長1000米,現有一列火車從橋上通過,測得火車開始上橋到完全通過橋共用一分鍾,整列火車完全在橋上的時間為40秒鍾,求火車的長度和速度.
19.有一位婦女在河邊洗碗,旁人看見以後問她為什麼要用這么多碗?她回答說,家中來了許多客人,他們每兩個人合用一隻菜碗,每3個人合用一隻湯碗,每4個人合用一隻飯碗,共用了65隻碗.她家究竟來了多少客人?
20.小明有一包餅干,4個一數,5個一數,6個一數都多一個,小明的這包餅干至少有多少個?
1.小明看一本書,原計劃每天看35頁,32天看完.實際每天比計劃多看5頁,實際用多少天看完?
2.修一條路,原計劃每天修0.4千米,70天可以修完.實際每天修的米數是計劃的1.25倍.實際用多少天完成?
3.綠化隊植樹,計劃8天完成任務.實際每天植樹240棵,7天就完成了全部的植樹任務.實際比計劃每天多植樹多少棵?
4.某街道居委會慰問軍烈屬,給他們送去紅糖和白糖.每到一戶送去2袋紅糖和5袋白糖,送到最後一戶時,紅糖正好送完,還剩下10袋白糖.已知帶去的白糖的袋數是紅糖袋數的3倍,那麼帶去的紅糖、白糖各多少袋?
5.服裝廠要加工一批服裝.第一車間和第二車間同時加工60天正好完成.已知第一車間加工的服裝占服裝總數的45%,第二車間每天加工132件.第一車間每天加工多少件?
6.洗衣機廠計劃生產一批洗衣機.結果9天恰好完成了計劃的37.5%.照這樣計算,完成計劃還要多少天?
7.有一堆煤可以燒120天.由於改進燒煤技術,每天節約用煤0.25噸,結果這堆煤燒了150天.這堆煤共有多少噸?
8.牽走7頭黃牛放在水牛群之中,那麼這三群牛的頭數正好相等.問奶牛有多少頭?
9.甲乙兩個車間加工一批同樣的零件.如果甲車間先加工35個,然後乙先加工1天,然後乙車間再開始加工,經過5天後兩車間加工的零件數相等.那麼乙車間一天加工多少個零件?
12.有100千克青草,含水量為66%,晾曬後含水量降到15%.這些青草晾曬後重多少千克?
13.將一個正方形的一邊減少1/5,另一邊增加 4米,得到一個長方形.這個長方形與原來正方形面積相等.那麼正方形面積有多少平方米?
14.某車間加工甲、乙兩種零件.已加工好的零件中甲種零件佔30%,後來又加工好了24個乙種零件,這時甲種零件佔25%.那麼現在已加工好兩種零件共多少個?
15.甲、乙、丙三人共生產零件1760個.如果甲少生產2/9,乙多生產80個,那麼甲、乙、丙三人生產零件的個數相等.甲、乙、丙三人各生產了多少個?
16.小明今年的年齡是他爸爸年齡的1/6,15年後他的年齡是他爸爸年齡的4/9.小明和他爸爸今年各多少歲?
17.某校有學生314人,其中男生人數的2/3比女生人數的4/5少40人.這個學校男生、女生各多少人?
18.甲、乙兩班人數相等,各有一些同學參加了數學小組.甲班參加數學小組的人數恰好是乙班沒參加數學小組人數的1/3;乙班參加數學小組的人數恰好是甲班沒參加數學小組人數的1/4.那麼甲班沒參加數學小組的人數是乙班沒參加數學小組人數的幾分之幾?
19.容器里放著某種濃度的酒精溶液若干升,加 1升水後純酒精含量為25%;再加1升純酒精,容器里純酒精含量為40%.那麼原來容器里的酒精溶液共幾升?濃度為百分之幾?
20.甲、乙、丙三人合抄一份稿件,1小時可以完成.如果甲、乙二人合抄,要80分鍾完成;如果乙、丙二人合抄,要100分鍾完成.如果這份稿件由乙一人獨抄,要幾小時完成?
21.一件工程,甲獨做,20天可以完成;乙獨做,30天可以完成.現在兩人合做,中間甲休息了3天,乙休息了若干天,結果經過16天才完成.問乙休息了幾天?
22.注滿一池水,只打開甲管,要8小時;只打開乙管,要12小時;只打開丙管,要15小時.今開始只打開甲、乙兩管,中途關掉甲、乙兩管,然後打開丙管,前後共用了10小時才注滿一池水.那麼打開丙管注水幾小時?
23.某工程隊承建一項工程,要用12天完成.如果只讓其中的甲、乙兩個小隊交換一下工作內容,那麼全工程就要推遲3天完成;如果讓其中甲、乙兩個小隊交換一下工作內容的同時,也讓丙、丁兩個小隊交換工作內容,仍然可以按期完成全工程.如果只讓丙、丁兩個小隊交換工作內容,那麼可以使全工程提前幾天完成?
24.甲、乙兩隊合干一項工程,甲隊先獨幹了6天後,乙隊參加和甲隊一起干,又過了4天完成了全工程的1/3.又過了10天正好完成了全工程的3/4.因甲隊另有任務調出,乙隊繼續工作,直到完成全工程.從開始到完工用了多少天?
25.甲、乙二人同時從A、B兩地出發,各自去B、A兩地,二人速度比為7∶6.二人相遇後繼續向前行進,這時乙的速度比原來速度每小時增加來的速度.
1.兩個小隊割青草,每個小隊割3捆,每捆重8千克.一共割了多少千克?
2.張家莊小學新修9個教室,每個教室有6扇窗子,每扇窗子安8塊玻璃,一共要安多少塊玻璃?
3.每個書架有5層,每層放30本書,3個書架一共放多少本書?
4.學校舉行廣播操表演.三、四、五年級各有3個班,每班選16人參加.參加表演的一共有多少人?
連除應用題(兩種方法解答)
1.商店賣出7箱保溫杯,每箱12個,一共收入336元,每個保溫杯多少元?
2.三年級有2個班,每個班有43個同學,一共栽樹258棵,平均每個同學栽樹多少棵?
3.百貸商店賣出3箱上衣,每箱20件,一共賣了720元,每件上衣的價錢是多少元?
4.學校給三好學生買獎品,買了2盒鋼筆,每盒10支,一共用去80元.每支鋼筆多少元?
這應該是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
足�
『陸』 小學六年級上冊30道奧數題帶答案謝謝!
關於元宵節吃元宵的最早記載見於宋代。當時稱元宵為「浮圓子」、「內圓子」、「乳糖容元子」和「糖元」。從《平園續稿》、《歲時廣記》、《大明一統賦》等史料
的記載看,元宵作為歡度元宵節的應時食品是從宋朝開始的。因元宵節必食「圓子」,所以人們使用元宵命名之。元宵節吃湯圓,其風俗大行於宋代。宋人周必大的
《平園續稿》中有「元宵煮浮元子,前輩似未曾賦此」之說。後來,元宵又稱為「湯元」。清代李調元的詩句「風雨夜祭人散盡,孤燈又喚賣湯元」即是指此。辛亥
革命後,袁世凱竊取了大總統的職位,他忌諱諧音「袁消」的「元宵」,於1913年元宵節前下令將元宵改為「湯圓」。這種小吃的名稱,幾經變易,才被固定下
來。
『柒』 求六年級奧數題30道!急!今天之內!
http://www.xj-zx.com/Article/aoshuNo6/
參考資料:http://..com/question/54244204.html?si=1
1. 甲、乙、丙三人在A、B兩塊地植樹,地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
2. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
3. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
4. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
5. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
6. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
7. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
8. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
9. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
10. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
11. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
12. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的80%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
13. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
14. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
15. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
16. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
17. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
18. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
19. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
20. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
小學數學應用題綜合訓練(03)
21. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
22. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
23. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
24. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
25. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
26. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
27. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
28. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
29. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
30. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
31. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
32. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
33. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
34. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
35. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
36. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
37. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
38. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
39. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
40. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
41. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
42. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
43. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
44. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
45. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
46. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
47. 甲、乙二人在400米的圓形跑道上進行10000米比賽.兩人從起點同時同向出發,開始時甲的速度為8米/秒,乙的速度為6米/秒,當甲每次追上乙以後,甲的速度每秒減少2米,乙的速度每秒減少0.5米.這樣下去,直到甲發現乙第一次從後面追上自己開始,兩人都把自己的速度每秒增加0.5米,直到終點.那麼領先者到達終點時,另一人距離終點多少米?
48. 小明從家去學校,如果他每小時比原來多走1.5千米,他走這段路只需原來時間的4/5;如果他每小時比原來少走1.5千米,那麼他走這段路的時間就比原來時間多幾分幾之?
49. 甲、乙、丙、丁現在的年齡和是64歲.甲21歲時,乙17歲;甲18歲時,丙的年齡是丁的3倍.丁現在的年齡是幾歲?
50. 加工一批零件,原計劃每天加工30個.當加工完1/3時,由於改進了技術,工作效率提高了10%,結果提前了4天完成任務.問這批零件共有幾個?
小學數學應用題綜合訓練(06)
51. 自動扶梯以均勻的速度向上行駛,一男孩與一女孩同時從自動扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27級到達扶梯的頂部,而女孩走了18級到達頂部.問扶梯露在外面的部分有多少級?
52. 兩堆蘋果一樣重,第一堆賣出2/3,第二堆賣出50千克,如果第一堆剩下的蘋果比第二堆剩下的蘋果少,那麼兩堆剩下的蘋果至少有多少千克?
53. 甲、乙兩車同時從A地出發,不停的往返行駛於A、B兩地之間.已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都雜途中C地,甲車的速度是乙車的幾倍?
54. 一隻小船從甲地到乙地往返一次共用2小時,回來時順水,比去時的速度每小時多行8千米,因此第二小時比第一小時多行6千米.求甲、乙兩地的距離.
55. 甲、乙兩車分別從A、B兩地出發,並在A,B兩地間不斷往返行駛.已知甲車的速度是15千米/小時,甲、乙兩車第三次相遇地點與第四次相遇地點相差100千米.求A、B兩地的距離.
56. 某人沿著向上移動的自動扶梯從頂部朝底下用了7分30秒,而他沿著自動扶梯從底朝上走到頂部只用了1分30秒.如果此人不走,那麼乘著扶梯從底到頂要多少時間?如果停電,那麼此人沿扶梯從底走到頂要多少時間?
57. 甲、乙兩個圓柱體容器,底面積比為5:3,甲容器水深20厘米,乙容器水深10厘米.再往兩個容器中注入同樣多的水,使得兩個容器中的水深相等.這時水深多少厘米?
58. A、B兩地相距207千米,甲、乙兩車8:00同時從A地出發到B地,速度分別為60千米/小時,54千米/小時,丙車8:30從B地出發到A地,速度為48千米/小時.丙車與甲、乙兩車距離相等時是幾點幾分?
59. 一個長方形的周長是130厘米,如果它的寬增加1/5,長減少1/8,就得到一個相同周長的新長方形.求原長方形的面積.
60. 有一長方形,它的長與寬的比是5:2,對角線長29厘米,求這個長方形的面積.
小學數學應用題綜合訓練(07)
61. 有一個果園,去年結果的果樹比不結果的果樹的2倍還多60棵,今年又有160棵果樹結了果,這時結果的果樹正好是不結果的果樹的5倍.果園里共有多少棵果樹?
62. 小明步行從甲地出發到乙地,李剛騎摩托車同時從乙地出發到甲地.48分鍾後兩人相遇,李剛到達甲地後馬上返回乙地,在第一次相遇後16分鍾追上小明.如果李剛不停地往返於甲、乙兩地,那麼當小明到達乙地時,李剛共追上小明幾次?
63. 同樣走100米,小明要走180步,父親要走120步.父子同時同方向從同一地點出發,如果每走一步所用的時間相同,那麼父親走出450米後往回走,還要走多少步才能遇到小明?
64. 一艘輪船在兩個港口間航行,水速為6千米/小時,順水航行需要4小時,逆水航行需要7小時,求兩個港口之間的距離.
65. 有甲、乙、丙三輛汽車,各以一定的速度從A地開往B地,乙比丙晚出發10分鍾,出發後40分鍾追上丙;甲比乙又晚出發10分鍾,出發後60分鍾追上丙,問甲出發後幾分鍾追上乙?
66. 甲、乙合作完成一項工作,由於配合的好,甲的工作效率比單獨做時提高1/10,乙的工作效率比單獨做時提高1/5,甲、乙合作6小時完成了這項工作,如果甲單獨做需要11小時,那麼乙單獨做需要幾小時?
67. A、B、C、D、E五名學生站成一橫排,他們的手中共拿著20面小旗.現知道,站在C右邊的學生共拿著11面小旗,站在B左邊的學生共拿著10面小旗,站在D左邊的學生共拿著8面小旗,站在E左邊的學生共拿著16面小旗.五名學生從左至右依次是誰?各拿幾面小旗?
68. 小明在360米長的環行的跑道上跑了一圈,已知他前一半時間每秒跑5米,後一半時間每秒跑4米,問他後一半路程用了多少時間?
69. 小英和小明為了測量飛駛而過的火車的長度和速度,他們拿了兩塊秒錶,小英用一塊表記下火車從他面前通過所花的時間是15秒,小明用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是18秒,已知兩根電線桿之間的距離是60米,求火車的全長和速度.
70. 小明從家到學校時,前一半路程步行,後一半路程乘車;他從學校到家時,前1/3時間乘車,後2/3時間步行.結果去學校的時間比回家的時間多20分鍾,已知小明從家到學校的路程是多少千米?
小學數學應用題綜合訓練(08)
71. 數學練習共舉行了20次,共出試題374道,每次出的題數是16,21,24問出16,21,24題的分別有多少次?
72. 一個整數除以2餘1,用所得的商除以5餘4,再用所得的商除以6餘1.用這個整數除以60,余數是多少?
73. 少先隊員在校園里栽的蘋果樹苗是梨樹苗的2倍.如果每人栽3棵梨樹苗,則餘2棵;如果每人栽7棵蘋果樹苗,則少6棵.問共有多少名少先隊員?蘋果和梨樹苗共有多少棵?
74. 某人開汽車從A城到B城要行200千米,開始時他以56千米/小時的速度行駛,但途中因汽車故障停車修理用去半小時,為了按時到達,他必須把速度增加14千米/小時,跑完以後的路程,他修車的地方距離A 城多少千米?
75. 甲、乙兩人分別從A、B兩地同時出發,相向而行,乙的速度是甲的2/3,兩人相遇後繼續前進,甲到達B地,乙到達A地立即返回,已知兩人第二次相遇的地點距離第一次相遇的地點是3000米,求A、B兩地的距離.
76. 一條船往返於甲、乙兩港之間,已知船在靜水中的速度為9千米/小時,平時逆行與順行所用時間的比為2:1.一天因下雨,水流速度為原來的2倍,這條船往返共用10小時,問甲、乙兩港相距多少千米?
77. 某學校入學考試,確定了錄取分數線,報考的學生中,只有1/3被錄取,錄取者平均分比錄取分數線高6分,沒有被錄取的同學其平均分比錄取分數線低15分,所有考生的平均分是80分,問錄取分數線是多少分?
78. 一群學生搬磚,如果有12人每人各搬7塊,其餘的每人搬5塊,那麼最後餘下148塊;如果有30人每人各搬8塊,其餘的每人搬7塊,那麼最後餘下20塊.問學生共有多少人?磚有多少塊?
79. 甲、乙兩車分別從A、B兩地同時相向而行,已知甲車速度與乙車速度之比為4:3,C地在A、B之間,甲、乙兩車到達C地的時間分別是上午8點和下午3點,問甲、乙兩車相遇是什麼時間?
80. 一次棋賽,記分方法是,勝者得2分,負者得0分,和棋兩人各得1分,每位選手都與其他選手各對局一次,現知道選手中男生是女生的10倍,但其總得分只為女生得分的4.5倍,問共有幾名女生參賽?女生共得幾分?
小學數學應用題綜合訓練(09)
81. 有若干個自然數,它們的算術平均數是10,如果從這些數中去掉最大的一個,則餘下的算術平均數為9;如果去掉最小的一個,則餘下的算術平均數為11,這些數最多有多少個?這些數中最大的數最大值是幾?
82. 某班有少先隊員35人,這個班有男生23人,這個班女生少先隊員比男生非少先隊員多幾人?
83. 小東計劃到周口店參觀猿人遺址.如果他坐汽車以40千米/小時的速度行駛,那麼比騎車去早到3小時,如果他以8千米/小時的速度步行去,那麼比騎車晚到5小時,小東的出發點到周口店有多少千米?
84. 甲、乙兩船在相距90千米的河上航行,如果相向而行,3小時相遇,如果同向而行則15小時甲船追上乙船.求在靜水中甲、乙兩船的速度.
85. 二年級兩個班共有學生90人,其中少先隊員有71人,一班少先隊員占本班人數的75%,二班少先隊員占本班人數的5/6.一班少先隊員人數比二班少先隊員人數多幾人?
86. 一個容器中已注滿水,有大、中、小三個球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,現知道每次從容器中溢出水量的情況是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三個球的體積之比.
87. 某人翻越一座山用了2小時,返回用了2.5小時,他上山的速度是3000米/小時,下山的速度是4500米/小時.問翻越這座山要走多少米?
88. 鋼筋原材料每根長7.3米,每套鋼筋架子用長2.4米、2.1米和1.5米的鋼筋各一段.現需要綁好鋼筋架子100套,至少要用去原材料多少根?
89. 有一塊銅鋅合金,其中銅和鋅的比2:3.現知道再加入6克鋅,熔化後共得新合金36克,新合金中銅和鋅的比是多少?
90. 小明通常總是步行上學,有一天他想鍛煉身體,前1/3路程快跑,速度是步行速度的4倍,後一段的路程慢跑,速度是步行速度的2倍.這樣小明比平時早35分到校,小明步行上學需要多少分鍾?
小學數學應用題綜合訓練(10)
91. 甲、乙、丙三人,甲的年齡比乙的年齡的2倍還大3歲,乙的年齡比丙的年齡的2倍小2歲,三個人的年齡之和是109歲,分別求出甲、乙、丙的年齡.
92. 快車以60千米/小時的速度從甲站向乙站開出,1.5小時後,慢車以40千米/小時的速度從乙站行甲站開出,.兩車相遇時,相遇點離兩站的中點70千米.甲、乙兩站相距多少千米?
93. 甲、乙兩車先後離開學校以相同的速度開往博物館,已知8:32分甲車與學校的距離是乙車與學校距離的3倍,8:39分甲車與學校的距離是乙車與學校距離的2倍,求甲車離開學校的時間.
94. 有一個工作小組,當每個工人在各自的工作崗位上工作時,7小時可生產一批零件,如果交換工人甲、乙的崗位,其他人不變,那麼可提前1小時,完成這批零件,如果交換工人丙、丁的崗位,其他人不變,也可提前1小時,問如果同時交換甲與乙、丙與丁的崗位,其他人不變,那麼完成這批零件需多長的時間.
95. 用10塊長7厘米、寬5厘米、高3厘米的長方體積木,拼成一個長方體,這個長方體的表面積最小是多少?
96. 公圓只售兩種門票:個人票每張5元,10人一張的團體票每張30元,購買10張以上的團體票的可優惠10%.(1)甲單位45人逛公園,按以上規定買票,最少應付多少錢?(2)乙單位208人逛公園,按以上的規定買票,最少應付多少錢?
97. 甲、乙、丙三人,參加一次考試,共得260分,已知甲得分的1/3,乙得分的1/4與丙得分的一半減去22分都相等,那麼丙得分多少?
98. 一項工程,甲、、乙兩人合作4天後,再由乙單獨做5天完成,已知甲比乙每天多完成這項工程的1/30.甲、乙單獨做這項工程各需要幾天?
99. 有長短兩支蠟燭,(相同時間中燃燒長度相同),它們的長度之和為56厘米,將它們同時點燃一段時間後,長蠟燭同短蠟燭點燃前一樣長,這時短蠟燭的長度又恰好是長蠟燭的2/3.點燃前長蠟燭有多長?
100. 一批蘋果平均分裝在20個筐中,如果每筐多裝1/9,可省下幾只筐?
選我的餓,我費了好大勁呢
『捌』 小學五六年級奧數題30道帶答案!!
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.
偶數與整數的積是偶數.
性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.
『玖』 六年級奧數題和答案30道
題1、營業員把一張5元的人民幣和一張5角的人民幣換成了28張票面為1元和1角的人民幣,求換來的這兩種人民幣各多少張?
28*0.1=2.8(元)(5.5-2.8)/(1-0.1)=3(張)28-3=25(張)(/=除 *=乘)
題2、有一元,二元,五元的人民幣共50張,總面值為116元,已知一元的比二元的多2張,問三種面值的人民幣各多少張?
題3、有3元,5元和7元的電影票400張,一共價值1920元,其中7元和5元的張數相等,三種價格的電影票各多少張?
題4、用大、小兩種汽車運貨,每輛大汽車裝18箱,每輛小汽車裝12箱,現在有18車貨,價值3024元,若每箱便宜2元,則這批貨價值2520元,問:大、小汽車各有多少輛?
題5、一輛卡車運礦石,晴天每天可運20次,雨天每天可運12次,它一共運了112次,平均每天運14次,這幾天中有幾天是雨天?
題6、運來一批西瓜,准備分兩類賣,大的每千克0.4元,小的每千克0.3元,這樣賣這批西瓜共值290元,如果每千克西瓜降價0.05元,這批西瓜只能賣250元,問:有多少千克大西瓜?
題7、甲、乙二人投飛鏢比賽,規定每中一次記10分,脫靶每次倒扣6分,兩人各投10次,共得152分,其中甲比乙多得16分,問:兩人各中多少次?
題8、某次數學競賽共有20條題目,每答對一題得5分,錯了一題不僅不得分,而且還要倒扣2分,這次競賽小明得了86分,問:他答對了幾道題?
1.解:設有1元的x張,1角的(28-x)張
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3張,一角的25張。
2.解:設1元的有x張,2元的(x-2)張,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20張,2元18張,5元12張。
3.解:設有7元和5元各x張,3元的(400-2x)張
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160張,7元、5元各120張。
4.解:貨物總數:(3024-2520)÷2=252(箱)
設有大汽車x輛,小汽車(18-x)輛
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽車6輛,小汽車12輛。
5.解:天數=112÷14=8天
設有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜數:(290-250)÷0.05=800千克
設有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
設甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
設乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:設他答對x道題
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答對了18題。
1.甲、乙兩地相距465千米,一輛汽車從甲地開往乙地,以每小時60千米的速度行駛一段後,每小時加速15千米,共用了7小時到達乙地。每小時60千米的速度行駛了幾小時?
2.籠中裝有雞和兔若干只,共100隻腳,若將雞換成兔,兔換成雞,則共92隻腳。籠中原有兔、雞各多少只?
3.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀。蟬有6條腿和1對翅膀。現在這三種小蟲共18隻,有118條腿和20對翅膀,每種小蟲各幾只?
4.學雷鋒活動中,同學們共做好事240件,大同學每人做好事8件,小同學每人做好事3件,他們平均每人做好事6件。參加這次活動的小同學有多少人?
5.某班42個同學參加植樹,男生平均每人種3棵,女生平均每人種2棵,已知男生比女生多種56棵,男、女生各有多少人?
答案:
1.解:設每小時60千米的速度行駛了x小時。
60x+(60+15)(7-x)=465
60x+525-75x=465
525-15x=465
15x=60
x=4
答:每小時60千米的速度行駛了4小時。
2.解:兔換成雞,每隻就減少了2隻腳。
(100-92)/2=4隻,
兔子有4隻。
(100-4*4)/2=42隻
答:兔子有4隻,雞有42隻。
3.解:設蜘蛛18隻,蜻蜓y只,蟬z只。
三種小蟲共18隻,得:
x+y+z=18……a式
有118條腿,得:
8x+6y+6z=118……b式
有20對翅膀,得:
2y+z=20……c式
將b式-6*a式,得:
8x+6y+6z-6(x+y+z)=118-6*18
2x=10
x=5
蜘蛛有5隻,
則蜻蜓和蟬共有18-5=13隻。
再將z化為(13-y)只。
再代入c式,得:
2y+13-y=20
y=7
蜻蜓有7隻。
蟬有18-5-7=6隻。
答:蜘蛛有5隻,蜻蜓有7隻,蟬有6隻。
4.解:同學們共做好事240件,他們平均每人做好事6件,
說明他們共有240/6=40人
設大同學有x人,小同學有(40-x)人。
8x+3(40-x)=240
8x+120-3x=240
5x+120=240
5x=120
x=24
40-x=16
答:大同學有24人,小同學有16人。
5.解:設男生x人,女生(42-x)人。
3x-2(42-x)=56
3x+2x-84=56
5x=140
x=28
42-x=14
答:男生28人,女生14人
牛吃草問題
1. 一個牧場,草每天勻速生長,每頭牛每天吃的草量相同,17頭牛30天可以將草吃完,19頭牛隻需要24天就可以將草吃完,現有一群牛,吃了6天後,賣掉4頭牛,餘下的牛再吃2天就將草吃完。問沒有賣掉4頭牛之前,這一群牛一共有多少頭?
17×30=510(頭) 19×24=456(頭)(510-456)÷(30-24)=9(頭)30×17-30×9=240(頭)(6+2)×9=72(頭)240+72+2×4=320(頭)320÷(6+2)=40(頭)
2. 一個蓄水池,每分鍾流入4立方米水。如果打開5個水龍頭,2小時半就把水池中的水放光;如果打開8個水龍頭,1小時半就把池中的水放光,現打開13個水龍頭,問要多少時間才能把水池中的水放光(每個水龍頭每小時放走的水量相同)?
3. 甲、乙、丙3個倉庫,各存放著同樣數量的化肥,甲倉庫用皮帶輸送機一台和12個工人,需要5小時才能把甲倉庫搬空;乙倉庫用一台皮帶輸送機和28個工人,需要3小時才能把乙倉庫搬空;丙倉庫有兩台皮帶輸送機,如果要求2小時把丙倉庫搬空,同時還需要多少工人(皮帶輸送機的功效相同,每個工人每小時的搬運量相同,皮帶輸送機與工人同時往處搬運化肥)?
1×5=5(台) 12×5=60(人)28×3=84(人)1×3=3(台)84-60=24(人)24÷(5-3)=12(人)1×5×12=60(人) 60+12×5=120(人)2×2×12=48(人)(120-48)÷2=36(人)
4. 快、中、慢3輛車同時從同一地點出發,沿同一條公路追趕前面的一個騎車的小偷,這3輛車分別用6分鍾、10分鍾、12分鍾,追上小偷,現在知道快車的速度是每小時24千米,中車的速度是每小時20千米,問慢車的速度是多少?。
奧賽專題 -- 稱球問題
1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。20 7
3.把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
4.有12個外表上一樣的球,其中只有一個是次品,用天平只稱三次,你能找出次品嗎?
奧賽專題 -- 抽屜原理
1.一個小組共有13名同學,其中至少有2名同學同一個月過生日。為什麼?
2.任意4個自然數,其中至少有兩個數的差是3的倍數。這是為什麼?
3.有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
奧賽專題 -- 還原問題
1.某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元。這時他的存摺上還剩1250元。他原有存款多少元?
2.有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了。哥哥看弟弟挑得太多,就拿來一半給自己。弟弟覺得自己能行,又從哥哥那裡拿來一半。哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊。問最初弟弟准備挑多少塊?
奧賽專題 -- 列車過橋問題
1、一列長300米的火車以每分1080米的速度通過一座大橋。從車頭開上橋到車尾離開橋一共需3分。這座大橋長多少米?
2、某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度。
3、.在環形跑道上,兩人都按順時針方向跑時,每12分鍾相遇一次,如果兩人速度不變,其中一人改成按逆時針方向跑,每隔4分鍾相遇一次,問兩人各跑一圈需要幾分鍾?
4、一列長300米的火車,以每分1080米的速度通過一座長為940米的在橋,從車頭開上橋到車尾離開橋需要多少分鍾?
5、一列火車通過530米的橋需40秒鍾,以同樣的速度穿過380米的山洞需30秒鍾。求這列火車的速度是多少米/秒,全長是多少米?
6、鐵路沿線的電桿間隔是40米,某旅客在運行的火車中,從看到第一根電線桿到看到第51根電線桿正好是2分鍾,火車每小時行多少千米。
7、一個人站在鐵道旁,聽見行近來的火車汽笛聲後,再過57秒鍾火車經過他面前.已知火車汽笛時離他1360米;(軌道是筆直的)聲速是每秒鍾340米,求火車的速度?(得數保留整數)
一列450米長的貨車,以每秒12米的速度通過一座570米長的鐵橋,需要幾秒鍾?
8、現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車。快車每秒行18米,慢車每秒行10米。如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長。
9、李明和張憶在300米的環形跑道上練習跑步,李明每秒跑5米,張憶每秒跑3米,兩人同時從起跑點出發同向而行,問出發後李明第一次追上張憶時,張憶跑了多少米?
10、速度為快、中、慢的三輛汽車同時從同一地點出發,沿同一公路追趕前面一個騎車人,這三輛車分別用6分鍾、10分鍾、12分鍾追上騎車人,現在知道快車每小時24千米,中速車每小時20千米,那麼慢車每小時行多少千米?(選做題)
11、周長為400米的圓形跑道上,有相距100米的A、B兩點,甲、乙兩人分別從A、B兩點同時相背而跑,兩人相遇後,乙立刻轉身與甲同向而跑,當甲跑到A時,乙恰好跑到B.如果以後甲、乙跑的速度和方向都不變,那麼追上乙時,甲共跑了多少米(從出發時算起)?
奧賽專題 -- 平均數問題
1 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86 分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?
2 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什錦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.問:什錦糖每千克多少元?
3甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?
4已知八個連續奇數的和是144,求這八個連續奇數。新華小學訂了若干張《中國少年報》,如果三張三張地數,余數為1張;五張五張地數,余數為2張;七張七張地數,余數為2張。新華小學訂了多少張《中國年呢? 商店裡三天共賣出1026米布。第二天賣出的是第一天的2倍;第三天賣出的是第二天的3倍。求三天各賣出多少米布?
1.分數的四則混和運算:求1/3+1/15 +1/35+ 1/63 +1/99 +1/143
簡便方法:
1/3=1×(1/3)=1/2(1-1/3)
1/15 =(1/3)×(1/5)=1/2(1/3-1/5)
1/35=(1/5)×(1/7)=1/2(1/5-1/7)
1/63 =(1/7)×(1/9)=1/2(1/7-1/9)
1/99 =(1/9)×(1/11)=1/2(1/9-1/11)
1/143=(1/11)×(1/13)=1/2(1/11-1/13)
所以1/3+1/15 +1/35+ 1/63 +1/99 +1/143=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+1/2(1/11-1/13)
提公因式1/2得1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13)
可觀察到式子中間部分都抵消,最後只剩下1/2(1-1/13)=6/13
也就是1/3+1/15 +1/35+ 1/63 +1/99 +1/143=6/13.
概念題型
2.八分之a、十分之b、十五分之c是三個最簡分數,已知三個分數的積是二分之一,求這三個分數各是多少?
a/8×b/10×c/15=abc/1200
因為它們的積是1/2 所以abc=600
把600分解質因數600=2×2×5×3×2×5
又因為它們的分母分別是8、10、15 而且是最簡分數,它們的分子里依次不能有2、2和5、3和5
因此,只能是5×5=25,3,2×2×2=8、
所以這三個分數分別是:25/8、3/10、8/15
分類討論題型:
3.兩根同樣長的繩子,第一根剪下五分之三米,第二根剪下五分之三,哪根剩下的多?
當繩子大於一米時,第一根剩下的多,
當繩子等於一米時,兩根剩下的一樣多,
當繩子小於一米時,第二根剩下的多
公約公倍和同餘
1.今天是星期六,再過1000天是星期幾?
2.已知兩個自然數a和b(a>b),已知a和b除以13的余數分別是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余數。
3.2100除以一個兩位數得到的余數是56,求這個兩位數。
4.被除數、除數、商與余數之和是903,已知除數是35,余數是2,求被除數。
5.用一個整數去除345和543所得的余數相同,且商相差9,求這個數。
6.有一個整數,用它去除312,231,123得到的三個余數之和是41,求這個數。
1.答:根據題意不難看出,這個大班小朋友的人數是115-7=108,148-4=144,74-2=72的最大公約數.所以,這個大班的小朋友最多有36人.
2.答:與上題類似,依題意,正方體的棱長應是9,6,7的最小公倍數,9,6,7的最小公倍數是126.所以,至少需要這種長方體木塊 126×126×126÷(9×6×7)=5292(塊)
3、答:此數為28。方法同例題。
4、答:這兩個數為4與120,或8與60,或12與40,或20與24。方法同例題。
5答:所求的兩個數為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。
6、答:因為1+2+…+9=5×9,所以無論這些九位數的值如何,它們的數字之和總可以被9整除,因而9是所有這些九位數的公約數.現任取這些九位數中的兩個相差9的數,如413798256和413798265。
7、答:1925=5×5×7×11 兩個商為5和11, 1925÷5=385 ; 1925÷11=175 答:根據1。題意不難看出,這個大班小朋友的人數是115-7=108,148-4=144,74-2=72的最大公約數.所以,這個大班的小朋友最多有36人.
2.答:與上題類似,依題意,正方體的棱長應是9,6,7的最小公倍數,9,6,7的最小公倍數是126.所以,至少需要這種長方體木塊 126×126×126÷(9×6×7)=5292(塊)
3.答:此數為28。方法同例題。
4.答:這兩個數為4與120,或8與60,或12與40,或20與24。方法同例題。
5.答:所求的兩個數為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。
6.答:因為1+2+…+9=5×9,所以無論這些九位數的值如何,它們的數字之和總可以被9整除,因而9是所有這些九位數的公約數.現任取這些九位數中的兩個相差9的數,如413798256和413798265。
『拾』 小學六年級奧數題及答案(30道)。
給你一個網址http://www.aoshu.com/z2011/lnjaszsd/