1. 小學五年級數學思考題50題。。 急求。
1.雞與兔共100隻,雞的腿數比兔的腿數少28條,問雞與兔各有幾只?
六.抽屜原理、奇偶性問題
1.一隻布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍、黃四種,問最少要摸出幾只手套才能保證有3副同色的?
2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3.某盒子內裝50隻球,其中10隻是紅色,10隻是綠色,10隻是黃色,10隻是藍色,其餘是白球和黑球,為了確保取出的球中至少包含有7隻同色的球,問:最少必須從袋中取出多少只球?
1. 甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
2. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
3. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
4. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
5. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
6. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
7. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
8. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
9. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
10. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
11. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
12. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的80%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
13. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
14. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
15. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
16. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
17. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
18. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
19. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
20. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
小學數學應用題綜合訓練(03)
21. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
22. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
23. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
24. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
25. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
26. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
27. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
28. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
29. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
30. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
31. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
32. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
33. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
34. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
35. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
36. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
37. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
38. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
39. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
40. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
41. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
42. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
43. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
44. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
45. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
46. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
47. 甲、乙二人在400米的圓形跑道上進行10000米比賽.兩人從起點同時同向出發,開始時甲的速度為8米/秒,乙的速度為6米/秒,當甲每次追上乙以後,甲的速度每秒減少2米,乙的速度每秒減少0.5米.這樣下去,直到甲發現乙第一次從後面追上自己開始,兩人都把自己的速度每秒增加0.5米,直到終點.那麼領先者到達終點時,另一人距離終點多少米?
48. 小明從家去學校,如果他每小時比原來多走1.5千米,他走這段路只需原來時間的4/5;如果他每小時比原來少走1.5千米,那麼他走這段路的時間就比原來時間多幾分幾之?
49. 甲、乙、丙、丁現在的年齡和是64歲.甲21歲時,乙17歲;甲18歲時,丙的年齡是丁的3倍.丁現在的年齡是幾歲?
50. 加工一批零件,原計劃每天加工30個.當加工完1/3時,由於改進了技術,工作效率提高了10%,結果提前了4天完成任務.問這批零件共有幾個?
2. 五年級思考題及答案(20道)
甲,乙兩個人打打一份10000字的文件,甲每分打115個字,乙每分鍾打135個字,幾分鍾可以打完?
3. 急~~~五年級思考題要有過程和答案,最好難一點的。
一、填空題
1.
小麗
和小榮集郵,小麗郵票的張數是小榮的5倍,如果小麗把自己的郵票給小榮100張,她倆郵票的張數正好相等.小麗和小榮各有
張、
張.
2.啟東水泥廠有甲、乙兩倉庫,各有水泥若干袋,甲倉庫存水泥的袋數是乙倉庫的3倍,後來從甲倉庫運出450袋,從乙倉庫運出50袋.這時倉庫剩餘的袋數相等,甲倉庫原有水泥
袋,乙倉庫原有
袋.
3.兩筐桃的個數相等.如果第一筐賣出150個,第二筐賣出194個,那麼剩下的桃第一筐是第二筐的3倍,第一筐有
個,第二筐有
個.
4.甲、乙兩人存款若干元,甲存款是乙存款的3倍,如果甲取出240元,乙取出40元,甲、乙存款數正好相等.問甲原有存款
元,乙原有存款
元.
5.
小勇
和
小英
各有錢若干元,若小勇給小英24元,二人錢數相等.如果小英給小勇27元,則小勇的錢數就是小英錢數的2倍.問小勇原有
元,小英原有
元.
6.如果甲數加上152等於乙數,如果乙數加上480等於甲數的3倍,問原來甲數
,乙數
.
7.有兩根同樣長的鉛筆,第一根用去14厘米,第二根用去2厘米後,第二根的長度是第一根的3倍,問原有鉛筆各
厘米.
8.兩塊同樣長的布,第一塊用去31米,第二塊用去19米,結果所余米數,第二塊是第一塊的4倍,兩塊布原來各長
米.
9.哥哥的圖書數比弟弟多60本,哥哥的圖書本數是弟弟的3倍,則哥哥有圖書
本,弟弟有圖書
本.
10.父親現年50歲,女兒現年14歲,
年前,父親的年齡是女兒年齡的5倍.
4. 五年級數學思考題,帶答案,20題
1.一塊長1米20厘米,寬90厘米的鋁皮,剪成直徑30厘米的圓片,最多可以剪幾塊?
分析:此題不需求面積的。只需求長和寬各是圓的直徑的幾倍,然後求出長和寬的倍數的積。
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(塊)
答:最多可以剪12塊。
2.一個圓柱,底面半徑1分米,它的側面展開是一個正方形。這個圓柱的表面積和體積是多少?
分析:從側面展開圖正方形入手,可知這個圓柱的高是圓柱的底面周長。
圓柱的表面積:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圓柱的體積:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:這個圓柱的表面積是45.7184平方分米,體積是19.7192平方分米。
3.一列火車上午8時從甲站開出,到第二天的晚上9時到達乙站。已知火車平均每小時行98千米。甲乙兩站間的鐵路長多少千米?
分析:這題的解題關鍵是要知道火車行駛的時間。
24-8+9=25(小時)[或者:12-8+12+9=25(小時)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙兩站間的鐵路長2450千米。
4.一個圓和一個扇形的半徑相等。已知圓的面積是30平方厘米,扇形的圓心角是72度。求扇形的面積。
分析:因為圓和扇形的半徑相等,圓和扇形的面積存要在倍數關系。這個倍數就是它們圓心角之間的倍數關系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面積是6平方厘米。
第11題:一個半徑3厘米的圓,在圓中畫一個扇形,使它的面積占圓面積的20%,並且算出這個扇形的面積。
分析:此題與上題的思路一樣。
3.14×3×3×20%=5.652(平方厘米)
答:這個扇形的面積是5.652平方厘米。
5.學校把植樹任務按5:3分給六年級和五年級。六年級實際栽了108棵,超過原分配任務的20%。原計劃五年級栽樹多少棵?
分析:六年級原計劃栽樹的棵數是解題的關鍵。
1、六年級原計劃栽樹多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原計劃五年級栽樹多少棵?
90÷5×3=54(棵)
綜合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原計劃五年級栽樹54棵。
6.甲乙兩面個工程隊全修一段公路,甲隊的工作效率是乙隊的3/5。兩隊合修6天正好完成這段公路的2/3,餘下的由乙隊單獨修,還要幾天才能修完?
分析:求兩隊的工效是解題的關鍵。
1、兩隊的工效和是多少?
2/3÷6=1/9
2、乙隊的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、還要幾天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:還要24/5天才能修完。
7.某水泥廠去年生產水泥232400噸,今年頭5個月的產量就等於去年全年的產量。照這樣計算,這個水泥廠今年將比去年增產百分之幾?
解法一:分析,今年後7個月的產量就是增產的,因此我們要先求出後7個月生產量。
232400÷5×(12-5)
=46480×7
=325360(噸)
325360÷232400=1、4=140%
解法二:把232400噸看作單位「1」,
1、今年平均每月生產量是去年的幾分之幾?
1÷5=1/5
2、今年比去年增產幾分之幾?
1/5×(12-5)=7/5
3、今年比去年增產百分之幾?
7/5=1.4=140%
綜合算式:1÷5×(12-5)=1.4=140%
答:這個廠今年比去年增產140%。
8.幼兒園買進大小兩種毛巾各40條,共用258.8元。大毛巾的單價比小毛巾單價的2倍多0.11元。這兩種毛巾單價各是多少元?
解:設小毛巾的單價是x元,則大毛巾的單價是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的單價是每條4.35元,小毛巾的單價是每條2.12元。
9. 一間長4、8米、寬3、6米的房間,用邊長0、15米的正方形瓷磚鋪地面,需要768塊。在長6米、寬4、8米的房間里,如果用同樣的瓷磚來鋪,需要多少塊?如果在第一個房間改鋪邊長0、2米的正方形瓷磚,要用多少塊?(用比例解)
分析:房間的面積是一定的,每塊磚的面積和塊數成反比例。
解:設需要x塊。
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280塊。
解:設需要y塊。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432塊。
10.一艘輪船所帶的柴油最多可以用6小時。駛出時順風,每小時行駛30千米。駛回時逆風,每小時行駛的路程是順風時的4/5。這艘輪船最多駛出多遠應往回駛?
分析:輪船行駛的路程一定,每小時行駛的路程和時間成反比例。
解:設這艘輪船逆風行駛了x小時。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:這艘輪船最多駛出80千米就應往回駛。
11. 一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,這時距離乙地還有94千米。甲乙兩地的公路長多少千米?
分析:「從第二小時比第一小時多行了16千米」可知第二小時行了全程的1/7和16千米。第一小時和第二小時共行全程的(1/7+1/7)和16千米。由此可知(96+16)佔全程的(1-1/7-1/7)。
根據上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙兩地的公路長156、8千米。
或者用方程解:
解:設甲乙兩地的公路長x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙兩地的公路長156、8千米。
題目改編:若這題中的一個條件改成「這時距離甲地96千米」,其它條件不變,問題也不變。如何解答?
12.一個編織組,原來30人10天生產1500隻花籃。現在增加到80人,按原來的工效,生產6000隻花籃需要多少天?(用比例解答)
分析:題中說「按原來的工效」,這說明這個紡織組的工作效率是一定的。工作效率一定,工作總量和工作時間成正比例。
解:設需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.紅光農場有兩塊麥田,第一塊5.5公頃,共收小麥27.3噸,第二塊3.6公頃,共收小麥18.2噸,這兩塊麥田平均每公頃收小麥多少噸?
14. 一輛汽車在山區行駛,上山用了3小時,平均每小時行30千米,下山行完同樣的路程,只用了2小時,求這輛汽車上山,下山的平均速度.
15. 甲乙二人同時從同一地點向相反方向背向而行,甲每小時行駛15千米,乙每小時行駛12千米,4.5小時兩人相距多少千米?甲比乙多走多少千米?
16. 服裝廠計劃做1470套服裝,已經做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原來每天多做多少套?
17. 每套童裝用布2.5米,每套成人服裝用布4米,現在要做童裝5套,成人服裝3套,共有布30米,還可以剩下多少米布?如果每條褲子用布1.1米,剩下的這些布可做褲子多少條?
18.超市開展礦泉水「買5送1」的活動。一個旅遊團有48人,想每人發一瓶礦泉水,需要購買多少瓶水就夠了?
(買5送1 的意思是要6瓶礦泉水只需要買5瓶,48里有8個6,所以只需要8個5就可以了,答案是40瓶。)
19. 一個小數部分是兩位的小數,用四捨五入法把它精確到0.1,它的近似值是5.0,那麼這個兩位小數是什麼?
(解析:所求的兩位小數是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一隻底面是正方形的長方體鐵箱,如果把它的側面展開,正好得到一個邊長是40cm的正方形.求這只鐵箱的容積是多少升?
《 40÷4=10 10×10×40÷1000=4》
5. 數學五年級下冊思考題答案
解答2
設其中一個奇數為x 另一個為x+2
x+(x+2)=16[(X+2)-X
解: X=15
15+2=17
2·兩個連續奇數的和除以它們的差,版商是16,這兩個奇權數是(15)和(17)
6. 小學五年級數學思考題
1.設有X人.
5X-17=3X-3
2X=14
X=7
答:有7個同學.
2.設有X個同學.
8X-27=6X-5
2X=22
X=11
共有樹:11*8-27=61(棵)
或:11*6-5=61(棵)
答:人有11個同學,共有樹61棵.
3.設上層有書X本,則下層書為:3X+5本.中層書為:2X+1本.
X+3X+5+2X+1=840
6X=734
X=139
下層為:3*139+5=422(本)
中層為:2*139+1=279(本)
答:上中下層各有書139本,279本和422本.
4.設原來買梨X個,原來買的蘋果為3X個.
3X-6=5(X-10)
3X-6=5X-50
2X=44
X=22
蘋果為:3*22=66(個)
蘋果和梨共為:66+22=88(個)
答:原來買來蘋果和梨共為88個.
5.設小紅原來有X張畫片.小明原來有3X張.
3X+5=2(X+5)
3X+5=2X+10
X=5
小明原來有:3*5=15(張)
答:小紅和小明原來各有5張和15張畫片.
7. 數學五年級思考題10道
1.一塊長1米20厘米,寬90厘米的鋁皮,剪成直徑厘米的圓片,最多可以剪幾塊?
分析:此題不需求面積的。只需求長和寬各是圓的直徑的幾倍,然後求出長和寬的倍數的積。
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(塊)
答:最多可以剪12塊。
2.一個圓柱,底面半徑1分米,它的側面展開是一個正方形。這個圓柱的表面積和體積是多少?
分析:從側面展開圖正方形入手,可知這個圓柱的高是圓柱的底面周長。
圓柱的表面積:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圓柱的體積:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:這個圓柱的表面積是45.7184平方分米,體積是19.7192平方分米。
3.一列火車上午8時從甲站開出,到第二天的晚上9時到達乙站。已知火車平均每小時行98千米。甲乙兩站間的鐵路長多少千米?
分析:這題的解題關鍵是要知道火車行駛的時間。
24-8+9=25(小時)[或者:12-8+12+9=25(小時)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙兩站間的鐵路長2450千米。
4.一個圓和一個扇形的半徑相等。已知圓的面積是30平方厘米,扇形的圓心角是72度。求扇形的面積。
分析:因為圓和扇形的半徑相等,圓和扇形的面積存要在倍數關系。這個倍數就是它們圓心角之間的倍數關系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面積是6平方厘米。
第11題:一個半徑3厘米的圓,在圓中畫一個扇形,使它的面積占圓面積的20%,並且算出這個扇形的面積。
分析:此題與上題的思路一樣。
3.14×3×3×20%=5.652(平方厘米)
答:這個扇形的面積是5.652平方厘米。
5.學校把植樹任務按5:3分給六年級和五年級。六年級實際栽了108棵,超過原分配任務的20%。原計劃五年級栽樹多少棵?
分析:六年級原計劃栽樹的棵數是解題的關鍵。
1、六年級原計劃栽樹多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原計劃五年級栽樹多少棵?
90÷5×3=54(棵)
綜合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原計劃五年級栽樹54棵。
6.甲乙兩面個工程隊全修一段公路,甲隊的工作效率是乙隊的3/5。兩隊合修6天正好完成這段公路的2/3,餘下的由乙隊單獨修,還要幾天才能修完?
分析:求兩隊的工效是解題的關鍵。
1、兩隊的工效和是多少?
2/3÷6=1/9
2、乙隊的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、還要幾天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:還要24/5天才能修完。
7.某水泥廠去年生產水泥232400噸,今年頭5個月的產量就等於去年全年的產量。照這樣計算,這個水泥廠今年將比去年增產百分之幾?
解法一:分析,今年後7個月的產量就是增產的,因此我們要先求出後7個月生產量。
232400÷5×(12-5)
=46480×7
=325360(噸)
325360÷232400=1、4=140%
解法二:把232400噸看作單位「1」,
1、今年平均每月生產量是去年的幾分之幾?
1÷5=1/5
2、今年比去年增產幾分之幾?
1/5×(12-5)=7/5
3、今年比去年增產百分之幾?
7/5=1.4=140%
綜合算式:1÷5×(12-5)=1.4=140%
答:這個廠今年比去年增產140%。
8.幼兒園買進大小兩種毛巾各40條,共用258.8元。大毛巾的單價比小毛巾單價的2倍多0.11元。這兩種毛巾單價各是多少元?
解:設小毛巾的單價是x元,則大毛巾的單價是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的單價是每條4.35元,小毛巾的單價是每條2.12元。
9. 一間長4、8米、寬3、6米的房間,用邊長0、15米的正方形瓷磚鋪地面,需要768塊。在長6米、寬4、8米的房間里,如果用同樣的瓷磚來鋪,需要多少塊?如果在第一個房間改鋪邊長0、2米的正方形瓷磚,要用多少塊?(用比例解)
分析:房間的面積是一定的,每塊磚的面積和塊數成反比例。
解:設需要x塊。
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280塊。
解:設需要y塊。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432塊。
10.一艘輪船所帶的柴油最多可以用6小時。駛出時順風,每小時行駛30千米。駛回時逆風,每小時行駛的路程是順風時的4/5。這艘輪船最多駛出多遠應往回駛?
分析:輪船行駛的路程一定,每小時行駛的路程和時間成反比例。
解:設這艘輪船逆風行駛了x小時。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:這艘輪船最多駛出80千米就應往回駛。
8. 五年級下冊數學思考題及答案
商店裡有6箱貨物,分別重15、16、18、19、20、31千克,兩個顧客買走了其中5箱。已知回一個顧客答買的貨物質量是另一個顧客買的2倍,那麼,商店剩下的1箱貨物質量是(
)千克。
解答:6箱貨物的總質量是:15+16+18+19+20+31=119千克。
兩個顧客買走的是5箱貨物的質量可以用a、2a來表示,那麼a+2a=3a,賣出的貨物質量是3的倍數。即總質量-剩下的=3的倍數
119-15=104
不是3的倍數
119-16=103
不是3的倍數
119-18=101
不是3的倍數
119-19=100
不是3的倍數
119-20=99
是3的倍數
119-31=88不是3的倍數
所以
剩下的那一箱貨物的質量是20千克
9. 五年級思考題及答案
1.機床廠原來知道機床每台用鋼材1.02噸,改進後,每台比原來節約0.12噸,原來製造300台所用的鋼材,現在可以製造機床多少台? 你先算原來製造300台所用的鋼材:1.02×300=306(噸) 再算現在每台所用的鋼材:1.02-0.12=0.9(噸) 最後算現在可以製造機床的台數:306/0.9=340(台) 2.A國與B國各自都有自己的貨幣,兩國之間的貨幣交換非常有趣。在A國,A國的2元等於B國的3元;在B國,B國的2元等於A國的3元。每次換貨幣的數量不限,但是每換一次後要交手續費16元(任一國國幣均可)。一位聰明的博士,他現在在A國,身上只有160元A國貨幣,他想往返於A、B兩國之間,通過換貨幣,使自己的錢增到千元以上(兩國貨幣均可)。那麼,他至少要通過邊境多少次? 3÷2=1.5 160×1.5=240....過境進入B國 240×1.5=360....過境進入A國 360×1.5=540.....過境進入B國 540×1.5=810....過境進入A國 810×1.5=1215 過境4次 3.一杯牛奶和一杯果汁同樣多,現在把1/3的牛奶倒進果汁里,攪拌後再把1/4的混合物倒回牛奶里。現在是牛奶里的果汁多還是果汁里的牛奶多? 其實到最後兩杯混合物量是一樣多的。把原來的那杯牛奶和等量的那杯果汁的量都看成a,倒(1/3)a的純牛奶進果汁的杯里,攪拌後這杯混合物中牛奶和果汁的比是1:3,即混合物里牛奶的量是(1/4)a。 第二次把1/4混合物倒回牛奶杯,這1/4混合物的量也就是1/4a,和第一次倒過來的純牛奶是一樣多的,所以兩杯混合物也就變回一樣多了。 至於為什麼牛奶里的果汁就和果汁里的牛奶一樣多了,你不明白可以拿兩杯同樣多不同顏色的玻璃棋子做下實驗,你會發現要保證最後兩個杯里的棋子一樣多,這個杯里一種顏色的棋子一定和另一個杯子的另一種顏色的棋子相等,也就說明了這個問題。如果這原理不明白我可以補充回答。 當然如果這個問題考慮物理原理的話可能就不準確了 4.王村修一條水渠,第一天修8.5km,第二天比第一天多修3.5km,這時修完的比沒修的少4km,求還有多少千米沒修? 8.5+3.5+8.5=20.5 km 20.5-4=16.5 km 5.有一個整數,花去他的個位後得到一個新的整數,兒這個新的整數恰好是原數的1/13,這個整數是多少? 此整數為AB,劃去個位後得到A,A/(10A+B)=1/13 => 3A=B,當B=3時,A=1;當B=6時,A=2;當B=9時,A=3。所以這個整數有3種可能,即:13,26,39。 6.三個不同真分數的分子都是質數,分么都小於10,這三個真分數的和最大是多少? 三個不同的真分數的分子都是質數,分母都小於10的分式由大到小有:7/8>5/6>7/9>3/4>2/3,所以三個真分數分別為7/8,5/6和7/9,總和為179/72 7.兩輛汽車從一個地方相背而行.一車每小時行31千米,一車每小時行44千米.經過多少分鍾後兩車相距300千米? 方程: 解:兩車X時後相遇. 31X+44X=300 75X=300 X=4 4小時=240分鍾 答:經過240分鍾後兩車相距300千米. 8.兩個工程隊要共同挖通一條長119米的隧道,兩隊從兩頭分別施工.甲隊每天挖4米,乙隊每天挖3米,經過多少天能把隧道挖通? 解:設X天後挖通隧道 3X+4X=119 7X=119 X=17 答:經過17天挖通隧道. 9.學校合唱隊和舞蹈隊共有140人,合唱隊的人數是舞蹈隊的6倍,舞蹈隊有多少人? 解:設舞蹈隊有X人 6X+X=140 7X=140 X=20人 答:舞蹈隊有20人. 10.某班學生人數在100人以內,列隊時,每排5人,4人,3人都剛好多一人,這班有多少人? 5X4X3=60人 60+1=61人 答:這班有61人. 11.一塊梯形的玉米地,上底15米,下底24米,高18米.每平方米平均種玉米9株,這塊地一共可種多少株玉米? (15+24)X18÷2=351平方米 351X9=3195株 答:這塊地可種玉米3159株. 12.有兩塊面積相等的平行四邊形實驗田,一塊底邊長70米,高45米,另一塊底邊長90米,高是多少米? 70X45=3150平方米 3150÷90=35米 答:高是35米. 13.一批鋼管疊成一堆,最下層有10根,每上1層少放1根,最上1層放了5根.這批鋼管有多少根? 10-5+1=6層 (10+5)X6÷2 =15X6÷2 =90÷2 =45根 14.體育用品有90個乒乓球,如果每兩個裝一盒,能正好裝完嗎?如果每五個裝一盒,能正好裝完嗎?為什麼? 90÷2=45盒 90÷5=18盒 答:如果每兩個裝一盒,能正好裝完如果每五個裝一盒,也能正好裝完。因為90能整除五。 15. 甲,乙兩個人打打一份10000字的文件,甲每分打115個字,乙每分鍾打135個字,幾分鍾可以打完? 10000÷(115+135)=40分 答:40分鍾可以打完。 打得好累,要給分哦!
10. 小學五年級上學期的思考題
1、小力用豎式計算抄5.1加上一個兩位小襲數時,把加號看成了減號,得2.76。你能幫他算出正確的結果嗎?
2、小華在計算一道小數減法時,把被減數十分位上的8看成了3,把減數百分位上的1看成了7。你能算出錯誤的答案與正確的答案相差多少嗎?
3、甲、乙兩數的和是16.5,甲數的小數點向右移動一位正好等於乙數。你知道甲、乙兩數各是多少嗎?
4、為了鼓勵節約用電,某市電力公司規定了以下的電費計算方法:每月用電不超過100千瓦時,按每千瓦時0.52元收費;每月用電超過100千瓦時,超過部分按每千瓦時0.6元收費。小明家十月分付電費64.6元,用電多少千瓦時?
5、A、B、C、D、E、F6人進行圍棋比賽,每人都要賽一場。下午統計時,A下了5盤,B下了4盤,C下了3盤,D下了2盤,E下了一盤。F下了幾盤?和誰下的?