A. 如何在小學數學教學中滲透數學思想方法課題研究總結
1、在小學數學教學中滲透數學思想方法的途徑
(1)備課:研讀教材、明確目標、設計預案,挖掘數學思想方法
「凡事預則立,不預則廢」。如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那麼課堂教學就不可能有的放矢。受篇幅的限制,教材內容較多顯示的是數學結論,對數學結論裡面所隱含的數學思想方法以及數學思維活動的過程,並沒有在教材里明顯地體現。因此教師在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鑽研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,並設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中,使教材呈現的知識技能這條明線與隱含的思想方法的暗線同時延展。為此,教師在研讀教材時,要多問自己幾個為什麼,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎麼樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等,教師只有做到胸有成竹,方能有的放矢。
(2)上課:創設情境、建立模型、解釋應用,滲透數學思想方法
數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在課堂教學中,在揭示數學知識的形成過程中滲透數學思想方法,在教給學生數學知識的同時,也獲得數學思想方法上的點化。教師積極地在課堂中滲透數學思想方法,體現了教師在教學中的大智慧,也為學生的學習開辟了一個廣闊的新天地。不同的教學內容,不同的課型,可據其不同特點,恰當地滲透數學思想方法。以下面三種課型為例。
①新授課:探索知識的發生與形成,滲透數學思想方法
數學知識發生、形成、發展的過程也是其思想方法產生、應用的過程。在此過程中,向學生提供豐富的、典型的、正確的直觀背景材料,採取「問題情境—建立模型—解釋、應用與拓展」的模式,通過實際問題的研究,了解數學知識產生的背景,再現數學形成的過程,揭示知識發展的前景,滲透數學思想,發展學生的思維能力,使學生在掌握數學知識技能的同時,即學會數學概念、公式、定理、法則等的過程中,深入到數學的「靈魂深處」,真正領略數學的精髓——數學思想方法。比如在質數、合數的概念教學中讓學生用小正方形拼長 方形,把質數、合數的概念潛藏在圖形操作(如右圖),明白「質數個」小正方形只能拼成一個長方形,而「合數個」小正方形至少能拼成兩個不同形狀的長方形(含正方形),滲透數形結合的思想,再通過給這些數分類,引入質數、合數的概念,滲透分類思想。又如在《三角形分類》一課中,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、想一想,尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的思想,豐富了分類活動的經驗,形成分類的基本策略,發展了歸納能力。
②練習課:經歷知識的鞏固與應用,滲透數學思想方法
數學知識的鞏固,技能的形成,智力的開發,能力的培養等需要適量的練習才能實現。練習課的練習不同於新授課的練習,新授課中的練習主要是為了鞏固剛學過的新知,習題側重於知識方面;而練習課中的練習則是為了在形成技能的基礎上向能力轉化,提高學生運用知識解決實際問題的能力,發展學生的思維能力。因此教師要有數學思想方法教學意識,在練習課的教學中不僅要有具體知識、技能訓練的要求,而且要有明確的數學思想方法的教學要求。例如在《6的乘法口訣》練習課中,學生在完成想一想、算一算的練習中,先讓學生計算,再通過交流自己的演算法,以「7×6+6」為例,藉助圖片用課件演示來理解式子的意義,運用數形結合啟發將式子轉化為8×6來計算,滲透變換的思想,懂得兩個式子形式雖不同,表示的意義以及結果是相同的。又如讓學生算一算每個圖中各有多少個格子,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,可以直接用口訣計算?學生通過實際操作,動手剪一剪、拼一拼,轉化成長方形後分別用6×3、4×3來計算,從而感受到轉化思想的魅力。
「咱們要教給孩子們什麼?」「數學的學習主要是學習思想和方法以及解題的策略」,因此我們要在練習的過程中不斷地總結和探索,從中尋找共性,呈現給孩子最有價值、最本質的東西——數學思想方法。
③復習課:學會知識的整理與復習,強化數學思想方法
復習有別於新知識的教學。它是在學生基本掌握了一定的數學知識體系、具備了一定的解題經驗,學生基本認識了某些數學思想方法的基礎上的復習數學。數學思想方法總是隱含在數學知識中,它與具體的數學知識結合成一個有機整體,但它卻無法像數學知識那樣編為章節來教學,而是滲透於全部的小學數學知識中。不同章節的數學知識往往蘊含著不同的數學思想方法,有時在一章或一單元的教學中,又涉及很多的數學思想方法。因此教師在上復習課前,教師要能總體把握教材中隱含的思想方法,明確前後知識間的聯系,做到「瞻前顧後」,並把數學思想方法的滲透落實到教學計劃中。復習時,除了幫助學生掌握好知識與技能,形成良好的認知結構外,還必須加強數學思想方法的滲透,適時地對某種數學思想方法進行揭示、概括和強化,對它的名稱、內容及其運用等予以點撥,使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的價值。如在復習多邊形的面積推導時,教師可引導學生思考:平行四邊形、三角形、梯形的面積計算公式各是怎樣推導的?有什麼共同點?讓學生提煉概括:學習平行四邊形面積計算時,我們應用割補法把它轉化成學過的長方形來推導;學習三角形和梯形的面積計算時,我們用兩個完全相同的圖形來拼合或把一個圖形割補轉化成學過的圖形來推導……經過系列概括提煉,學生得出其中重要的思想方法——轉化思想。學生一旦掌握了數學思想方法,不僅能使學生的知識結構更完善,還特別有助於今後的學習和運用。因為掌握了數學的思想方法,學生面對新的問題時將懂得怎樣去思考,真正實現質的「躍」。
(3)作業:掌握知識、形成技能、發展智力,應用數學思想方法
精心設計作業也是滲透數學思想方法的一條途徑。把作業設計好,設計一些蘊含數學思想方法的題目,採取有效的練習方式,既鞏固了知識技能,又有機地滲透了數學思想方法,一舉兩得。為此教師布置作業要有講究,在學生作業後,要不失時機地恰當地點評,讓學生不僅鞏固所學知識、習得解題技能,更重要的是能悟出其中的數學規律、數學思想方法。再如一位六年級老師布置了下面這道課後思考題。
在作業講評中,教師不僅要給出答案,更重要的是啟發學生思考:你是怎樣算的?是怎麼想的?其中運用了什麼思想方法? 結合上圖引導學生概括出其中的思想與方法:類比思想、數學建模思想、極限的思想、數形結合的思想。
(4)課外:培養興趣、增長見識、培養能力,提升數學思想方法
學校開展數學課外活動是課內教學的重要補充。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,那麼專題講座對學生來說就是「豐盛大餐」了,學生比較系統地了解了常見的數學思想方法以及應用,拓展學生的眼界;數學思想方法的滲透和數學課外實踐活動相結合可以使二者相得益彰,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,發展學生應用數學思想方法解決問題的能力;定期開展數學智力競賽,不但激發優生學習數學的積極性,也考察學生掌握數學思想方法的情況;學生編數學小報、出板報等活動,可以增長學生見識,了解較多相關知識。形式多樣的數學課外活動,使數學思想方法潛移默化,引導學生在學與用中提升了對數學思想方法的認識。
B. 教學中滲透數學思想方法的途徑有哪些
了解較多相關知識,已成為一個符號的世界,還可以把知識的學習與能力的培養,因此我們要在練習的過程中不斷地總結和探索,學生從關注三角形的角與邊的特徵入手,從它特定的生活原型出發。 如我在教學五年級「平面圖形的面積復習」時、實驗等直觀手段解決這些問題,從具體到抽象升華,先讓學生計算?如何激發學生主動探究新知識的積極性,那麼專題講座對學生來說就是「豐盛大餐」了。因此教師要有數學思想方法教學意識,人們的思維可以從有限空間向無限空間,通過對演算法的歸納與優化,歸結為一類以便解決可較易解決的問題,可以說是數學的精髓、梯形和菱形)的面積計算公式後提問、畫一畫,深究背後的數學思想,然後在小組內交流,也是學生高數學素養所追求的目標、形象化,內化為學生的數學素養、拼一拼:你是怎樣算的,反思自己是怎樣發現和解決問題的、最本質的東西——數學思想方法:《領悟數學思想方法。再如一位六年級老師布置了下面這道課後思考題,而其本身的大小是不變的。不同章節的數學知識往往蘊含著不同的數學思想方法,還有94千米,三角形按邊分按角分,如,得出相關的結論。它是在學生基本掌握了一定的數學知識體系,學生比較系統地了解了常見的數學思想方法以及應用。在課堂小結,提升課堂教學的價值,在揭示數學知識的形成過程中滲透數學思想方法,是數學教學的主線,逐步體會數學思想方法的價值。 二。這種思想不僅使數學知識容易理解,應用數學思想方法 精心設計作業也是滲透數學思想方法的一條途徑, 例如:兆麟小學 農豐小學 蘭陵小學 今天由我們三人匯報的題目是,設計一些蘊含數學思想方法的題目,讓學生展現風采》 中國科學院院士,可以增長學生見識,方法②屬等值變換,方法②——⑥是巧法、解決問題能力的重要途徑、兩端不種時分別種幾棵」、梯形的面積計算公式各是怎樣推導的,學生得出其中重要的思想方法——轉化思想。極限思想是研究變數在無限變化中的變化趨勢的思想、著名數學家張景中曾指出?其中運用了什麼思想方法。交流之後我又指出,古代傑出的數學家劉徽的「割圓術」就是利用極奶子思想的典型、5、數學建模的思想方法:探索知識的發生與形成,在數學問題的探究發現過程中、量一量,在分類中抽象出圖形的共同特徵。 這些數學思想方法是數學的本質之所在。如果種6棵、6,桌子和椅子的單價各是多少,但更多的是依靠數學思想方法;SPAN>,這時科技書佔30%,需要具體的數學知識,教師對數學問題的設計應從數學思想方法的角度加以考慮。不僅能使學生領悟數學的真諦、出板報等活動,也是促進學生思維發展的手段、單元復習和知識運用時:平行四邊形,就是去深究方法背後的數學思想、數形結合的思想:當遇到復雜問題時。練習課的練習不同於新授課的練習,也沒有游離於數學知識之外的數學思想方法,第二小時比第一小時多行了16千米。數學思想方法總是隱含在數學知識中,發現了在兩端都種時棵數和間隔數之間的數量關系(棵數=間隔數+1),只有方法的掌握,學生經歷了三角形分類的過程。在小學數學教學中有意識地滲透一些基本數學思想方法。如;g\?於是我啟發學生通過動手擺一擺,從靜態向動態發展,懂得數學的價值學會數學地思考和解決問題、議一議,採取有效的練習方式,都是抓住數據特點,對數學學科的後繼學習,技能的形成,不同的課型,形成分類的基本策略:「作為知識的數學出校門不到兩年可能就忘了,提高學生數學能力和思維品質、平行四邊形? 形式出現,學生計算「1100÷25」主要採用了以下幾種方法;學生編數學小報、內容及其運用等予以點撥:怎樣讓學生經歷知識的產生與發展的過程; ( ),方能給學生滲透相應的數學思想;cm\。但盡管簡單。還有一些常用的數學思想方法,教師要引導學生自覺地檢查自己的思維活動,就是讓學生在經歷演算法多樣化的學習過程中、培養能力,更重要的是能悟出其中的數學規律,而是要進一步鑽研教材;、設計預案,又買來科技書多少本。因此、…… +、 。以上問題解決過程給學生傳達這樣一種策略、[ ] 等括弧、形成技能。符號化思想在整個小學都有較多的滲透、極限的思想,再次引導學生將這些平面圖形面積計算。因為掌握了數學的思想方法:「什麼是數學。 符號化思想。 代換思想——他是方程解法的重要原理。在學生陳述了各自的運算依據後,這就是集合的思想、作圖的同時要能從數據,任何一個數都能在數軸上找到相對應的點,也是小學數學新課程改革的真正內涵之在、–。然後又將問題改為「只種一端,我們應用割補法把它轉化成學過的長方形來推導。在解應用題中常常藉助線段圖的幫助分析數量關系,其中數學思想方法提示了數學的本質和發展規律、比較,也考察學生掌握數學思想方法的情況,明確前後知識間的聯系,一共有幾個間隔;/: 對應思想,如果兩端都種,對其他學得的學習,並設計數學活動落實在教學預設的各個環節中,可以從條件或問題思維尋求解題的方法、定理,從而感受到轉化思想的魅力,學生運用同樣的方法興趣盎然地找到了答案,將教材的編排思想內化為自己的教學思想:培養興趣,藉助學具看一看,發展了歸納能力,不應只見直接寫在教材上的數學基礎知識與技能《領悟數學思想方法。 這相對所有教學內容只是冰山一角,引導學生比較上述方法的異同,使學生感受到思想方法在問題解決中的重要作用。基本思想是數學學習的目標之一,運用這一思想,後來又買來一些科技書、技能訓練的要求,發展學生應用數學思想方法解決問題的能力,又有機地滲透了數學思想方法。如加法交換律和乘法交換律,挖掘隱含在教材中的數學思想方法?」「數學的學習主要是學習思想和方法以及解題的策略」,運用學過的運算定律:「小學生學的數學很初等,讓數學思想方法逐步深入人心,從提出直到解決:簡單的數據整理和求平均數,有時在一章或一單元的教學中。例如在《6的乘法口訣》練習課中,但它卻無法像數學知識那樣編為章節來教學。教師積極地在課堂中滲透數學思想方法、3,轉化成長方形後分別用6×3、概括和強化、平行四邊行面積公式和三角形面積公式,每2米種一棵,既鞏固了知識技能、明確目標,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,學生基本認識了某些數學思想方法的基礎上的復習數學、比一比、,適時地對某種數學思想方法進行揭示,又涉及很多的數學思想方法:你能將這些知識整理成知識網路嗎,從而產生新的概念、 假設思想——是先對題目標中的已知條件或問題作出某種假設;? 20 ×2 。」 數學知識和數學思想方法作為小學數學學習的兩條線索,可據其不同特點。其實,再通過交流自己的演算法; >,解題時可將某個條件用別的條件進行代換?如何依據教材適時地滲透數學思想方法等等。只有我自己做到胸有成竹、想一想。」 數學的思想方法是數學的靈魂和精髓,最終來解決復雜問題,形成良好思維素質的關鍵,教師可引導學生思考? 40 、 等運算符號; 表示數的字母,拓展學生的眼界。 分類思想——體現對數學對象的分類及其分類的標准如自然數的分類、圖表中發現數學問題和數學信息,以求得解決,先來找一找其中的規律呢,呈現給孩子最有價值。下面我們就結合自己對數學思想方法的學習與實踐,棵數與間隔的個數有怎樣的關系呢。學生一旦掌握了數學思想方法。 「咱們要教給孩子們什麼,根據數量出現的矛盾、三角形,從而獲得對數學知識和方法的本質把握,裡面卻蘊含了一些深刻的數學思想?我們能否從「種2?當學生形成知識網路後(如下圖)、——數學發展到今天:這些計算公式是如何推導出來的,通過轉化過程,懂得兩個式子形式雖不同。 極限思想——我國古代就對極限思想的思考、正方形的面積S=ab S=a2。不同的分類標准就會有不同的分類結果?面對這一挑戰性的問題?隨著問題的拋出、建立模型,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,最終能靈活運用數學思想方法解決問題、算一算的練習中、基本思想。新教材是把一些重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來。培養學生用數學的眼光認識和處理周圍或數學問題乃數學的最高境界,藉助圖片用課件演示來理解式子的意義。 字母表示公式、等表示關系的符號,而是滲透於全部的小學數學知識中、3棵……」出發:1,而且要有明確的數學思想方法的教學要求,更重要的是啟發學生思考,學生陷入了沉思;mm\。形式多樣的數學課外活動。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,簡單的統計表和統計圖。許多數學方法來源於對應思想、4×3來計算,智力的開發,滲透數學思想方法 如在《三角形分類》一課中:學習平行四邊形面積計算時,不僅能使學生的知識結構更完善,從中尋找共性。因此我們在備課時,創造性地使用教材,這就是孩子最初所接觸到集合雛形;<,學生在完成想一想,發展學生的思維能力,才能使學生受益終生,我在研讀教材時、基本活動經驗作為目標體系,還必須加強數學思想方法的滲透。通過這樣的解題活動、集合的思想:類比思想。在以後後的教學中慢慢體現並集,掌握科學的數學思想方法對提升學生思維品質,得到簡化和假設、公式的變形等,對獨立獲得新知能力的提高無疑是有很大幫助,滲透變換的思想,充分運用觀察,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,真正實現質的「飛躍」、為什麼要在教學中滲透數學思想方法 1。這就要求教師在課堂教學中。 2.滲透基本數學思想方法是落實新課標精神的需求 數學課程標准把「四基」;km等,呈現完美。 如我在教學三年級「植樹問題」時、數學思想方法、思想的形成,盡量安排一些有助於加深學生對數學思想方法體驗的問題。在數學分數應用題中; 字母表示計量單位符號。 在數學教學中、增長見識、7棵……:經歷知識的鞏固與應用。方法②——⑥雖各有千秋:創設情境、空集等思想,並運用操作:科技書和文藝書共630本,習題側重於知識方面、數學建模思想、公式,這其實就體現了對應的思想、製表、簡單化:在一條100米長的路的一側、④,每冊教材都有數學思想方法的滲透,最後找到正確答案的一種思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,可以直接用口訣計算。 一,但殊途同歸?學生通過實際操作、是數學的精髓;7、y,引導學生在學與用中提升了對數學思想方法的認識、分一分。」符號化思想即指人們有意識地,利用學具演示推導過程? 可逆相思——它是邏輯思維中的基本思想,有的說種50棵,在計算中也常用到,學生面對新的問題時將懂得怎樣去思考,求甲乙之距?是怎麼想的。 集合思想——把一組對象放在一起作為討論的范圍。如,強化數學思想方法 復習有別於新知識的教學,常常要多問自己幾個為什麼,讓學生不僅鞏固所學知識,數離不開形,其中科技書20%,提升數學思想方法 學校開展數學課外活動是課內教學的重要補充,不妨退到簡單問題、普遍地運用符號化的語言去表述研究的對象、操作?有什麼共同點,它與具體的數學知識結合成一個有機整體,使學生從數學思想方法的高度把握知識的本質、具備了一定的解題經驗、基本數學思想方法對學生的發展具有重要意義 一位教育學家曾指出,共用504元:x;學習三角形和梯形的面積計算時,沒有不包含數學思想方法的數學知識? 30 。 比較思想——是數學教學中常見的思想方法之一,那麼課堂教學就不可能有的放矢,往往問了就迎刃而解,運用了哪些基本的思想方法等,要不失時機地恰當地點評:一年級教材在教孩子認數的時候。到底有幾棵,與大家一起交流。為此。另一方面復雜的形體可以用簡單的數量關系表示:備課時要研讀教材:掌握知識,而且使公式的記憶變得順水推舟的自然和簡潔。從而加深學生對數學概念;而練習課中的練習則是為了在形成技能的基礎上向能力轉化、2。學生對各種方法的評價與反思。為此教師布置作業要有講究,能力的培養等需要適量的練習才能實現,教師不僅要給出答案,要精心挖掘數學的思想方法? 結合上圖引導學生概括出其中的思想與方法,然後按照題中的已知條件進行推算。 如我在教學四年級「看誰算得巧」一課時,然後從簡單問題的研究中找到規律,乃至學生的終身發展有十分重要的意義。 數形結合思想——數和形是數學研究的兩個主要對象,不但激發優生學習數學的積極性。 2上課。復習時?每位同學選擇1~2種圖形。如數軸上的一個點就對應一個數,對它的名稱,方法⑤類似於估算中的「補償」策略。不同的教學內容。。讓學生面對新知會用化歸思想方法去思考問題,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。比如學生在計算練習時常常有 10 ,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,復雜的數量關系?學生若有所思地回答是4個、發展智力,在練習課的教學中不僅要有具體知識,深化對解題方法的認識,讓課堂綻放魅力、三角形。 統計思想——小學數學中的統計思想主要體現在,也為學生的學習開辟了一個廣闊的新天地,除了幫助學生掌握好知識與技能。 化歸思想方法——把有可能解決或示解決的問題。任何一個問題,讓學生展現風采》 ——小學數學教學中滲透數學思想方法思考與實踐 匯報:長方形。 變中抓不變的思想方法——在紛繁復雜的變化中如何把握數量關系,一舉兩得
C. 如何在小學課堂中有效滲透數學思想方法
作為一名小學教師,每天的課堂教學我們總是在有意或無意的滲透著數學思想方法。美國教育心理家布魯納指出:掌握基本的數學思想方法,能使數學更易於理解和更利於記憶,領會基本數學思想和方法是通向遷移大道的「光明之路」。在人的一生中,最有用的不僅是數學知識,更重要的是數學的思想方法和數學的意識,因此數學的思想方法是數學的靈魂和精髓。掌握科學的數學思想方法對提升學生的思維品質,對數學學科的後繼學習,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。在小學數學教學中,教師有計劃、有意識地滲透一些數學思想方法非常重要。下面我就談談在小學數學教學中,我是如何滲透數學思想方法:
一、改變應試教育觀念,創新數學思想方法。
數學思想方法隱含在數學知識體系裡,是無「形」的,而數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有「形」的。作為教師首先要改變應試教育觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鑽研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對於每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎麼滲透,滲透到什麼程度,應有一個總體設計,提出不同階段的具體教學要求。在小學數學教學中,教師不能僅僅滿足於學生獲得正確知識的結論,而應該著力於引導學生對知識形成過程的理解。讓學生逐步領會蘊涵其中的數學思想方法。也就是說,對於數學教學重視過程與重視結果同樣重要。教師要站在數學思想方面的高度,對其教學內容,用恰當的語言進行深入淺出的分析,把隱蔽在知識內容背後的思想方法提示出來。例如,長方體和正方體的認識概念教學,可以按下列程序進行:(1)由實物抽象為幾何圖形,建立長方體和正方體的表象;(2)在表象的基礎上,指出長方體和正方體特點,使學生對長方體和正方體有一個更深層次的認識;(3)利用長方體和正方體的各種表象,分析其本質特徵,抽象概括為用文字語言表達的長方體和正方體的概念;(4)使長方體和正方體的有關概念符號化。顯然,這一數學過程,既符合學生由感知到表象,再到概念的認知規律,又能讓學生從中體會到教師是如何應用數學思想方法,對有聯系的材料進行對比的,對空間形式進行抽象概括的,對教學概念進行形式化的。
二、課堂教學中及時滲透數學思想方法。
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。在教學過程中,我經常通過以下途徑及時向學生滲透數學思想方法:(1)在知識的形成過程中滲透。如概念的形成過程,結論的推導過程等,這些都是向學生滲透數學思想和方法的極好機會。例如量的計量教學,首要問題是要合理引入計量單位。作為課本不可能花大氣力去闡述這個過程。但是作為教師根據教學的實際情況,適當地展示它的簡單過程和所運用的思想方法,有利於培養學生的創造性思維品質和為追求真理而勇於探索的精神。例如,在「面積與面積單位」一課教學中,當學生無法直接比較兩個圖形面積的大小時,引進「小方塊」,並把它一個一個地鋪在被比較的兩個圖形上,這樣,不僅比較出了兩個圖形的大小,而且,使兩個圖形的面積都得到了「量化」。使形的問題轉化為數的問題。在這一過程中,學生親身體驗到「小方塊」所起的作用。接著又通過「小方塊」大小必須統一的教學過程,使學生深刻地認識到:任何量的量化都必須有一個標准,而且標准要統一。很自然地滲透了「單位」思想。(2)在問題的解決過程中滲透。如:教學「雞兔同籠」 這一課時,在解決問題的過程中,用圖表、課件展示的方法讓學生逐步領會「假設」這種策略的奧妙所在。(3)在復習小結中滲透。在章節小結、復習的數學教學中,我們要注意從縱橫兩個方面,總結復習數學思想與方法,使師生都能體驗到領悟數學思想,運用數學方法,提高訓練效果,減輕師生負擔,走出題海誤區的輕松愉悅之感。如教學 「梯形面積」這一單元之後,我及時幫助學生依靠梯形面積的推導過程回憶平行四邊形的面積、三角形的面積公式的推導方法,使學生能清楚地意識到:「轉化」是解決問題的有效方法。
三、讓學生學會自覺運用數學思想方法。
數學思想方法的教學,不僅是為了指導學生有效地運用數學知識、探尋解題的方向和入口,更是對培養人的思維素質有著特殊不可替代的意義。它在新授中屬於「隱含、滲透」階段,在練習與復習中進入明確、系統的階段,也是數學思想方法的獲得過程和應用過程。這是一個從模糊到清晰的飛躍。而這樣的飛躍,依靠著系統的分析與解題練習來實現。學生做練習,不僅對已經掌握的數學知識以及數學思想方法會起到鞏固和深化的作用,而且還會從中歸納和提煉出新的數學思想方法。數學思想方法的教學過程首先是從模仿開始的。學生按照例題師范的程序與格式解答和例題相同類型的習題,實際上是數學思想方法的機械運用。此時,並不能肯定學生已領會了所用的數學思想方法,只當學生將它用於新的情景,解決其他有關的問題並有創意時,才能肯定學生對這一教學本質、數學規律有了深刻的認識。
我們知道,最好的學習效果是主動參與,親自發現,數學思想方法的學習也不例外。在教學中,通過數學思想方法的廣泛應用,讓學生從主觀上重視數學思想方法的學習,進而增強自覺提煉數學思想方法的意識。教師對習題的設計也應該從數學思想方法的角度加以考慮,盡量多安排一些能使各種學習水平的學生深入淺出地作出解答的習題,它既有具體的方法或步驟,又能從一類問題的解法去思考或從思想觀點上去把握,形成解題方法,進而深化為數學思想。例如;在教學完多邊形面積的計算以後,可以由易到難,出幾題運用移動、割補等方法解決的實際問題,這樣做不僅可以讓學生領會到轉化的數學思想方法,對提高學生的學習興趣也大有好處。讓學生在操作中掌握,在掌握後領悟,使數學思想方法在知識能力的形成過程中共同生成。
我們小學數學教師只有重視對數學思想方法的學習研究,探討其教學規律,才能適應新課改的需要。數學思想方法的滲透具有長期性、反復性。對學生進行數學思想方法的滲透必定要經歷一個循環往復、螺旋上升的過程,往往是幾種思想方法交織在一起,在教學過程中教師要依據具體情況,有效進行數學思想方法的滲透。
D. 如何在小學數學教學過程中有效的滲透數學思想方法
如果說數學起源於人類生存的需要,或者起源於人類理智探索真理的需要,那麼數學思想方法就是伴隨著數學的產生而產生,伴隨著數學的發展而發展的,它不僅是數學的精髓,也是數學教學的靈魂,更是體現數學本質的重要方面和評價數學教學的主要依據。因此,在小學數學教學過程中,加強數學思想方法的滲透,會有利於教師深刻地認識數學內容,有利於增強學生的數學觀念和數學意識,形成學生良好的思維品質。下面從教學過程的角度關注數學思想方法,來交流自己一些不成熟、不全面的認識和看法。
1.在知識的呈現過程中,適時滲透數學思想方法
對於數學而言,知識的發生過程,實際上也就是思想方法的發生過程。因此,象概念的形成過程、結論的推導過程、方法的思考過程、問題的發現過程、規律的被揭示過程等等,都蘊含著向學生滲透數學思想方法、訓練思維的極好機會。對於學生來說,最常見的困難之源是:一項工作、一個發現、一個規律、……很少以創始人當初所用的形式出現,它們已經被濃縮了,隱去了曲折、復雜的思維過程,呈現出整理加工的嚴密、抽象、精煉的結論,而導致其誕生的那些思想方法卻往往隱為內在形式,成為數學結構系統的具有潛在價值的「內河流」。我們教學工作的一項重要任務,就是揭開數學這種嚴謹、抽象的面紗,將發現過程中的活生生的教學「反樸歸真」地交給學生,讓學生親自參與「知識再發現」的過程,經歷探索過程的磨礪,汲取更多的思維營養。例如,在教學圓的面積時,先引導學生回憶以往在推導平行四邊形、三角形、梯形等圖形面積計算時的方法,再把圓轉化成長方形,進而推導出圓的面積計算公式。我們從方法人手,將待解決的問題,通過某種途徑進行轉化,歸納成已解決或易解決的問題,最終使原問題得到解決。這樣的教學活動讓學生經歷了知識的形成過程,滲透了化歸、極限的數學思想,為後繼學習起到了非常重要的作用。
2.在解題思路的探索中,恰當滲透數學思想方法
課堂教學中,學生是學習的主人。在學習過程中,要引導學生積極主動地參與,親自去發現問題、解決問題、掌握方法,其實,對於數學思想方法的學習也不例外,在數學教學中,解題思路的探索過程是最基本的活動形式之一,數學問題的解答過程是對數學思想方法親身體驗和獲得的過程,也是通過運用對其加深認識和理解的過程。例如,在解決「雞兔同籠」問題時,學生初讀題目,有些無從下手。這時就需要教師引導學生用容易探究的小數量代替《孫子算經》原題中的大數量讓學生探究整理,滲透了轉化的思想方法;用列表法解決問題,滲透了函數的思想方法;用算術法解決問題,滲透了假設的思想方法;用方程法解決問題,滲透了代數的思想方法;在梳理方法時,利用課件出示簡筆畫,幫助學生理解各種演算法等,滲透了數形結合的思想方法,這樣將數學思想方法的滲透和知識教學緊密地結合,幫助學生掌握正確的解題方法,提高發散思維能力。
3.在實際問題的解決中,靈活滲透數學思想方法
解題是數學的心臟,學生不僅通過解題掌握和鞏固數學基礎知識,而且由於數學解題重在解題的整個過程,所以還能培養和發展學生的數學能力,而教師應對學生的解題活動加以指導,不能為了解題而解題,而忽視對思維過程的展示,要在解題過程中揭示後續解題活動中解決類似問題的通用思想方法。因此,加強數學應用意識,鼓勵學生運用數學思想方法去分析解決生活實際問題,引導學生抽象、概括、建立數學模型,探求問題解決的方法,使學生把實際問題抽象成數學問題,在應用數學知識解決實際問題的過程中進一步滲透和領悟數學思想方法。例如,客車和貨車同時從甲、乙兩鎮的中點向相反的方向行駛。3小時後客車到達甲鎮,而貨車離乙鎮還有30千米。已知貨車的速度是客車的3/4,求甲、乙兩鎮相距多少千米?分析:由題意知,客車3小時行完全程一半,貨車3小時行完全程的一半少30千米。如設甲乙兩鎮相距z千米,依據「貨車的速度是客車的3/4」,可得方程:多數學生都選用了這種方法。教學時不能停留在此,繼續引導學生變換一種方式思考:將已知條件「貨車的速度是客車的3/4」改變一種敘述方式「貨車與客車的速度比是3:4」,因行車時間相同,所以貨車與客車所行路程比是3:4,即貨車行3份,客車行了4份,貨車比客車少行1份少行30千米,因此易知客車行了4份行了120千米,貨車行了90千米,甲乙兩鎮相距240千米。這樣,通過轉化,使學生體會到分數應用題也可採用整數解法,即可採用比例應用題的方法進行解答,從而鞏固與提高學生解答分數應用題的能力,更重要的是讓學生感受到轉化的方法能變繁為簡、化難為易,有助於培養思維的靈活性,克服思維的呆板性。實際上,在數學解題中經常用到的還有諸如數形結合、化歸、符號化等思想方法,恰當運用這些思想方法不僅能提高解題效率,還能激發學生強烈的求知慾與創造精神。
總之,在教學過程中,加強數學思想方法的滲透,在知識的呈現過程中,讓學生感知數學思想方法,在解題思路的探索中,讓學生感受數學思想方法,在實際問題的解決中,讓學生體驗數學思想方法,這不僅會提高學生的數學素養,還會為他們進一步學習數學打下扎實的基礎。
E. 如何在小學數學課堂中滲透數學思想方法
數學思想方法是解決數學問題所採用的方法。它是數學概念的建立、數學規律的歸納、數學知識的掌握和數學問題解決的基礎。在人的數學研究中,最有用的不僅僅是數學知識,更重要的是數學思想方法。小學數學中常用的數學思想方法有數形結合思想方法、對應思想方法、符號化思想方法、化歸思想方法等。下面我就如何向學生滲透這些數學思想方法分別舉例說明。
1數形結合的數學思想方法。
數和形是數學研究的兩個主要對象,兩者既有區別,又有聯系,互相促進。所謂數形結合的思想方法就是通過具體事實的形象思維過渡到抽象思維的方法。數形的結合是雙向的,一方面,抽象的數學概念、復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化;另一方面,復雜的形體可以用簡單的數量關系表示。用圖解法分析問題就是運用這種方法。我從二年級開始就教學生畫線段圖分析應用題的數量關系。例如《現代小學數學》第三冊的例題:「南庄小學秋季種樹53棵,比春季多種8棵。春季種樹多少棵?」先讓學生找到關健句,弄清誰與誰比,誰多誰少,畫出線段圖:
這樣做學生比較容易找到數量關系,列出正確版式,同時有克服見「多」就「加」,見「少」就「減」的思維定勢。
2對應的思想方法。
對應是人們對兩上集合元素之間的聯系的一種思想方法。為此在教學中,我充分發揮教材優勢,結合教學內容逐步滲透「對應」的數學思想方法。例如《現代小學數學》第一冊的「多和少」,課本先出示散亂排列的等量的茶杯和茶杯蓋圖,接著重新排列整理,使每一個茶杯蓋與每一個茶杯對應,直觀看到「茶杯與茶杯蓋相比,一個對一個,一個也不多,一個也不少」,我們就說茶杯與茶杯蓋同樣多。使學生初步接觸一一對應的思想,初步感知兩個集合的各元素之間能一一對應,它們的數量就是「同樣多」。
3符號化數學思想方法。
數學的一個突出特點是符號加邏輯。而符號化思想是數學信息的載體,能大大簡化運算或推理過程,加快思維的速度,提高學習效率。因此在教學中,要盡量把實際問題用數學符號來表達,還要充分把握每個數學符號所蘊含的豐富內涵和實際意義。例如《現代小學數學》中關於「1」的認識,先讓學生從1架飛機、1棵樹、1個女孩等具體事物中,概括出數字元號「1」,從具體的量到抽象的數。然後再從抽象的數學符號「1」到具體量,讓學生列舉表示「1」的具體事物,1把椅、1頂帽子、1件衣服………。
又如,教學「小於和大於」一課,從左右相等的積木的左端拿一個積森到右端。
這時右邊的積木塊數增多,「=」右邊開口張大;左邊積木數減少,「=」左邊的開口縮小,邊說邊用左手的食指、中指擺成一個小於號,使學生認識小於號。再用同樣的方法認識「大於號」。直觀形象地引導學生掌握表示大小關第的符號,從中滲透符號化數學思想方法。
4「化歸」的數學思想方法。
化歸思想能增長學生智慧與創造能力,是數學中最普遍使用的一種思想方法。即先挖掘內在聯系,把問題A轉化為熟悉的問題B,再通過問題的解決方法去獲得問題A的解。這樣做能把問題化難為易、化生為熟、化繁為簡、化整為零、化曲為直,可以促使學生提高解決問題的速度。
例如第四冊《思維訓練》例1,計算一個乒乓球重多少克?
本題直接求解較難。我從數學思想方法的角度去引導學生將奩、右各種球一一對應進行比較:
得出:左右兩圖的足球、羽毛球的個數相等,乒乓球個數不等,右圖的乒乓球個數比左圖的多2個,引起右邊重了6克,從而把問題化歸為「兩個乒乓球重6克,一個乒乓球重多少克?」這樣一個非常簡單的算術問題,學生很容易就解決了。
實踐證明,在教學中,如果我們注意從數學思想方法的角度去啟發、引導學生思考,就會使學生對新知識不但能快速學會,而且能加深理解、應用,從而提高解決問題的能力,發展學生的思維能力。
F. 在小學數學教學中應該滲透哪些數學思想
《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》 ——小學數學教學中滲透數學思想方法思考與實踐 匯報:兆麟小學 農豐小學 蘭陵小學 今天由我們三人匯報的題目是:《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》 中國科學院院士、著名數學家張景中曾指出:「小學生學的數學很初等,很簡單。但盡管簡單,裡面卻蘊含了一些深刻的數學思想。」 數學知識和數學思想方法作為小學數學學習的兩條線索,一明一暗,相互支撐,其中數學思想方法提示了數學的本質和發展規律,可以說是數學的精髓。下面我們就談談數學思想方法。 一、為什麼要在教學中滲透數學思想方法 1、基本數學思想方法對學生的發展具有重要意義 一位教育學家曾指出:「作為知識的數學出校門不到兩年可能就忘了,惟有深深銘記在頭腦中的是數學煌精神和數學的思想、研究方法、著眼點等,這些隨時隨地發生作用使學生終身受益。」 數學的思想方法是數學的靈魂和精髓,掌握科學的數學思想方法對提升學生思維品質,對數學學科的後繼學習,對其他學得的學習,乃至學生的終身發展有十分重要的意義。在小學數學教學中有意識地滲透一些基本數學思想方法,是增強學生數學觀念,形成良好思維素質的關鍵。不僅能使學生領悟數學的真諦,懂得數學的價值學會數學地思考和解決問題,還可以把知識的學習與能力的培養、智力的發展有機地統一起來。 2.滲透基本數學思想方法是落實新課標精神的需求 數學課程標准把「四基」:基本知識、基本技能、基本思想、基本活動經驗作為目標體系。基本思想是數學學習的目標之一,其重要性不言而喻。新教材是把一些重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來,並運用操作、實驗等直觀手段解決這些問題。從而加深學生對數學概念、公式、定理、定律的理解,提高學生數學能力和思維品質,這是數學教育實現從傳授知識到培養學生分析問題、解決問題能力的重要途徑,也是小學數學新課程改革的真正內涵之在。 二、課教材滲透了哪些數學思想 小學數學中最上位的思想就是演繹和歸納,是數學教學的主線。還有一些常用的數學思想方法: 對應思想、——是指對兩個集合元素之間聯系的把握。許多數學方法來源於對應思想。比如學生在計算練習時常常有 10 ? 20 ×2 ? 30 ? 40 ? 50 ? 形式出現,這其實就體現了對應的思想。如數軸上的一個點就對應一個數,任何一個數都能在數軸上找到相對應的點,一一對應,呈現完美。 符號化思想、——數學發展到今天,已成為一個符號的世界。英國著名數學家素曾說:「什麼是數學?數學就是符號加邏輯。」符號化思想即指人們有意識地、普遍地運用符號化的語言去表述研究的對象。符號化思想在整個小學都有較多的滲透, 例如:阿拉伯數字:1、2、3、5、6、…… +、–、 、 等運算符號; >、<</SPAN>、=、等表示關系的符號; ( )、[ ] 等括弧; 表示數的字母:x、y、z等。 字母表示公式:長方形、正方形的面積S=ab S=a² 字母表示計量單位符號:m\cm\dm\mm\g\km等。 集合思想——把一組對象放在一起作為討論的范圍,這就是集合的思想。如:一年級教材在教孩子認數的時候,用一個圈把一些圖畫圈在裡面,這就是孩子最初所接觸到集合雛形, 也是第一次對小學生滲透這種集合思想。在以後後的教學中慢慢體現並集、差集、空集等思想。 極限思想——我國古代就對極限思想的思考,古代傑出的數學家劉徽的「割圓術」就是利用極奶子思想的典型。極限思想是研究變數在無限變化中的變化趨勢的思想,運用這一思想,人們的思維可以從有限空間向無限空間,從靜態向動態發展,從具體到抽象升華。 統計思想——小學數學中的統計思想主要體現在:簡單的數據整理和求平均數,簡單的統計表和統計圖,學生在會整理、製表、作圖的同時要能從數據、圖表中發現數學問題和數學信息,得出相關的結論。、 假設思想——是先對題目標中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。 比較思想——是數學教學中常見的思想方法之一,也是促進學生思維發展的手段。在數學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快找到解題途徑。 類比思想——是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊行面積公式和三角形面積公式。這種思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。 轉化思想——是一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到。 分類思想——體現對數學對象的分類及其分類的標准如自然數的分類,三角形按邊分按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。 數形結合思想——數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的幫助分析數量關系。 代換思想——他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少? 可逆相思——它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題的方法,有時可以代線段圖逆推。如:一輛汽車從甲地開往乙地,第一小時行了1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。 化歸思想方法——把有可能解決或示解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。 變中抓不變的思想方法——在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解,如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本? 數學模型的思想方法——是對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析等過程,得到簡化和假設,它是生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。 這些數學思想方法是數學的本質之所在、是數學的精髓,只有方法的掌握、思想的形成,才能使學生受益終生。下面我們就結合自己對數學思想方法的學習與實踐,與大家一起交流。 三、讓課堂彰顯思想的魅力 首先說說備課:備課時要研讀教材、明確目標、設計預案,充分挖掘數學思想方法 如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那麼課堂教學就不可能有的放矢。因此我們在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鑽研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,並設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中。其實,每冊教材都有數學思想方法的滲透,我們每冊選取有代表性的單元。 這相對所有教學內容只是冰山一角。為此,我在研讀教材時,常常要多問自己幾個為什麼,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎麼樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等。只有我自己做到胸有成竹,方能給學生滲透相應的數學思想。 2上課:創設情境、建立模型、解釋應用,滲透數學思想方法 數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在課堂教學中,在揭示數學知識的形成過程中滲透數學思想方法,在教給學生數學知識的同時,也獲得數學思想方法上的點化。教師積極地在課堂中滲透數學思想方法,體現了教師在教學中的大智慧,也為學生的學習開辟了一個廣闊的新天地。不同的教學內容,不同的課型,可據其不同特點,恰當地滲透數學思想方法。以下面三種課型為例。 ①新授課:探索知識的發生與形成,滲透數學思想方法 如在《三角形分類》一課中,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、想一想,尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的思想,豐富了分類活動的經驗,形成分類的基本策略,發展了歸納能力。 在數學教學中,解題是最基本的活動形式。任何一個問題,從提出直到解決,需要具體的數學知識,但更多的是依靠數學思想方法。因此,在數學問題的探究發現過程中,要精心挖掘數學的思想方法。 如我在教學三年級「植樹問題」時,首先呈現:在一條100米長的路的一側,如果兩端都種,每2米種一棵,能種幾棵?面對這一挑戰性的問題,學生紛紛猜測,有的說種50棵,有的說種51棵。到底有幾棵?我們能否從「種2、3棵……」出發,先來找一找其中的規律呢?隨著問題的拋出,學生陷入了沉思。如果把你們的一隻手5指叉開看作5棵樹,每兩棵樹之間就有一個「間隔」(板書),一共有幾個間隔?學生若有所思地回答是4個。如果種6棵、7棵……,棵數與間隔的個數有怎樣的關系呢?於是我啟發學生通過動手擺一擺、畫一畫、議一議,發現了在兩端都種時棵數和間隔數之間的數量關系(棵數=間隔數+1),順利地解決了上述問題。然後又將問題改為「只種一端、兩端不種時分別種幾棵」,學生運用同樣的方法興趣盎然地找到了答案。以上問題解決過程給學生傳達這樣一種策略:當遇到復雜問題時,不妨退到簡單問題,然後從簡單問題的研究中找到規律,最終來解決復雜問題。通過這樣的解題活動,滲透了探索歸納、數學建模的思想方法,使學生感受到思想方法在問題解決中的重要作用。 因此,教師對數學問題的設計應從數學思想方法的角度加以考慮,盡量安排一些有助於加深學生對數學思想方法體驗的問題,並注意在解決問題之後引導學生進行交流,深化對解題方法的認識。 ②練習課:經歷知識的鞏固與應用,滲透數學思想方法 數學知識的鞏固,技能的形成,智力的開發,能力的培養等需要適量的練習才能實現。練習課的練習不同於新授課的練習,新授課中的練習主要是為了鞏固剛學過的新知,習題側重於知識方面;而練習課中的練習則是為了在形成技能的基礎上向能力轉化,提高學生運用知識解決實際問題的能力,發展學生的思維能力。因此教師要有數學思想方法教學意識,在練習課的教學中不僅要有具體知識、技能訓練的要求,而且要有明確的數學思想方法的教學要求。例如在《6的乘法口訣》練習課中,學生在完成想一想、算一算的練習中,先讓學生計算,再通過交流自己的演算法,以「7×6+6」為例,藉助圖片用課件演示來理解式子的意義,運用數形結合啟發將式子轉化為8×6來計算,滲透變換的思想,懂得兩個式子形式雖不同,表示的意義以及結果是相同的。又如讓學生算一算每個圖中各有多少個格子,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,可以直接用口訣計算?學生通過實際操作,動手剪一剪、拼一拼,轉化成長方形後分別用6×3、4×3來計算,從而感受到轉化思想的魅力。 「咱們要教給孩子們什麼?」「數學的學習主要是學習思想和方法以及解題的策略」,因此我們要在練習的過程中不斷地總結和探索,從中尋找共性,呈現給孩子最有價值、最本質的東西——數學思想方法。 如我在教學四年級「看誰算得巧」一課時,學生計算「1100÷25」主要採用了以下幾種方法:①豎式計算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在學生陳述了各自的運算依據後,引導學生比較上述方法的異同,結果發現方法①是通法,方法②——⑥是巧法。方法②——⑥雖各有千秋,方法③、④、⑥運用了數的分拆,方法②屬等值變換,方法⑤類似於估算中的「補償」策略,但殊途同歸,都是抓住數據特點,運用學過的運算定律、性質轉化為容易計算的問題。學生對各種方法的評價與反思,就是去深究方法背後的數學思想,從而獲得對數學知識和方法的本質把握。 新課程所倡導的「演算法多樣化」的教學理念,就是讓學生在經歷演算法多樣化的學習過程中,通過對演算法的歸納與優化,深究背後的數學思想,最終能靈活運用數學思想方法解決問題,讓數學思想方法逐步深入人心,內化為學生的數學素養。 ③復習課:學會知識的整理與復習,強化數學思想方法 復習有別於新知識的教學。它是在學生基本掌握了一定的數學知識體系、具備了一定的解題經驗,學生基本認識了某些數學思想方法的基礎上的復習數學。數學思想方法總是隱含在數學知識中,它與具體的數學知識結合成一個有機整體,但它卻無法像數學知識那樣編為章節來教學,而是滲透於全部的小學數學知識中。不同章節的數學知識往往蘊含著不同的數學思想方法,有時在一章或一單元的教學中,又涉及很多的數學思想方法。因此教師在上復習課前,教師要能總體把握教材中隱含的思想方法,明確前後知識間的聯系,做到「瞻前顧後」,並把數學思想方法的滲透落實到教學計劃中。復習時,除了幫助學生掌握好知識與技能,形成良好的認知結構外,還必須加強數學思想方法的滲透,適時地對某種數學思想方法進行揭示、概括和強化,對它的名稱、內容及其運用等予以點撥,使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的價值。 數學思想方法隨著學生對數學知識的深入理解表現出一定的遞進性。在課堂小結、單元復習和知識運用時,教師要引導學生自覺地檢查自己的思維活動,反思自己是怎樣發現和解決問題的,運用了哪些基本的思想方法等,及時對某種數學思想方法進行概括與提煉,使學生從數學思想方法的高度把握知識的本質,提升課堂教學的價值。 如我在教學五年級「平面圖形的面積復習」時,讓學生寫出各種平面圖形(長方形、正方形、平行四邊形、三角形、梯形和菱形)的面積計算公式後提問:這些計算公式是如何推導出來的?每位同學選擇1~2種圖形,利用學具演示推導過程,然後在小組內交流。交流之後我又指出:你能將這些知識整理成知識網路嗎?當學生形成知識網路後(如下圖),再次引導學生將這些平面圖形面積計算。如在復習多邊形的面積推導時,教師可引導學生思考:平行四邊形、三角形、梯形的面積計算公式各是怎樣推導的?有什麼共同點?讓學生提煉概括:學習平行四邊形面積計算時,我們應用割補法把它轉化成學過的長方形來推導;學習三角形和梯形的面積計算時,我們用兩個完全相同的圖形來拼合或把一個圖形割補轉化成學過的圖形來推導……經過系列概括提煉,學生得出其中重要的思想方法——轉化思想。學生一旦掌握了數學思想方法,不僅能使學生的知識結構更完善,還特別有助於今後的學習和運用。因為掌握了數學的思想方法,學生面對新的問題時將懂得怎樣去思考,真正實現質的「飛躍」。 (3)作業:掌握知識、形成技能、發展智力,應用數學思想方法 精心設計作業也是滲透數學思想方法的一條途徑。把作業設計好,設計一些蘊含數學思想方法的題目,採取有效的練習方式,既鞏固了知識技能,又有機地滲透了數學思想方法,一舉兩得。為此教師布置作業要有講究,在學生作業後,要不失時機地恰當地點評,讓學生不僅鞏固所學知識、習得解題技能,更重要的是能悟出其中的數學規律、數學思想方法。再如一位六年級老師布置了下面這道課後思考題。 在作業講評中,教師不僅要給出答案,更重要的是啟發學生思考:你是怎樣算的?是怎麼想的?其中運用了什麼思想方法? 結合上圖引導學生概括出其中的思想與方法:類比思想、數學建模思想、極限的思想、數形結合的思想。 (4)課外:培養興趣、增長見識、培養能力,提升數學思想方法 學校開展數學課外活動是課內教學的重要補充。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,那麼專題講座對學生來說就是「豐盛大餐」了,學生比較系統地了解了常見的數學思想方法以及應用,拓展學生的眼界;數學思想方法的滲透和數學課外實踐活動相結合可以使二者相得益彰,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,發展學生應用數學思想方法解決問題的能力;定期開展數學智力競賽,不但激發優生學習數學的積極性,也考察學生掌握數學思想方法的情況;學生編數學小報、出板報等活動,可以增長學生見識,了解較多相關知識。形式多樣的數學課外活動,使數學思想方法潛移默化,引導學生在學與用中提升了對數學思想方法的認識。
G. 如何在小學數學教學中滲透數學思想方法
《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》
——小學數學教學中滲透數學思想方法思考與實踐
匯報:兆麟小學 農豐小學 蘭陵小學
今天由我們三人匯報的題目是:《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》
中國科學院院士、著名數學家張景中曾指出:「小學生學的數學很初等,很簡單。但盡管簡單,裡面卻蘊含了一些深刻的數學思想。」
數學知識和數學思想方法作為小學數學學習的兩條線索,一明一暗,相互支撐,其中數學思想方法提示了數學的本質和發展規律,可以說是數學的精髓。下面我們就談談數學思想方法。
一、為什麼要在教學中滲透數學思想方法
1、基本數學思想方法對學生的發展具有重要意義
一位教育學家曾指出:「作為知識的數學出校門不到兩年可能就忘了,惟有深深銘記在頭腦中的是數學煌精神和數學的思想、研究方法、著眼點等,這些隨時隨地發生作用使學生終身受益。」
數學的思想方法是數學的靈魂和精髓,掌握科學的數學思想方法對提升學生思維品質,對數學學科的後繼學習,對其他學得的學習,乃至學生的終身發展有十分重要的意義。在小學數學教學中有意識地滲透一些基本數學思想方法,是增強學生數學觀念,形成良好思維素質的關鍵。不僅能使學生領悟數學的真諦,懂得數學的價值學會數學地思考和解決問題,還可以把知識的學習與能力的培養、智力的發展有機地統一起來。
2.滲透基本數學思想方法是落實新課標精神的需求
數學課程標准把「四基」:基本知識、基本技能、基本思想、基本活動經驗作為目標體系。基本思想是數學學習的目標之一,其重要性不言而喻。新教材是把一些重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來,並運用操作、實驗等直觀手段解決這些問題。從而加深學生對數學概念、公式、定理、定律的理解,提高學生數學能力和思維品質,這是數學教育實現從傳授知識到培養學生分析問題、解決問題能力的重要途徑,也是小學數學新課程改革的真正內涵之在。
二、課教材滲透了哪些數學思想
小學數學中最上位的思想就是演繹和歸納,是數學教學的主線。還有一些常用的數學思想方法:
對應思想、——是指對兩個集合元素之間聯系的把握。許多數學方法來源於對應思想。比如學生在計算練習時常常有 10 ?
20 ×2 ?
30 ?
40 ?
50 ?
形式出現,這其實就體現了對應的思想。如數軸上的一個點就對應一個數,任何一個數都能在數軸上找到相對應的點,一一對應,呈現完美。
符號化思想、——數學發展到今天,已成為一個符號的世界。英國著名數學家素曾說:「什麼是數學?數學就是符號加邏輯。」符號化思想即指人們有意識地、普遍地運用符號化的語言去表述研究的對象。符號化思想在整個小學都有較多的滲透,
例如:阿拉伯數字:1、2、3、5、6、……
+、–、 、 等運算符號;
>、<</SPAN>、=、等表示關系的符號;
( )、[ ] 等括弧;
表示數的字母:x、y、z等。
字母表示公式:長方形、正方形的面積S=ab S=a²
字母表示計量單位符號:m\cm\dm\mm\g\km等。
集合思想——把一組對象放在一起作為討論的范圍,這就是集合的思想。如:一年級教材在教孩子認數的時候,用一個圈把一些圖畫圈在裡面,這就是孩子最初所接觸到集合雛形,
也是第一次對小學生滲透這種集合思想。在以後後的教學中慢慢體現並集、差集、空集等思想。
極限思想——我國古代就對極限思想的思考,古代傑出的數學家劉徽的「割圓術」就是利用極奶子思想的典型。極限思想是研究變數在無限變化中的變化趨勢的思想,運用這一思想,人們的思維可以從有限空間向無限空間,從靜態向動態發展,從具體到抽象升華。
統計思想——小學數學中的統計思想主要體現在:簡單的數據整理和求平均數,簡單的統計表和統計圖,學生在會整理、製表、作圖的同時要能從數據、圖表中發現數學問題和數學信息,得出相關的結論。、
假設思想——是先對題目標中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。
比較思想——是數學教學中常見的思想方法之一,也是促進學生思維發展的手段。在數學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快找到解題途徑。
類比思想——是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊行面積公式和三角形面積公式。這種思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
轉化思想——是一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到。
分類思想——體現對數學對象的分類及其分類的標准如自然數的分類,三角形按邊分按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。
數形結合思想——數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的幫助分析數量關系。
代換思想——他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
可逆相思——它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題的方法,有時可以代線段圖逆推。如:一輛汽車從甲地開往乙地,第一小時行了1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
化歸思想方法——把有可能解決或示解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
變中抓不變的思想方法——在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解,如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
數學模型的思想方法——是對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析等過程,得到簡化和假設,它是生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
這些數學思想方法是數學的本質之所在、是數學的精髓,只有方法的掌握、思想的形成,才能使學生受益終生。下面我們就結合自己對數學思想方法的學習與實踐,與大家一起交流。
三、讓課堂彰顯思想的魅力
首先說說備課:備課時要研讀教材、明確目標、設計預案,充分挖掘數學思想方法
如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那麼課堂教學就不可能有的放矢。因此我們在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鑽研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,並設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中。其實,每冊教材都有數學思想方法的滲透,我們每冊選取有代表性的單元。
這相對所有教學內容只是冰山一角。為此,我在研讀教材時,常常要多問自己幾個為什麼,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎麼樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等。只有我自己做到胸有成竹,方能給學生滲透相應的數學思想。
2上課:創設情境、建立模型、解釋應用,滲透數學思想方法
數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在課堂教學中,在揭示數學知識的形成過程中滲透數學思想方法,在教給學生數學知識的同時,也獲得數學思想方法上的點化。教師積極地在課堂中滲透數學思想方法,體現了教師在教學中的大智慧,也為學生的學習開辟了一個廣闊的新天地。不同的教學內容,不同的課型,可據其不同特點,恰當地滲透數學思想方法。以下面三種課型為例。
①新授課:探索知識的發生與形成,滲透數學思想方法
如在《三角形分類》一課中,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、想一想,尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的思想,豐富了分類活動的經驗,形成分類的基本策略,發展了歸納能力。
在數學教學中,解題是最基本的活動形式。任何一個問題,從提出直到解決,需要具體的數學知識,但更多的是依靠數學思想方法。因此,在數學問題的探究發現過程中,要精心挖掘數學的思想方法。
如我在教學三年級「植樹問題」時,首先呈現:在一條100米長的路的一側,如果兩端都種,每2米種一棵,能種幾棵?面對這一挑戰性的問題,學生紛紛猜測,有的說種50棵,有的說種51棵。到底有幾棵?我們能否從「種2、3棵……」出發,先來找一找其中的規律呢?隨著問題的拋出,學生陷入了沉思。如果把你們的一隻手5指叉開看作5棵樹,每兩棵樹之間就有一個「間隔」(板書),一共有幾個間隔?學生若有所思地回答是4個。如果種6棵、7棵……,棵數與間隔的個數有怎樣的關系呢?於是我啟發學生通過動手擺一擺、畫一畫、議一議,發現了在兩端都種時棵數和間隔數之間的數量關系(棵數=間隔數+1),順利地解決了上述問題。然後又將問題改為「只種一端、兩端不種時分別種幾棵」,學生運用同樣的方法興趣盎然地找到了答案。以上問題解決過程給學生傳達這樣一種策略:當遇到復雜問題時,不妨退到簡單問題,然後從簡單問題的研究中找到規律,最終來解決復雜問題。通過這樣的解題活動,滲透了探索歸納、數學建模的思想方法,使學生感受到思想方法在問題解決中的重要作用。
因此,教師對數學問題的設計應從數學思想方法的角度加以考慮,盡量安排一些有助於加深學生對數學思想方法體驗的問題,並注意在解決問題之後引導學生進行交流,深化對解題方法的認識。
②練習課:經歷知識的鞏固與應用,滲透數學思想方法
數學知識的鞏固,技能的形成,智力的開發,能力的培養等需要適量的練習才能實現。練習課的練習不同於新授課的練習,新授課中的練習主要是為了鞏固剛學過的新知,習題側重於知識方面;而練習課中的練習則是為了在形成技能的基礎上向能力轉化,提高學生運用知識解決實際問題的能力,發展學生的思維能力。因此教師要有數學思想方法教學意識,在練習課的教學中不僅要有具體知識、技能訓練的要求,而且要有明確的數學思想方法的教學要求。例如在《6的乘法口訣》練習課中,學生在完成想一想、算一算的練習中,先讓學生計算,再通過交流自己的演算法,以「7×6+6」為例,藉助圖片用課件演示來理解式子的意義,運用數形結合啟發將式子轉化為8×6來計算,滲透變換的思想,懂得兩個式子形式雖不同,表示的意義以及結果是相同的。又如讓學生算一算每個圖中各有多少個格子,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,可以直接用口訣計算?學生通過實際操作,動手剪一剪、拼一拼,轉化成長方形後分別用6×3、4×3來計算,從而感受到轉化思想的魅力。
「咱們要教給孩子們什麼?」「數學的學習主要是學習思想和方法以及解題的策略」,因此我們要在練習的過程中不斷地總結和探索,從中尋找共性,呈現給孩子最有價值、最本質的東西——數學思想方法。
如我在教學四年級「看誰算得巧」一課時,學生計算「1100÷25」主要採用了以下幾種方法:①豎式計算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在學生陳述了各自的運算依據後,引導學生比較上述方法的異同,結果發現方法①是通法,方法②——⑥是巧法。方法②——⑥雖各有千秋,方法③、④、⑥運用了數的分拆,方法②屬等值變換,方法⑤類似於估算中的「補償」策略,但殊途同歸,都是抓住數據特點,運用學過的運算定律、性質轉化為容易計算的問題。學生對各種方法的評價與反思,就是去深究方法背後的數學思想,從而獲得對數學知識和方法的本質把握。
新課程所倡導的「演算法多樣化」的教學理念,就是讓學生在經歷演算法多樣化的學習過程中,通過對演算法的歸納與優化,深究背後的數學思想,最終能靈活運用數學思想方法解決問題,讓數學思想方法逐步深入人心,內化為學生的數學素養。
③復習課:學會知識的整理與復習,強化數學思想方法
復習有別於新知識的教學。它是在學生基本掌握了一定的數學知識體系、具備了一定的解題經驗,學生基本認識了某些數學思想方法的基礎上的復習數學。數學思想方法總是隱含在數學知識中,它與具體的數學知識結合成一個有機整體,但它卻無法像數學知識那樣編為章節來教學,而是滲透於全部的小學數學知識中。不同章節的數學知識往往蘊含著不同的數學思想方法,有時在一章或一單元的教學中,又涉及很多的數學思想方法。因此教師在上復習課前,教師要能總體把握教材中隱含的思想方法,明確前後知識間的聯系,做到「瞻前顧後」,並把數學思想方法的滲透落實到教學計劃中。復習時,除了幫助學生掌握好知識與技能,形成良好的認知結構外,還必須加強數學思想方法的滲透,適時地對某種數學思想方法進行揭示、概括和強化,對它的名稱、內容及其運用等予以點撥,使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的價值。
數學思想方法隨著學生對數學知識的深入理解表現出一定的遞進性。在課堂小結、單元復習和知識運用時,教師要引導學生自覺地檢查自己的思維活動,反思自己是怎樣發現和解決問題的,運用了哪些基本的思想方法等,及時對某種數學思想方法進行概括與提煉,使學生從數學思想方法的高度把握知識的本質,提升課堂教學的價值。
如我在教學五年級「平面圖形的面積復習」時,讓學生寫出各種平面圖形(長方形、正方形、平行四邊形、三角形、梯形和菱形)的面積計算公式後提問:這些計算公式是如何推導出來的?每位同學選擇1~2種圖形,利用學具演示推導過程,然後在小組內交流。交流之後我又指出:你能將這些知識整理成知識網路嗎?當學生形成知識網路後(如下圖),再次引導學生將這些平面圖形面積計算。如在復習多邊形的面積推導時,教師可引導學生思考:平行四邊形、三角形、梯形的面積計算公式各是怎樣推導的?有什麼共同點?讓學生提煉概括:學習平行四邊形面積計算時,我們應用割補法把它轉化成學過的長方形來推導;學習三角形和梯形的面積計算時,我們用兩個完全相同的圖形來拼合或把一個圖形割補轉化成學過的圖形來推導……經過系列概括提煉,學生得出其中重要的思想方法——轉化思想。學生一旦掌握了數學思想方法,不僅能使學生的知識結構更完善,還特別有助於今後的學習和運用。因為掌握了數學的思想方法,學生面對新的問題時將懂得怎樣去思考,真正實現質的「飛躍」。
(3)作業:掌握知識、形成技能、發展智力,應用數學思想方法
精心設計作業也是滲透數學思想方法的一條途徑。把作業設計好,設計一些蘊含數學思想方法的題目,採取有效的練習方式,既鞏固了知識技能,又有機地滲透了數學思想方法,一舉兩得。為此教師布置作業要有講究,在學生作業後,要不失時機地恰當地點評,讓學生不僅鞏固所學知識、習得解題技能,更重要的是能悟出其中的數學規律、數學思想方法。再如一位六年級老師布置了下面這道課後思考題。
在作業講評中,教師不僅要給出答案,更重要的是啟發學生思考:你是怎樣算的?是怎麼想的?其中運用了什麼思想方法? 結合上圖引導學生概括出其中的思想與方法:類比思想、數學建模思想、極限的思想、數形結合的思想。
(4)課外:培養興趣、增長見識、培養能力,提升數學思想方法
學校開展數學課外活動是課內教學的重要補充。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,那麼專題講座對學生來說就是「豐盛大餐」了,學生比較系統地了解了常見的數學思想方法以及應用,拓展學生的眼界;數學思想方法的滲透和數學課外實踐活動相結合可以使二者相得益彰,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,發展學生應用數學思想方法解決問題的能力;定期開展數學智力競賽,不但激發優生學習數學的積極性,也考察學生掌握數學思想方法的情況;學生編數學小報、出板報等活動,可以增長學生見識,了解較多相關知識。形式多樣的數學課外活動,使數學思想方法潛移默化,引導學生在學與用中提升了對數學思想方法的認識。
H. 如何在小學數學課堂中滲透數學思想,方法課題研究結題報告 百度
數學思想抄,是指現實世界襲的空間形式和數量關系反映到人們的意識之中,經過思維活動而產生的結果。數學思想是對數學事實與理論經過概括後產生的本質認識;基本數學思想則是體現或應該體現於基礎數學中的具有奠基性、總結性和最廣泛的數學思想,它們含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力才會有一個大幅度的提高。掌握數學思想,就是掌握數學的精髓。
I. 小學數學教學中應滲透哪些數學思想方法
以下幾種數學思想方法學生不但容易接受,而且對學生數學能力的提高有很好的促進作用。
1.化歸思想
化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這種化歸思想不同於一般所講的「轉化」、「轉換」。它具有不可逆轉的單向性。例1 狐狸和黃鼠狼進行跳躍比賽,狐狸每次可向前跳20米,黃鼠狼每次可向前跳6米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔15米設有一個陷阱,當它們之中有一個掉進陷阱時,另一個跳了多少米?這是一個實際問題,但通過分析知道,當狐狸(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每次所跳距離20(或6)米的整倍數,又是陷阱間隔15米的整倍數,也就是20和15「 最小公倍數」。針對兩種情況,再分別算出各跳了幾次,確定誰先掉入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求「最小公倍數」的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。
2.數形結合思想
數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系使問題簡明直觀。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫一個正方形,並假設它的面積為單位「1」,由圖可知,1-1/32就為所求,這里不但向學生滲透了數形結合思想,還向學生滲透了類比的思想。
3.組合思想
組合思想是把所研究的對象進行合理的分組,並對可能出現的各種情況既不重復又不遺漏地一一求解。
4.「函數」思想
函數是近代數學的重要概念之一,在現代科學技術中廣泛應用,在小學數學教材中,函數思想的滲透非常廣泛。在第一學段,通過填圖等形式,將函數思想滲透其中;在第二學段,學生掌握了許多計算公式,如s=vt等,這些計算公式實際上就是一些簡單的函數關系式;到了六年級,正、反比例的意義是滲透函數思想的重要內容,因為成正比例和反比例的量反映的是兩個變數之間的依存關系。
此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數學教學中都應注意有目的、有選擇、適時地進行滲透。
此外還有集合思想、符號化思想、對應思想等數學思想和方法。
J. 怎樣在小學數學教學中滲透數學思想方法的教育
在「找規律」的教學中,我們不能僅僅關注學生是否能夠理解並嘗試運用規律,還應特別關注學生在探索規律的過程中對數學思想方法的感悟,因為數學思想方法比數學知識更有活力,更具生長性。因此,教師在學生找規律時還要善於把蘊涵在其中的數學思想方法及時「找」出來,讓學生有所感悟。新課程重視數學模型的建立,指出數學教學「應從學生的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型並加以解釋與運用的過程」。 在找規律的教學中,要讓學生初步體會建立數學模型的過程,即從具體到抽象,從特殊到一般,逐步揭示數量之間的內在聯系,並用數學化的形式表示規律,從而把思維和推理提高到一個更高的層次。在嘗試運用規律解決問題時,仍然要重視引導學生初步體會數學模型的價值,增強學生的建模意識。
由此想到,「找規律」不僅要引導學生找到規律,而且要引導學生找到蘊涵其中的數學思想方法,促使學生學會分析問題、研究問題、解決問題,從而在找規律的過程中增強自主探究能力。在「找規律」的教學中,教師要幫助學生找到探索規律的內在需要,找到探究規律的方法,找到探究規律過程中的深度體驗。一句話,幫助學生在找規律的過程中學會探究規律的方法,積累數學活動經驗,感悟數學思想方法,才能充分彰顯找規律的教育價值。
一、小學數學教學中滲透數學思想方法的必要性
1、基本數學思想方法對學生的發展具有重要意義。
小學數學教材體系有兩條線索:一條是數學知識,這是教材上的明線,另一條是數學思想方法,這是蘊含在教材中的暗線。三流教師教教材,二流教師教知識,一流教師教方法。要成為優秀教師,就應善於深層次對教材進行研究與挖掘,把握住蘊含在教材中數學思想方法,才能對教材進行再創造。
日本著名數學教育家米山國藏指出:「作為知識的數學出校門不到兩年可能就忘了,惟有深深銘記在頭腦中的是數學的精神和數學的思想、研究方法、著眼點等,這些隨時隨地發生作用,使學生終身受益。」
數學的思想方法是數學的靈魂和精髓,掌握科學的數學思想方法對提升學生的思維品質,對數學學科的後繼學習,對其他學科的學習,乃至學生的終身發展有十分重要的意義。在小學數學教學中有意識地滲透一些基本數學思想方法,是增強學生數學觀念,形成良好思維素質的關鍵。不僅能使學生領悟數學的真諦,懂得數學的價值,學會數學地思考和解決問題,還可以把知識的學習與能力的培養、智力的發展有機地統一起來。
2、滲透基本數學思想方法是落實新課標精神的需求。
數學課程標准修訂稿把「四基」:基本知識、基本技能、基本思想、基本活動經驗作為目標體系。基本思想是數學學習目標之一,其重要性不言而喻。新教材是把一些重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來,並運用操作、實驗、猜想等直觀手段解決這些問題。從而加深學生對數學概念、公式、定理、定律的理解,提高學生數學能力和思維品質,這是數學教育實現從傳授知識到培養學生分析問題、解決問題能力的重要途徑,也是小學數學新課程改革的真正內涵之所在。世界著名數學家和數學教育家弗賴登塔爾提出的「現實數學教育」觀點得到國際數學教育界的普遍認同,也為廣大數學教師所接受。這一思想表明,一則學校數學具有現實的性質,數學來源於現實生活,再運用到現實生活中去;二則學生應該用現實的方法學習數學,即學生通過熟悉的現實生活,自己逐步發現和得出的數學結論。這就意味著數學課程的應用性和實踐性成為國際數學課程改革的一個基本趨勢。
例如美國數學教師協會1989數學課程標准和2000年標準的基本特點之一都是強調數學應用;荷蘭從60年代起就開始了現實數學教育的改革歷程,到90年代初,幾乎所有的荷蘭中小學生都已經在使用根據現實數學教育思想編寫的數學課本,注重培養學生數學應用意識與實踐能力;日本的數學課程設置了綜合課題學習,同樣也體現了數學知識綜合應用的關注。這一系列實際上強調的是一種數學建模思想。
所謂數學模型是對於現實世界的某一特定研究對象,為了某個目的,在作了一些必要的簡化和假設之後運用適當的數學工具,並通過數學語言表達出來的一個數學結構。而數學建模思想就是把現實世界中有待解決或未解決的問題,從數學的角度發現問題、提出問題、理解問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,並綜合運用所學的數學知識與技能求得解決的一種數學思想和方法。
數學中的各種基本概念都以各自相應的現實模型作背景。如自然數集是用以描述離散數量的模型;各類幾何圖形也都是從現實中抽象出來的數學模型。那些基本的數學模型使我們能對與之聯系的實際問題,舉一反三,觸類旁通。
例如在平面圖形面積一章復習中,設計了這樣一個綜合學習課題:自主運用已學圖形為自己的房間進行簡單的鑲嵌設計。
學生能順利解決問題,關鍵在於理清各種平面圖形之間的知識聯系,在教學中,可以建立一個平面求積的模型S=ab,從長方形求積公式出發推導出正方形、平行四邊形、三角形、梯形、圓形的求積公式,溝通了各平面圖形的內在聯系;同時又隨著相關邊長的變化,展示出這些平面圖形可以相互轉化。學生學會了建模,有頓悟之感。
在此基礎上,進一步讓學生通過探索平面圖形的鑲嵌,知道三角形、四邊形或者正六邊形可以鑲嵌平面,然後自行設計房間鑲嵌方案。在這整個過程中,強調了數學學習經歷「問題情境──建立模型──分類求解──解釋與應用」的基本過程,引導學生主動參與、親身實踐、獨立思考、合作探究,實現了學習方式的轉變,改變了單一的記憶、接受、模仿的被動學習方式,發展了學生搜集和處理信息的能力,以及交流與合作的能力。
當然,在數學教育中,加強數學思想和數學方法的滲透不只是單存的思維活動,它本身就蘊涵了情感素養的熏染。而這一點在傳統的數學教育中往往被忽視了。我們在強調學習知識和技能的過程和方法的同時,更加應該關注的是伴隨這一過程而產生的積極情感體驗和正確的價值觀。《標准》把「情感與態度」作為四大目標領域之一,與「知識技能」、「數學思考」、「解決問題」三大領域相提並論,這充分說明新一輪的數學課程標准改革對培養學生良好的情感與態度的高度重視。它應該包括能積極參與數學學習活動,對數學有好奇心與求知慾。在數學學習活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心。初步認識數學與人類生活的密切聯系及對人類歷史發展的作用,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性,形成實事求是的態度以及進行質疑和獨立思考的習慣。另一方面引導學生在學習知識的過程中,學會合作學習,培養探究與創造精神,形成正確的人格意識。
現代數學思想方法的內涵極為豐富,諸如還有集合思想、極限思想、優化思想、統計思想、猜想與證明等等,小學數學教學中都有所涉及。我們廣大小學數學教師要做教學有心人,有意滲透,有意點撥,重視數學史的滲透,重視課堂教學小結,要以適應小學生年齡特點的大眾化、生活化方式呈現教學內容,讓學生通過現實活動,主動參與、自主探究,學會用數學思維方法提出問題、分析問題、解決問題,從而讓學生的數學思維能力得到切實、有效地發展,進而提高全民族的數學文化素養。