❶ 三年級奧數題100道。及答案
小學三年級奧數題
乘除法中的速算
三年級乘除法中的速算(2)
小學三年級奧數題:乘除法中的速算(2)
三年級乘除法中的速算(3)
小學三年級奧數題:乘除法中的速算(3)
三年級奧數題:噸的認識、測量
小學三年級奧數題:差倍問題(1)
小學三年級奧數題:差倍問題(1)
小學三年級奧數題:差倍問題(2)
小學三年級奧數題:差倍問題(2)
小學三年級奧數題:差倍問題(3)
小學三年級奧數題:差倍問題(3)
小學三年級奧數題:差倍問題(4)
小學三年級奧數題:差倍問題(4)
三年級奧數題:加減法的驗算
小學三年級奧數題:加減法的驗算
三年級奧數題:循環問題(1)
小學三年級奧數題:循環問題(1)
三年級奧數題:循環問題(2)
小學三年級奧數題:循環問題(2)
小學三年級奧數題:循環問題(3)
三年級奧數題:循環問題(3)
三年級奧數題:年月日問題(1)
三年級奧數題:年月日問題(1)
三年級奧數題:年月日問題(2)
三年級奧數題:年月日問題(2)
三年級奧數題:火柴棒問題
三年級奧數題:火柴棒問題
三年級奧數題:和差倍數問題(1)
1、南京長江大橋共分兩層,上層是公路橋,下層是鐵路橋。鐵路橋和公路橋共長11270米,鐵路橋比公路橋長2270米,問南京長江大橋的公路和鐵路橋各長多少米?
分析:和差基本問題,和1127米,差2270米,大數=(和+差)/2,小數=(和-差)/2。
解:鐵路橋長=(11270+2270)/2=6770米,公路橋長=(11270-2270)/2=4500米。
2、三個小組共有180人,一、二兩個小組人數之和比第三小組多20人,第一小組比第二小組少2人,求第一小組的人數。
分析:先將一、二兩個小組作為一個整體,這樣就可以利用基本和差問題公式得出第一、二兩個小組的人數和,然後對第一、二兩個組再作一次和差基本問題計算,就可以得出第一小組的人數。
解:一、二兩個小組人數之和=(180+20)/2=100人,第一小組的人數=(100-2)/2=49人。
3、甲、乙兩筐蘋果,甲筐比乙筐多19千克,從甲筐取出多少千克放入乙筐,就可以使乙筐中的蘋果比甲筐的多3千克?
分析:從甲筐取出放入乙筐,總數不變。甲筐原來比乙筐多19千克,後來比乙筐少3千克,也即對19千克進行重分配,甲筐得到的比乙筐少3千克。於是,問題就變成最基本的和差問題:和19千克,差3千克。
解:(19+3)/2=11千克,從甲筐取出11千克放入乙筐,就可以使乙筐中的蘋果比甲筐的多3千克。
三年級奧數題:和差倍數問題(2)
1、在一個減法算式里,被減數、減數與差的和等於120,而減數是差的3倍,那麼差等於多少?
分析:被減數=減數+差,所以,被減數和減數與差的和就各自等於被減數、減數與差的和的一半,即:
被減數=減數+差=(被減數+減數+差)/2。因此,減數與差的和= 120/2=60。這樣就是基本的和倍問題了。小數=和/(倍數+1)
解:減數與差的和=120/2=60,差=60/(3+1)=15。
2、已知兩個數的商是4,而這兩個數的差是39,那麼這兩個數中較小的一個是多少?
分析:兩個數的商是4,即大數是小數的4倍,因此,這是一個基本的差倍問題。小數=差/(倍數-1)。
解:兩個數中較小的一個=39/(4-1)=13。
3、姐姐做自然練習比妹妹做算術練習多用48分鍾,比妹妹做英語練習多用42分鍾,妹妹做算術、英語兩門練習共用了44分鍾,那麼妹妹做英語練慣用了多少分鍾?
分析:姐姐做自然練習的時間是一定的,比妹妹做算術和英語的時間分別差了48分和42分,說明妹妹做英語比做算術多用了48-42=6分鍾,仍然是一個和差問題。
解:妹妹做英語練慣用時=(44+6)/2=25分鍾。
三年級奧數題:和差倍數問題(3)
1、已知△,○,□是三個不同的數,並且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那麼△+○+□等於多少?
分析:由一、二可知,□是△的2倍,將它代換到三中,就是三個△加2個○等於60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。
解:△+○+□=10+15+20=45。
2、用中國象棋的車、馬、炮分別表示不同的自然數。如果,車÷馬=2,炮÷車=4,炮-馬=56,那麼「車+馬+炮」等於多少?
分析:車÷馬=2,車是馬的2倍;炮÷車=4,炮是車的4倍,是馬的8倍;炮-馬=56,炮比馬大56。差倍問題。
解:馬=56/(8-1)=8,炮=56+8=64,車=8*2=16,車+馬+炮=8+64+16=88。
3、聰聰用10元錢買了3支圓珠筆和7本練習本,剩下的錢若買一支圓珠筆就少1角4分;若買一本練習本還多8角,問一支圓珠筆的售價是多少元?
分析:剩下的錢若買一支圓珠筆就少1角4分;若買一本練習本還多8角,說明圓珠筆比練習本貴1角4分+8角=9角4分,那麼,3支圓珠筆就要比三本練習本貴94*3=282分=2元8角2分,這樣,就相當於在10元中扣除2元8角2分加8角,正好可以買11本練習本,所以,每本練習本的價錢是(1000-282-80)/11=58分=5角8分。
解:圓珠筆-練習本=14+80=94分,每本練習本的價錢是(1000-94*3-80)/11=58分=5角8分,圓珠筆的售價=58+94=152分=1元5角2分。
三年級奧數題:和差倍數問題(4)
1、甲、乙兩位學生原計劃每天自學的時間相同,若甲每天增加自學時間半小時,乙每天減少自學時間半小時,則乙自學6天的時間僅相等於甲自學一天的時間。問:甲、乙原訂每天自學的時間是多少分鍾?
分析:甲每天增加自學時間半小時,乙每天減少自學時間半小時,甲比乙多自學一個小時,乙自學6天的時間僅相等於甲自學一天的時間,甲是乙的6倍,差倍問題。
解:乙每天減少半小時後的自學時間=1/(6-1)=1/5小時=12分鍾,乙原計劃每天自學時間=30+12=42分鍾,甲原計劃每天自學時間=12*6-30=42分鍾。
2、一大塊金帝牌巧克力可以分成若干大小一樣的正方形小塊。小明和小強各有一大塊金帝巧克力,他們同時開始吃第一小塊巧克力。小明每隔20分鍾吃1小塊,14時40分吃最後1小方塊;小強每隔30分鍾吃1小塊,18時吃最後1小方塊。那麼他們開始吃第1小塊的時間是幾時幾分?
分析:小明每隔20分鍾吃1小塊,小強每隔30分鍾吃1小塊,小強比小明多間隔10分鍾,小明14時40分吃最後1小方塊,小強18時吃最後1小方塊,小強比小明晚3小時20分,說明在吃最後一塊前面共有(3*60+20)/10=20個間隔,即已經吃了20塊。那麼,20*20=400分鍾=6小時40分鍾,14時40分-6小時40分=8時。
解:18時-14時40分=3小時20分=3*60+20=200分鍾,已經吃的塊數=200/(30-20)=20塊,小明吃20塊用時20*20=400分鍾=6小時40分鍾,開始吃第一塊的時間為14時40分-6小時40分=8時。
三年級奧數題:速算與巧算
【試題】巧算與速算:41×49=( )
【詳解】相乘的兩個數都是兩位數,且十位上的數字相同,個位上的數字之和正好是10,這就可以運用「頭同尾合十」的巧演算法進行簡便計算。
「頭同尾合十」的巧算方法是:用十位上的數字乘十位上的數字加1的積,再乘100,最後加上個位上2個數字的乘積。
41×49,先用(4+1)×4=20,將20作為積的前兩位數字,再用1×9=9,可以發現末位數字相乘的積是一位數,那就在9的前面補一個0,作為積的後兩位數字。這樣答案很簡單的就求出了,即41×49=(4+1)×4×100+1×9=2009。
三年級奧數題:植樹問題
【試題】一塊三角形地,三邊分別長156米,234米,186米,要在三邊上植樹,株距6米,三個角的頂點上各植上1棵數,共植樹( )棵。
【詳解】此題植樹線路是封閉的,這類題的特點是:因為頭尾兩端重合在一起,所以棵數等於分成的段數。題中要求三角形三個頂點上要各栽一棵樹,因此我們要按照三條邊來考慮。因為156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每邊恰好分成了整數段,這樣,從周長來講,應栽樹的棵數與段數相等。即共植樹:26+31+39=96(棵)。
三年級奧數應用題解題技巧(1)
【試題】一台拖拉機5小時耕地40公頃,照這樣的速度,耕72公頃地需要幾小時?
【詳解】要求耕72公頃地需要幾小時,我們就要先求出這台拖拉機每小時耕地多少公頃?
(1)每小時耕地多少公頃?
40÷5=8(公頃)
(2)需要多少小時?
72÷8=9(小時)
答:耕72公頃地需要9小時。
三年級奧數應用題解題技巧(2)
【試題】紡織廠運來一堆煤,如果每天燒煤1500千克,6天可以燒完。如果每天燒1000千克,可以多燒幾天?
【詳解】要想求可以多燒幾天,就要先知道這堆煤每天燒1000千克可以燒多少天;而要求每天燒1000千克,可以燒多少天,還要知道這堆煤一共有多少千克。
(1)這堆煤一共有多少千克?
1500×6=9000(千克)
(2)可以燒多少天?
9000÷1000=9(天)
(3)可以多燒多少天?
9-6=3(天)。
三年級奧數應用題解題技巧(3)
【試題】把7本相同的書摞起來,高42毫米。如果把28本這樣的書摞起來,高多少毫米?(用不同的方法解答)
【詳解】
方法1:
(1)每本書多少毫米?
42÷7=6(毫米)
(2)28本書高多少毫米?
6×28=168(毫米)
方法2:
(1)28本書是7本書的多少倍?
28÷7=4
(2)28本書高多少毫米?
42×4=168(毫米)
三年級奧數應用題解題技巧(4)
【試題】兩個車間裝配電視機。第一車間每天裝配35台,第二車間每天裝配37台。照這樣計算,這兩個車間15天一共可以裝配電視機多少台?
【詳解】
方法1:
(1)兩個車間一天共裝配多少台?
35+37=72(台)
(2)15天共可以裝配多少台?
72×15=1080(台)
方法2:
(1)第一車間15天裝配多少台?
35×15=525(台)
(2)第二車間15天裝配多少台?
37×15=555(台)
(3)兩個車間一共可以裝配多少台?
555+525=1080(台)
答:15天兩個車間一共可以裝配1080台。
三年級奧數應用題解題技巧(5)
【試題】同學們到車站義務勞動,3個同學擦12塊玻璃。(補充不同的條件求問題,編成兩道不同的兩步計算應用題)。
補充1:「照這樣計算,9個同學可以擦多少塊玻璃?」
【詳解】
(1)每個同學可以擦幾塊玻璃?
12÷3=4(塊)
(2)9個同學可以擦多少塊?
4×9=36(塊)
答:9個同學可以擦36塊。
補充2:「照這樣計算,要擦40塊玻璃,需要幾個同學?」
【詳解】
(1)每個同學可以擦幾塊玻璃?
12÷3=4(塊)
(2)擦40塊需要幾個同學?
40÷4=10(個)
答:擦40塊玻璃需要10個同學。
三年級奧數應用題解題技巧(6)
【試題】小華每分拍球25次,小英每分比小華少拍5次。照這樣計算,小英5分拍多少次?小華要拍同樣多次要用幾分?
【解析】
(1)小英每分拍多少次?
25-5=20(次)
(2)小英5分拍多少次?
20×5=100(次)
(3)小華要幾分拍100次?
100÷25=4(分)
答:小英5分拍100次,小華要拍同樣多次要用4分。
三年級奧數應用題解題技巧(7)
【試題】劉老師搬一批書,每次搬15本,搬了12次,正好搬完這批書的一半。剩下的書每次搬20本,還要幾次才能搬完?
【解析】
(1)12次搬了多少本?
15×12=180(本)
搬了的與沒搬的正好相等
(2)要幾次才能把剩下的搬完?
180÷20=9(次)
答:還要9次才能搬完。
❷ 三年級奧數題及答案30道
1.一條路長100米,從頭到尾每隔10米栽1棵梧桐樹,共栽多少棵樹?
路分成100÷10=10段,共栽樹10+1=11棵。
12棵柳樹排成一排,在每兩棵柳樹中間種3棵桃樹,共種多少棵桃樹?
3×(12-1)=33棵。
一根200厘米長的木條,要鋸成10厘米長的小段,需要鋸幾次?
200÷10=20段,20-1=19次。
4.螞蟻爬樹枝,每上一節需要10秒鍾,從第一節爬到第13節需要多少分鍾?
從第一節到第13節需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周圍方式菊花,每隔1米放1盆花。花圃周圍共20米長。需放多少盆菊花?
20÷1×1=20盆
6.從發電廠到鬧市區一共有250根電線桿,每相鄰兩根電線桿之間是30米。從發電廠到鬧市區有多遠?
30×(250-1)=7470米。
7.王老師把月收入的一半又20元留做生活費,又把剩餘錢的一半又50元儲蓄起來,這時還剩40元給孩子交學費書本費。他這個月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他這個月收入400元。
8.一個人沿著大提走了全長的一半後,又走了剩下的一半,還剩下1千米,問:大提全長多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了這堆零件的一半又10個,第二天又加工了剩下的一半又10個,還剩下25個沒有加工。問:這批零件有多少個?
(25+10)×2=70個,(70+10)×2=160個。綜合算式:【(25+10)×2+10】×2=160個
10.一條毛毛蟲由幼蟲長到成蟲,每天長一倍,16天能長到16厘米。問它幾天可以長到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然後倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中還剩下80千克。桶里原來有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙兩書架共有圖書200本,甲書架的圖書數比乙書架的3倍少16本。甲、乙兩書架上各有圖書多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕買一套衣服用去185元,問上衣和褲子各多少元?
褲子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年齡之和是94歲,且甲的2倍比丙多5歲,乙2倍比丙多19歲,問:甲、乙、丙三人各多大?
如果每個人的年齡都擴大到2倍,那麼三人年齡的和是94×2=188。如果甲再減少5歲,乙再減少19歲,那麼三人的年齡的和是188-5-19=164(歲),這時甲的年齡是丙的一半,即丙的年齡是甲的兩倍。同樣,這時丙的年齡也是乙兩倍。所以這時甲、乙的年齡都是164÷(1+1+2)=41(歲),即原來丙的年齡是41歲。甲原來的年齡是(41+5)÷2=23(歲),乙原來的年齡是(41+19)÷2=30(歲)。
15.小明、小華捉完魚。小明說:「如果你把你捉的魚給我1條,我的魚就是你的2倍。如果我給你1條,咱們就一樣多了。「請算出兩個各捉了多少條魚。
小明比小華多1×2=2(條)。如果小華給小明1條魚,那麼小明比小華多2+1×2=4(條),這時小華有魚4÷(2-1)=4(條)。原來小華有魚4+1=5(條),原來小明有魚5+2=7(條)。
16.小芳去文具店買了13本語文書,8本算術書,共用去10元。已知6本語文本的價錢與4本算術本的價錢相等。問:1本語文本、1本算術本各多少錢?
8÷4×6=12,即8本算術本與12本語文體價錢相等。所以1本語文本值10×100÷(13+12)=40(分),1本算術本值40×6÷4=60(分),即1本語文本4角,1本算術本6角。
17.找規律,在括弧內填入適當的數. 75,3,74,3,73,3,(),()。
答案:72,3。
18找規律,在括弧內填入適當的數. 1,4,5,4,9,4,(),()。
奇數項構成數列1,5,9……,每一項比前一項多4;偶數項都是4,所以應填13,4
19.找規律,在括弧內填入適當的數. 3,2,6,2,12,2,(),()。
24,2。
20.找規律,在括弧內填入適當的數. 76,2,75,3,74,4,(),()。
答案:將原數列拆分成兩列,應填:73,5。
21.找規律,在括弧內填入適當的數. 2,3,4,5,8,7,(),()。
答案:將原數列拆分成兩列,應填:16,9。
22.找規律,在括弧內填入適當的數. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶數項是它前面的奇數項的2倍;又8=6+2,18=16+2,即從第三項起,奇數項比它前面的偶數項多2.所以應填:36,38。
23.找規律,在括弧內填入適當的數. 1,6,7,12,13,18,19,(),()。
答案:將原數列拆分成兩列,應填:24,25。
24.找規律,在括弧內填入適當的數. 1,4,3,8,5,12,7,()。
答案:奇數項構成數列1,3,5,7,…,每一項比前一項多2;偶數項構成數列4,8,12,…,每一項比前一項多4,所以應填:16。
25.找規律,在括弧內填入適當的數. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一場比賽中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。問:他們各是第幾名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一頭象的重量等於4頭牛的重量,一頭牛的重量等於3匹小馬的重量,一匹小馬的重量等於3頭小豬的重量。問:一頭象的重量等於幾頭小豬的重量?
答案:4×3×3=36,所以一頭象的重量等於36頭小豬的重量。
28.甲、乙、丙三人,一個人喜歡看足球,一個人喜歡看拳擊,一個人喜歡看籃球。已知甲不愛看籃球,丙既不喜歡看籃球又不喜歡看足球。現有足球、拳擊、籃球比賽的入場券各一張。請根據他們的愛好,把票分給他們。
答案:丙不喜歡看籃球與足球,應將拳擊入場券給丙。甲不喜歡看籃球,應將足球入場券給甲。最後,應將籃球入場券給乙。
29.有一堆鐵塊和銅塊,每塊鐵塊重量完全一樣,每塊銅塊的重量也完全一樣。3塊鐵快和5塊銅塊共重210克。4塊鐵塊和10塊銅塊共重380克。問:每一塊鐵塊、每一塊銅塊各重多少?
答案:4塊鐵塊和10塊銅塊共重380克,所以2塊鐵塊和5塊銅塊共重380÷2=190(克)。而3塊鐵塊和5塊銅塊共重210克,所以1塊鐵塊重210-190=20(克)。1銅塊重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他們各自都說了一句話,而其中只有一句是真的。甲說:「是乙做的。」 乙說:「不是我做的。」 丙說:「也不是我做的。」 問:到底是誰做的好事?
答案:如果是甲做的好事,那麼乙、丙的話都是真的,與只有一句是真的矛盾。如果是乙做的好事,那麼甲、丙的話都是真的,也產生矛盾。好事是丙做的,這時甲、丙的話都是錯的,只有乙的話是真的,所以好事是丙做的。
31.一張長8分米、寬3分米的長方形紙板,在四個角落上各截去一個邊長為2分米的正方形,所剩下的部分的周長是多少?
答:(8+3)×2=22(分米)
32.計算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.計算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一個括弧內的項數為(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
採納哦
❸ 小學三年級奧數題及答案
1.一條路長100米,從頭到尾每隔10米栽1棵梧桐樹,共栽多少棵樹?
路分成100÷10=10段,共栽樹10+1=11棵。
12棵柳樹排成一排,在每兩棵柳樹中間種3棵桃樹,共種多少棵桃樹?
3×(12-1)=33棵。
一根200厘米長的木條,要鋸成10厘米長的小段,需要鋸幾次?
200÷10=20段,20-1=19次。
4.螞蟻爬樹枝,每上一節需要10秒鍾,從第一節爬到第13節需要多少分鍾?
從第一節到第13節需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周圍方式菊花,每隔1米放1盆花。花圃周圍共20米長。需放多少盆菊花?
20÷1×1=20盆
6.從發電廠到鬧市區一共有250根電線桿,每相鄰兩根電線桿之間是30米。從發電廠到鬧市區有多遠?
30×(250-1)=7470米。
7.王老師把月收入的一半又20元留做生活費,又把剩餘錢的一半又50元儲蓄起來,這時還剩40元給孩子交學費書本費。他這個月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他這個月收入400元。
8.一個人沿著大提走了全長的一半後,又走了剩下的一半,還剩下1千米,問:大提全長多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了這堆零件的一半又10個,第二天又加工了剩下的一半又10個,還剩下25個沒有加工。問:這批零件有多少個?
(25+10)×2=70個,(70+10)×2=160個。綜合算式:【(25+10)×2+10】×2=160個
10.一條毛毛蟲由幼蟲長到成蟲,每天長一倍,16天能長到16厘米。問它幾天可以長到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然後倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中還剩下80千克。桶里原來有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙兩書架共有圖書200本,甲書架的圖書數比乙書架的3倍少16本。甲、乙兩書架上各有圖書多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕買一套衣服用去185元,問上衣和褲子各多少元?
褲子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年齡之和是94歲,且甲的2倍比丙多5歲,乙2倍比丙多19歲,問:甲、乙、丙三人各多大?
如果每個人的年齡都擴大到2倍,那麼三人年齡的和是94×2=188。如果甲再減少5歲,乙再減少19歲,那麼三人的年齡的和是188-5-19=164(歲),這時甲的年齡是丙的一半,即丙的年齡是甲的兩倍。同樣,這時丙的年齡也是乙兩倍。所以這時甲、乙的年齡都是164÷(1+1+2)=41(歲),即原來丙的年齡是41歲。甲原來的年齡是(41+5)÷2=23(歲),乙原來的年齡是(41+19)÷2=30(歲)。
15.小明、小華捉完魚。小明說:「如果你把你捉的魚給我1條,我的魚就是你的2倍。如果我給你1條,咱們就一樣多了。「請算出兩個各捉了多少條魚。
小明比小華多1×2=2(條)。如果小華給小明1條魚,那麼小明比小華多2+1×2=4(條),這時小華有魚4÷(2-1)=4(條)。原來小華有魚4+1=5(條),原來小明有魚5+2=7(條)。
16.小芳去文具店買了13本語文書,8本算術書,共用去10元。已知6本語文本的價錢與4本算術本的價錢相等。問:1本語文本、1本算術本各多少錢?
8÷4×6=12,即8本算術本與12本語文體價錢相等。所以1本語文本值10×100÷(13+12)=40(分),1本算術本值40×6÷4=60(分),即1本語文本4角,1本算術本6角。
17.找規律,在括弧內填入適當的數. 75,3,74,3,73,3,(),()。
答案:72,3。
18找規律,在括弧內填入適當的數. 1,4,5,4,9,4,(),()。
奇數項構成數列1,5,9……,每一項比前一項多4;偶數項都是4,所以應填13,4
19.找規律,在括弧內填入適當的數. 3,2,6,2,12,2,(),()。
24,2。
20.找規律,在括弧內填入適當的數. 76,2,75,3,74,4,(),()。
答案:將原數列拆分成兩列,應填:73,5。
21.找規律,在括弧內填入適當的數. 2,3,4,5,8,7,(),()。
答案:將原數列拆分成兩列,應填:16,9。
22.找規律,在括弧內填入適當的數. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶數項是它前面的奇數項的2倍;又8=6+2,18=16+2,即從第三項起,奇數項比它前面的偶數項多2.所以應填:36,38。
23.找規律,在括弧內填入適當的數. 1,6,7,12,13,18,19,(),()。
答案:將原數列拆分成兩列,應填:24,25。
24.找規律,在括弧內填入適當的數. 1,4,3,8,5,12,7,()。
答案:奇數項構成數列1,3,5,7,…,每一項比前一項多2;偶數項構成數列4,8,12,…,每一項比前一項多4,所以應填:16。
25.找規律,在括弧內填入適當的數. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一場比賽中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。問:他們各是第幾名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一頭象的重量等於4頭牛的重量,一頭牛的重量等於3匹小馬的重量,一匹小馬的重量等於3頭小豬的重量。問:一頭象的重量等於幾頭小豬的重量?
答案:4×3×3=36,所以一頭象的重量等於36頭小豬的重量。
28.甲、乙、丙三人,一個人喜歡看足球,一個人喜歡看拳擊,一個人喜歡看籃球。已知甲不愛看籃球,丙既不喜歡看籃球又不喜歡看足球。現有足球、拳擊、籃球比賽的入場券各一張。請根據他們的愛好,把票分給他們。
答案:丙不喜歡看籃球與足球,應將拳擊入場券給丙。甲不喜歡看籃球,應將足球入場券給甲。最後,應將籃球入場券給乙。
29.有一堆鐵塊和銅塊,每塊鐵塊重量完全一樣,每塊銅塊的重量也完全一樣。3塊鐵快和5塊銅塊共重210克。4塊鐵塊和10塊銅塊共重380克。問:每一塊鐵塊、每一塊銅塊各重多少?
答案:4塊鐵塊和10塊銅塊共重380克,所以2塊鐵塊和5塊銅塊共重380÷2=190(克)。而3塊鐵塊和5塊銅塊共重210克,所以1塊鐵塊重210-190=20(克)。1銅塊重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他們各自都說了一句話,而其中只有一句是真的。甲說:「是乙做的。」 乙說:「不是我做的。」 丙說:「也不是我做的。」 問:到底是誰做的好事?
答案:如果是甲做的好事,那麼乙、丙的話都是真的,與只有一句是真的矛盾。如果是乙做的好事,那麼甲、丙的話都是真的,也產生矛盾。好事是丙做的,這時甲、丙的話都是錯的,只有乙的話是真的,所以好事是丙做的。
31.一張長8分米、寬3分米的長方形紙板,在四個角落上各截去一個邊長為2分米的正方形,所剩下的部分的周長是多少?
答:(8+3)×2=22(分米)
32.計算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.計算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一個括弧內的項數為(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
滿意請採納。
❹ 三年級奧數題及答案100道
三年級奧數經典自測
班級:
姓名:
成績:
1.甲、乙、丙三個班共有學生161人,甲班比乙班多2人,乙班比丙班多6人,乙班有多少人?
2. 張潔比媽媽小24歲,4年以後媽媽的年齡是張潔的3倍,今年張潔多少歲?
3. 靖宇大街上原有路燈121盞,相鄰兩盞路燈相距40米;為美化街道,將老路燈全部改換成新式路燈51盞,求相鄰兩盞新路燈之間的距離是多少米?
4. 小山是安樂街的交通警,經過長時間的觀察信號燈,他發現信號燈的變化情況是紅、黃、綠、黃、紅、黃,……,如果從紅燈亮開始,當信號燈變化了39次時,是什麼顏色的燈在亮?
5. 一個長方形,長是寬的3倍,周長是48厘米,求寬是多少?
6. 一根鐵絲,第一次用去10米,第二次用去餘下的一半多8米,第三次用去餘下的一半還多6米,這時還剩下20米,問原來這根鐵絲有多長?
7. 三年級數學競賽獲獎的同學中,男同學獲獎的人數比女同學多2人,女同學比男同學獲獎人數的一半多2人。男、女同學各有幾人獲獎?
8. 兩個數相除商是3,余數是10,被除數、除數、商與余數之和是143。求被除數、除數分別是多少?
9. 有紅、白、黑三種顏色的球,白的和紅的合在一起有16個,紅的比黑的多7個,黑的比白的多5個。三種顏色的球各有多少個?
10. 媽媽到哈安市場給小海買本,5角和8角的練習本共買了20本,共用去13元錢,媽媽買回來5角、8角的練習本各有多少本?
11. 小紅和小亮住在同一個大樓,小紅家住5樓,回家要上96個台階,小亮回家要上144個台階,問小亮家住幾樓?
12. 三年級組同學參加「六一」節團體操表演,每橫排人數同樣多,每豎排人數也同樣多。小微的位置是從左數第10人,從右數第8人,從前數第9人,從後數是第7人。參加表演的同學有多少人?
13. 幼兒園的陳老師在給小朋友分餅干,每人分3塊,要多出5塊;如果每人分4塊,還缺8塊,幼兒園有小朋友多少名?餅干有多少塊?
14. 甲、乙兩個油罐,如果每分鍾放油5千克,甲罐52分鍾把油放盡, 乙罐36分鍾把油放完。如果從甲罐向乙罐注油,需要過多少分鍾兩罐油相等?
智力小迷宮
巧分圍棋子
現在要把99隻圍棋子分裝在大、小不同的兩種盒子里,每個大盒子可裝12隻,每個小盒子可裝5隻,這樣恰好裝完。那麼大盒子、小盒子各用了多少個?小朋友。你是怎麼裝的呢?仔細的分一分,答案是唯一的嗎?
❺ 三年級奧數題及答案100道
最低0.27元開通文庫會員,查看完整內容>
原發布者:小泥巴cyn
01、40個梨分給3個班,分給一班20個,其餘平均分給二班和三班,二班分到()個。【解析】分給一班後還剩下40-20=20個梨,因為其餘平均分給二班和三班,所以二班分到20÷2=10個。02、7年前,媽媽年齡是兒子的6倍,兒子今年12歲,媽媽今年()歲。【解析】年齡問題,7年前,兒子年齡為12-7=5歲,而媽媽年齡是兒子的6倍,所以媽媽七年前的年齡為5×6=30歲,那麼媽媽今年37歲。03、同學們進行廣播操比賽,全班正好排成相等的6行。小紅排在第二行,從頭數,她站在第5個位置,從後數她站在第3個位置,這個班共有()人【解析】站隊問題,要注意不要忽略本身。從頭數,她站在第5個位置,說明她前面有5-1=4個人,從後數她站在第3個位置,說明她後面有3-1=2人,所以這一行的人數為4+2+1=7人,所以這個班的人數為7×6=42人。04、有一串彩珠,按「2紅3綠4黃」的順序依次排列。第600顆是()顏色。【解析】周期循環問題,以2+3+4=9個一循環,600÷9=66....6,余數為6,所以第600顆是黃顏色。05、用一根繩子繞樹三圈餘30厘米,如果繞樹四圈則差40厘米,樹的周長有()厘米,繩子長()厘米。【解析】繞樹三圈餘30厘米,繞樹四圈則差40厘米,所以樹的周長為30+40=70厘米,繩子長為3×70+30=240厘米。06、一隻蝸牛在12米深的井底向上爬,每小時爬上3米後要滑下2米,這只蝸牛要()小時才能爬出井口。【解析】每小時爬上3米後要滑下2米,相當於每小時向上爬了1米,那麼7小時後,蝸牛向上爬
❻ 三年級下冊數學奧數題。50道
1. 甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
2. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
3. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
4. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
5. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
6. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
7. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
8. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
9. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
10. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
11. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
12. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的80%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
13. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
14. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
15. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
16. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
17. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
18. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
19. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
20. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
小學數學應用題綜合訓練(03)
21. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
22. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
23. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
24. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
25. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
26. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
27. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
28. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
29. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
30. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
31. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
32. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
33. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
34. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
35. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
36. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
37. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
38. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
39. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
40. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
41. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
42. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
43. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
44. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
45. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
46. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
47. 甲、乙二人在400米的圓形跑道上進行10000米比賽.兩人從起點同時同向出發,開始時甲的速度為8米/秒,乙的速度為6米/秒,當甲每次追上乙以後,甲的速度每秒減少2米,乙的速度每秒減少0.5米.這樣下去,直到甲發現乙第一次從後面追上自己開始,兩人都把自己的速度每秒增加0.5米,直到終點.那麼領先者到達終點時,另一人距離終點多少米?
48. 小明從家去學校,如果他每小時比原來多走1.5千米,他走這段路只需原來時間的4/5;如果他每小時比原來少走1.5千米,那麼他走這段路的時間就比原來時間多幾分幾之?
49. 甲、乙、丙、丁現在的年齡和是64歲.甲21歲時,乙17歲;甲18歲時,丙的年齡是丁的3倍.丁現在的年齡是幾歲?
50. 加工一批零件,原計劃每天加工30個.當加工完1/3時,由於改進了技術,工作效率提高了10%,結果提前了4天完成任務.問這批零件共有幾個?
小學數學應用題綜合訓練(06)
❼ 小學三年級奧數題100道
、 人民路小學操場長90米,寬45米,改造後,長增加10米,寬增加5米。現在操場面積比原來增加多少平方米?
【思路導航】用操場現在的面積減去操場原來的面積,就得到增加的面積,操場現在的面積是:(90+10)×(45+5)=5000(平方米),操場原來的面積是:90×45=4050(平方米)。所以現在比原來增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)
練習(1)有一塊長方形的木板,長22分米,寬8分米,如果長和寬分別減少10分米,3分米,面積比原來減少多少平方分米?
練習(2)一塊長方形地,長是80米,寬是45米,如果把寬增加5米,要使面積不變,長應減少多少米?
2、 一個長方形,如果寬不變,長增加6米,那麼它的面積增加54平方米,如果長不變,寬減少3米,那麼它的面積減少36平方米,這個長方形原來的面積是多少平方米?
【思路導航】由:「寬不變,長增加6米,那麼它的面積增加54平方米」可知它的寬是54÷6=9(米);又由「長不變,寬減少3米,那麼它的面積減少了36平方米」,可知它的長為:36÷3=12(米),所以,這個長方形的面積是12×9=108(平方米)。 (36÷3)×(54÷9)=108(平方米)
練習(1)一個長方形,如果寬不變,長減少3米,那麼它的面積減少24平方米,如果長不變,寬增加4米,那麼它的面積增加60平方米,這個長方形原來的面積是多少平方米?
練習(2)一個長方形,如果寬不變,長增加5米,那麼它的面積增加30平方米,如果長不變,寬增加3米,那麼它的面積增加48平方米,這個長方形的面積原來是多少平方米?
練習(3)一個長方形,如果它的長減少3米,或它的寬減少2米,那麼它的面積都減少36平方米,求這個長方形原來的面積。
3、 下圖是一個養禽專業戶用一段長16米的籬笆圍成的一個長方形養雞場,求佔地面積有多大。
【思路導航】根據題意,因為一面利用牆,所以兩條長加上一條寬等於16米,而寬是4米,那麼長是(16-4)÷2=6(米)。因此,佔地面積是6×4=24(平方米)
(16-4)÷2×4=24(平方米)
練習(1)下圖是某個養禽專業戶用一段長13米的籬笆圍成一個長方形的養雞場,求養雞場的佔地面積有多大?
練習(2)用56米長的木欄圍成一個長或寬是20米的長方形,其中一邊利用圍牆,怎樣才能使圍成的面積最大?
4、 一塊正方形的鋼板,先截去寬5分米的長方形,又截去寬8分米的長方形(如下圖),面積比原來的正方形減少181平方分米,原正方形的邊長是多少?
【思路導航】把陰影的部分剪下來,並把剪下的兩個小正方形拼合起來(如下圖),再補上長,長和寬分別是8分米、5分米的小長方形,這個拼合成的長方形的面積是:181+8×5=221(平方分米),長是原來正方形的邊長,寬是:8+5=13(分米)。所以,原正方形的邊長是221÷13=17(分米)
(181+8×5)÷(8+5)=17(分米)
❽ 小學三年級下冊數學競賽奧數題及答案
1.除107後,余數為2的兩位數有多少個?
2.A÷24=121……b,要使余數最大,被除數應該是多少?
3.四位數8□98能同時被17和19整除,那麼這個四位數所有的質因數是和是多少?
4.31453×68765×987657的積,除以4的余數是多少?
5.一串數1、2、4、7、11、16、22、29……這串數的組成規律是:第2個數比第1個數多1;第3個數比第2個數多2;第4個數比第3個數多3;以此類推,那麼這串數左起的第1992個數除以5的余數是多少?
6.如果現在表示的時間是18點整,那麼分針旋轉1990圈之後是幾點鍾?
7.小明往一個大池子里扔石子,第一次扔1個石子,第二次扔2個石子,第三次扔3個石子……,他准備扔到池子里的石子的總數被106除,余數是0,那麼小明要扔多少次?
8.從7開始,把7的倍數依次寫下去,一直寫到994成為一個很大的數:71421……987994,這個數是幾位數?
9.用1~9的九個數字組成三個三位數,使其中最大的三位數被3除餘2,且還盡可能地小;次大的三位數被3除餘1;最小的三位數被3整除,那麼最大的三位數是多少?
10.100個7組成的一百位數,被13除後,余數是多少?